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Abstract 

A novel method for color image segmentation is proposed 
in this paper. The method is based on the segmentation of 
each color plane independently using a watershed based 
thresholding of the plane histograms. The segmentation 
maps obtained for each color plane are fused together 
according to a fusion operator taking into account a 
concordance of the labels of each segmentation map. This 
operator produces a fused segmentation map containing 
labeled and unlabeled pixels which is used as an image of 
seeds for a region growing method : the color watershed. 
The color watershed produces the final segmentation of 
the initial image. This segmentation scheme is 
experimented using several types of medical images and 
results in a fast and robust segmentation. 

Introduction 

Color image segmentation refers to the partitioning of a 
multi-channel image into meaningful objects. Various 
approaches to color image segmentation can be found in 
the literature and can be roughly classified into several 
categories: clustering methods,1 edge-based methods,2 
region growing methods3 and variationnal methods.4 We 
propose to combine two types of methods: clustering and 
region growing methods. Clustering methods of the color 
histogram use 3D information and are time consuming, so 
methods based on multi-thresholding of color planes 
might be preferred. We propose to use the fusion of 
segmented color planes as an initialization for a region 
growing method : the color watershed. Thus, the proposed 
scheme consists in three stages: 1) clustering of each color 
planes, 2) fusion of the resulting segmentation maps, 3) 
color watershed growing. The paper is organized as the 
aforementioned segmentation scheme. 

Grey-Scale Image Clustering 

To obtain a clustering of each color plane, we propose to 
perform a thresholding. First, we assume that the number 
of class to be extracted is known and is denoted as Nc. We 
suppose that the decision regions of the color planes are 
grouped around the modes of the histogram. The 
clustering of the histogram can therefore be achieved by 
computing the watershed of the histogram comple-
mentary. The class of a pixel p of a color plane is given 
by the label value of the corresponding point in the 

clustered histogram. Since we use watershed, an 
initialization step is needed. We propose in a first step to 
simplify the histogram using a grey-scale reconstruction 
of height 
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where H denotes the histogram of a given color plane, 
σ and max respectively denote the standard deviation and 
the maximum of the histogram. The reconstruction of the 
histogram H is performed with G(n)=H(n)-h (for each 
value of the histogram, h is subtracted, if G(n) ≤ 0 then 
G(n)=0). The reconstruction of the histogram gives a 
simplified histogram called Hs which can be used to 
cluster the image since the irrelevant minima have been 
eliminated. In a first step, the complement of Hs is 
computed, providing Hc

s. From this latter, all the minima 
are extracted and used as seeds for the 1D watershed. This 
results in a splitting of the histogram in several regions. 
The drawback of this method is that the number of 
obtained regions is generally larger than the wanted 
number of class Nc: an over-segmentation of the 
histogram is obtained. We propose to merge adjacent 
regions of the histogram according to a merging criterion. 
The 1D adjacency graph of the obtained segmentation is 
constructed and the smallest region is searched. This latter 
region is merged with one of its two adjacent regions 
minimizing the following quantity: 
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where a region Ri is described in the histogram by two 
values, its lower and upper bounds denoted by l(Ri) and 
u(Ri). The numerator of (2) is the number of pixels 
belonging to the region Ri. The adjacency graph is 
updated each time two regions merge and the algorithm 
iterates until the number of regions of the histogram is 
equal to the wanted number of class Nc. The quantity to be 
minimized (2) express that a region extracted in the 
histogram is considered as a relevant part of the image (in 
the sense that it belongs to one of the Nc clusters) if the 
corresponding section of the histogram is large and 
corresponds to a high number of pixels. The figures 1 (a) 
to (d) illustrates the different steps of the clustering of the 
histogram of a color plane in 3 regions. The histogram is 
computed (figure 1 (a)), it is simplified and its 
complement is calculated (figure 1 (b)). The watershed is 
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performed with the minima as seeds (figure 1 (c)) and the 
over-clustering is eliminated by the merging step (figure 1 
(d)). We can note that the three final regions extracted 
correspond to the main three peaks of the histogram and 
the influence zones of each peak are well defined. It has 
to be noted that the merging step is not used if the number 
of regions obtained after the watershed is lower than Nc. 
The set of regions for a given color plane Ci will be 
denoted by ξ(Ci). 
 

