

Mathematical Approaches to Linear Vector
Filtering of Color Images

S. J. Sangwine
Department of Electronic Systems Engineering

University of Essex, Colchester, United Kingdom

T. A. Ell
Savage, Minnesota

Abstract

Very few linear vector filters are known for color images
and this may be due to the lack of a mathematical
framework. This paper explores some possible
mathematical approaches to linear vector filtering,
including hypercomplex numbers, and dot and cross
products. It also considers the fundamental pixel level
operations that must exist to make linear vector filtering
possible.

Introduction

Linear filtering is well-established in greyscale image
processing, and of course, in digital signal processing
generally. In color image processing, however, there have
been very few developments of linear filters, excluding
those that operate separately on the color image
components as if they were greyscale images. It is
believed that the first linear vector color filter is that
published by Sangwine in Ref. 1 in which convolution
with quaternion (hypercomplex) masks was used to define
a novel color edge detector based on rotation of pixel
values about the ‘gray line’ of RGB space. In effect, the
filter was a vector version of the classic Prewitt edge
detector. Later, in Refs. 2 and 3, Evans, Sangwine and Ell
published two more filters based on convolution with
quaternion-valued masks. These papers showed the need
for some systematic understanding of the fundamental
pixel-level operations from which a linear vector filter
may be composed, and for an algebraic approach to the
design of linear filters.

The situation is very different with non-linear filters,
where there are many known non-linear vector filters,4
including generalizations of order-statistics filters to
vector pixels (the classic example being the vector median
filter). In this paper, we explore possible mathematical
approaches to linear vector filtering, and we list some of
the possible fundamental pixel-level operations that might
be used to compose linear vector filters.

In a vector colour image filter, the pixel values within
an image are considered as vector quantities, and vector
operations are applied to the pixels. In the vector median
filter, for example, the norm of the vector difference
between two pixel values is used (a scalar quantity which

measures some ‘length’ or magnitude of a vector) to rank
the pixels within a window according to centrality. We
also consider whether it is worthwhile to try to develop
linear vector filters, and whether there are new types of
filter that may exist, waiting to be discovered.

Linearity

A linear filter obeys the principle of superposition. In the
context of image processing, this may be stated as
follows. Given two images, x1 and x2 which are pro-
cessed by a linear filter f to yield output images y1 and y2:

y
1
 = f(x

1
) and y

2
 = f(x

2
)

then an input image obtained by adding x1 and x2 pixel by
pixel, when processed by f will yield an output image
identical to the pixel by pixel sum of y1 and y2:

y(m, n) = y
1
(m, n) + y

2
(m, n), ∀ (m, n)

and

x(m, n) = x
1
(m, n) + x

2
(m, n), ∀ (m, n)

then we must have y = f(x). A corollary is that an arbitrary
input image may be decomposed and the components
processed by f to yield the components of the output
image. When these components are added pixel by pixel,
the result will be identical to that obtained if f had been
applied to the original image without decomposition.

A second corollary is that the input image may be
scaled by a constant (that is all pixels are multiplied by
the constant) and the result of filtering with f will be a
scaled version of the output image: f(kx) = kf(x), where k
is constant. Usually, k is a real constant, but in the case of
vector filters, there may be other possibilities.

Linear Spaces

The concept of a ‘linear space’ is also relevant to the issue
of linear vector filters. In a linear space the following
conditions will hold for any vectors x and constants k
where · denotes multiplication:

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

351

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

348

x
1
 + x

2
 = x

2
 + x

1

x
1
 + (x

2
 + x

3
) = (x

1
 + x

2
) + x

3

x + 0 = x
x + (−x) = 0

(k
1
 · k

2
) · x = k

1
 · (k

2
 · x)