 

Figure 1. An illustration of the clustering of an histogram. 

Fusion of Segmented Color Channels 

Concordance of the Labels 
Each color plane may distinguish a number of 

regions which can be different from a color plane to 
another. According to the previous step, for each color 
plane Ci, ∀ i ∈{1,2,3}, we can associate a number of 
regions Θ(Ci)=Card(ξ(Ci)). The color of a pixel is given 
as three values corresponding to three different tristimuli 
(generally R, G and B). These values correspond to 
different sources and do not contain the same information. 
In the previous clustering step, the three color planes were 
independently segmented and there is no guarantee that 
the same label would be assigned to a same type of cluster 
in the different segmentation maps. Without taking into 
account the concordance of the cluster labels in the three 
segmentation maps, no fusion can be considered. To 
achieve this aim, the set of regions ξ is deduced from the 
superimposition of the different regions ξ(C1), ξ(C2), 
ξ(C3). The superimposition produces a new image of 
labels (denoted by J) which is compatible with all the 
segmentation maps of the color planes. The number of 
regions of J is within 
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where denotes the sup. The figures 2 (a) to (d) illustrates 
the label concordance step on an initial color image 
containing Nc = 3 classes. For each color plane of the ori-
ginal color image, the segmentation maps are processed 

using the clustering method of the previous section. The 
label concordance map obtained is deduced from the three 
independent segmentation maps and produces a segmen-
tation map J in compliance with all of them. 
 

 

Figure 2. The segmentation maps of an image and a resulting 
label concordance map. 

Fusion of the Segmentation Maps 
However, the number of regions of the image J might 

be higher than the wanted number of regions because of 
the superimposition. We propose to use a fusion operator 
to reduce this number of regions. For the image of label 
concordance J, the histogram is computed. Each value of 
the histogram corresponds therefore to the area of a 
region in the J image. The fusion operator is defined as 
follows. Let M denote the set of all the local maxima of 
the histogram of J denoted by HJ 

{ })()( pHM JpVq∈∨=     (4) 

with V(p) the considered neighborhood of the point p (in 
this case the two adjacent ones in the histogram). M(Nc) 
will denote the Nc greatest maxima belonging to M. The 
fusion operator is expressed by: if J(p) ∉ M(Nc) then J(p) 
= 0 else J(p) remains identical. The fusion result in an 
image of Nc + 1 labels. Some pixels have a label 
corresponding to one of the clusters of the image and the 
other pixels are considered as unlabeled. In the image 
resulting from the fusion, labeled pixel are pixel which 
belongs to one of the Nc most representative clusters of 
the image. The other pixels can be considered as uncertain 
pixels since their label in the concordance image is not 
representative of the Nc clusters. This fusion operator is 
very appropriate for images whose color planes are 
correlated: the most representative clusters overlap 
between the three segmentation maps. Instead of using 
classical probability values5 to assess the basic assignment 
of an unlabeled pixel to a cluster, we propose to use a 
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region growing method. Labeled pixels are used as seeds 
which will propagate in the image, this enables to take 
into account the spatial properties of the image. The 
figures 3 (a) gives the histogram of the label concordance 
map (figure 2 (d)) from which the greatest Nc = 3 local 
maxima are extracted to perform the fusion of the 
segmentation maps. The fusion image is an image of four 
labels: pixels belonging to one of the wanted cluster and 
unlabeled pixels (white pixels on the figure 3 (b)). 
 

 

Figure 3. The fusion of the segmented maps. 

Color Watershed 

The color watershed is done in two steps: 
• Marker Extraction which corresponds to the 

extraction of the seeds of the watershed growing, 
• Growing which uses previously extracted seeds to 

propagate the labels in the image according to an 
aggregation function. 
 
The marker image is provided by the fusion of the 

segmented maps, therefore only the definition of the color 
watershed has to be detailed. 

Aggregation Function 
The color watershed used in this paper is defined 

according to a specific aggregation function. The 
aggregation function defines the aggregating probability 
of a pixel to a region. It is based on two main information 
describing the spatial information of the image: local 
information expressed by the color gradient and global 
information expressed by the color mean of the regions 
describing their color homogeneity. This aggregation 
function can be formally defined6. Let )(RI  denote the 
mean color vector of the region R for the image I in the 

color space C1C2C3, the I(p) vector giving the color of a 
pixel p and ∇I(p) the color gradient. The aggregation 
function is expressed as6: 

)()))()1(),( pIpIRIRpf ∇α+−α−=   (5) 

This function combines local information (modulus 
of the color gradient) and global information (a statistical 
comparison between the color of a pixel p and a neighbor 
region R performed with the Euclidean distance). During 
the growing process, each time a pixel is added to a 
region R, the mean color of the region is updated. The 
color image and the gradient image are both normalized 
before the watershed growing to have values in the same 
range. α is a blending coefficient which allows to modify 
the influence of the local and global criteria during the 
growing process. The gradient is processed using Di 
Zenzo’s definition.7 

Estimation of α 
The parameter α was introduced to control the 

influence of each global and local criteria. Usually, α is 
fixed according to a priori knowledge on the images. 
However, an adaptable segmentation which modifies the 
value of α along the iterations seems more suitable. The 
initial value of α is 0 and the value of α evolves during 
the growing. At each iteration k, the following quantity is 
computed: Vk = Σ f(p,R) for all the processed unlabeled 
pixels p. V0 gives the initial value for all the unlabeled 
pixels of the image. At a given iteration k and after the 
processing of all the considered unlabeled pixels, Vk is 
computed and a new value for α is given by α = Vk/V0. 
However, it is not desirable to have high variations of 
α between each iterations, so the value retained for the 
next iteration k + 1, is considered to be the mean of all the 
previous values of α, including the new computed one. 
This enables a more smoothed evolution of α. 

Experimental Results 

The watershed was performed using the result of the 
fusion as a marker function. The figure 4 presents the 
final regions obtained after the growing process in the 
RGB color space with the estimation of α. All the 
unlabeled pixels have been assigned to a cluster of the 
image, the spatial information provided by the color 
watershed algorithm enables the refining of the 
segmentation. 
 
 

 

Figure 4. The regions obtained after the watershed growing on 
the fusion result image (figure 3 (b)). 
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Figure 5. Medical images and their segmentation. 

 

Figure 6. An example of variation of the 〈 parameter. 

Table 1. Mean value of α for several medical images. 
 Image α Nc 

I1 0.054 2 
I2 0.037 2 
I3 0.212 2 
I4 0.191 2 
I5 0.207 2 
I6 0.078 3 
I7 0.051 3 
I8 0.216 4 
I9 0.188 4 
I10 0.216 4 

 
 
To illustrate the fact that the evolution of α during the 

growing is necessary, the table 1 gives the mean value of 
α during the growing for 10 different medical images 
(microscopy, hematology, skin, brain, histology, ...) 
segmented in several classes (see figure 5). Medical 
images generally have correlated color planes, therefore 
they correspond to segmentation scheme. Whatever the 
images, small values of α are obtained, this states that for 
these images, the edge (local) information seems less 
important than the global information. The figure 6 gives 
a plot of the variation of α along the different iterations of 
the watershed region growing process. Visual evaluations 
of the segmented images proved that the self-adaptable 
segmentation gives more accurate results than with a 
fixed value of α according to a priori knowledge. 

Conclusion 

A new supervised method for segmenting color images 
was suggested. In a first step, for each color plane, distinct 
segmentation maps are extracted and fused together 
according to a fusion operator. Some pixels remain 
unlabeled and a self-adaptable region growing method is 
performed to obtain the final regions. The proposed 
method is reliable, fast and can be used with images 
having correlated color planes. Further researches focus 
on a new fusion operator appropriated for images with 
uncorrelated channels and on the automatic determination 
of the number of classes to use the segmentation for 
indexing color medical images. 
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