1 · x = x
0 · x = 0

k · (x
1
 + x

2
) = k · x

1
 + k · x

2

(k
1
 + k

2
) · x = k

1
 · x + k

2
 · x

These equations are not logically independent. Note

that commutative multiplication is not a requirement. The
significance of this will be discussed later in the paper. Of
course, there are practical ways in which a filter may
depart from linearity, the most significant of which is due
to the finite range of the pixel values. This is well known
in digital signal processing, where sample values must
remain within a finite range, but it does not invalidate the
theory of linear filtering – it simply means that
implementations of linear filters must be carefully
designed to avoid sample or pixel overflow, for example,
by computing intermediate arithmetic results with a
greater number of bits. In the context of colour image
processing, we must be aware that addition of pixel values
(vectors) may easily yield vectors outside the finite range
of the colour space. This is no different to the problem of
sample overflow in digital filtering (e.g. of audio) but it is
sometimes not clearly understood by those without a
signal processing background working in image
processing.

If a vector filter is linear, then it should have all the
usual characteristics of linear filters, such as an impulse
response (the output of the filter when applied to an
‘impulse’ image containing a single non-zero pixel).
There are some problems with this idea, as evidenced by
one of the few particular examples available so far of
linear vector filters. The filter published in Ref. 1
depended on convolution with two quaternion masks, so
that the filter ‘coefficients’ are in fact pairs of quaternions
multiplied on the left and on the right of the pixels.
(Quaternion multiplication is noncommutative, and a
rotation, as used in this filter, requires left and right
values, which are in fact hypercomplex conjugates.)
There is therefore no simple definition of the impulse
response of this filter, since neither quaternion mask is
sufficient on its own to characterize the filter, and the two
masks cannot be combined without loss of information
about the filter. It appears therefore that the notion of
‘impulse response’ has to be extended in some way for
linear vector filters in the general case. It is not yet known
what this extension to the concept will be.

Fundamental Pixel-Level Operations

In greyscale filtering (and classical digital signal
processing), the fundamental operations that may be
applied to pixels (signal samples) are: scaling by a
constant; addition; and spatial shift (time delay in the case
of digital filters processing signals which vary over time,
spatial shift in the case of images). These three operations
are sufficient to allow implementation of any linear filter.
Clearly, these operations may be applied to colour image
pixels, and the resulting filters will be linear, but they will

not be vector filters because these three fundamental
operations cannot exploit the vector nature of the pixel
values, since the results of scaling, adding, and shifting,
do not permit any interaction between the vector
components of the pixel. More precisely, the outputs of
these operations in any combination in any one of the
three components of a colour pixel do not depend on the
inputs in the other two components. Thus the set of
fundamental pixel-level operations required to define
linear greyscale filters, are not sufficient for linear vector
filters.

So, a significant question addressed in what follows
is this: what additional fundamental operations are
required to implement linear vector filters? Given some
candidate operations, what constitutes a minimum set of
additional operations (some operations may be defined in
terms of others and may not therefore be fundamental)?
Possible candidates are:

• the scalar (dot) product between two vectors, also

called the inner product,
• the outer product between two vectors,
• the vector (cross) product between two vectors,
• projection of a vector onto a direction,
• reflection,
• rotation.

The scalar product yields a scalar, that is, the result of
the scalar product applied to two pixels would not be a
(vector) pixel but a scalar quantity. It is therefore not very
useful for defining a vector filter, although it does yield a
result dependent on the angle between the two vectors and
it can be used in implementing projection.

The outer product is nothing more than a matrix
product [Ref. 5, p3] and it therefore yields a matrix (3 × 3
in the case of 3-space vectors). It does not appear to be
useful as a linear filtering operation, unless some further
operation is applied to the result to yield a vector, and it is
not clear to the authors that there is any advantage in
doing this.

The vector (or cross) product yields a vector result
perpendicular to the plane of the two vectors in question,
and therefore is potentially useful as a fundamental vector
operation. It can be defined in terms of unit vectors as a
determinant, and it is therefore easy to implement
numerically.6 Given two vectors u = ai + bj + ck and v =
di + ej + fk the vector product is given by:

  i j k 
u × v = (bf−ce)i + (cd−af)j + (ae−bd)k=  a b c 
  d e f 

The cross product is not commutative, but as was
seen above, this is not a problem.

Rotation is not a fundamental operation because any
rotation can be composed as the sum of two reflections
[Ref. 7, p41], although it has been used directly in a
published linear vector filter already cited.1

The quaternion algebra provides a concise algebraic
representation for all of the above fundamental operations
apart from the outer product: the scalar (dot) product, the
vector (cross) product, and projection, rotation and reflec-
tion. The basic definitions and properties of quaternions

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

352

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

349

are reviewed briefly in the Appendix. Here we show how
each of the fundamental operations is expressed
algebraically, without proof (the proofs are not difficult).

The first two fundamental operations are based on the
product of two pure quaternions (vectors). The full
quaternion product is defined in the Appendix, and the
case of two vectors is a special case of the full quaternion
product. If we denote the two vectors by u and v, then
their product uv is –u·v+u×v, which is a full quaternion
with scalar part –u · v and vector part u × v. (The dot
indicates the scalar product.) Changing the order of the
product to vu does not affect the scalar part, but it negates
the vector part (the cross product reverses direction when
its operands are interchanged). Thus we have:

u · v = −½(uv + vu) and u × v = ½(uv − vu)

Projection can be expressed algebraically in terms of a dot
product and multiplication with a unit vector. From this,
we can derive a direct algebraic expression for projection.
Assume that we have a unit vector u, and an arbitrary
vector v, and that we want the projection of v onto u. In
conventional mathematical notation, this can be expressed
as (u · v)u, since the dot product is a scalar quantity
dependent only on the magnitude of v (the magnitude of u
is unity), and multiplying the unit vector u by this
magnitude achieves our aim. Using our expression above
for the dot product we have:

(u · v)u = −½(uv + vu)u

which simplifies to

(u · v)u = −½ (uvu + vu2)

The square of any unit pure quaternion (vector) is –1
(this follows from the dot product expression above) and
hence we obtain for projection:

(u · v)u = ½(v − uvu)

As an aside, this may also be derived in a different way,
by recognising the term uvu as a reflection (below).

Reflection of an arbitrary vector v in a plane normal
to a unit vector u is expressed algebraically as uvu.8

Rotation of an arbitrary vector v about a direction
represented by a unit vector u through an angle θ is
expressed algebraically as exp(½θu)vexp(−½θu).8 The
two exponentials are full quaternions, and they are also
conjugates.

It should be readily apparent from the above that the
quaternion product is sufficient to implement all of the
operations proposed as fundamental pixel level vector
operations and that no other product is needed. In
contrast, an approach based on dot and cross products
requires more than one product operation. It follows from
the sufficiency of the quaternion product that the scalar
(dot) and vector (cross) products are also a sufficient set.

Implementation

There are at least two possible approaches to imple-
menting the operations suggested in the previous section.

Rotations and reflections may be implemented as
matrix products between a rotation/reflection matrix (3 ×
3) and a column vector (3 × 1) holding the pixel value.
The dot and cross products between two vectors require a
different implementation, but they are both straight-
forward to implement in software, given the two vector
pixels as inputs. Projection may be directly coded in terms
of the dot product scaling a unit vector.

An alternative which has been used by two groups9-15
is to use hypercomplex numbers or quaternions, and to
implement the operations that were expressed alge-
braically in the previous section directly in quaternion
arithmetic. This requires a library of code to be written
since no standard programming language to date has a
built-in library for quaternion arithmetic, but the
complexity of this library is not great. This approach has
the advantage that the implementation is closely linked to
the algrebraic derivation of any filter that is developed.

Transforms

Linear greyscale filters can be implemented in the spatial
(image) domain, usually by convolution with the impulse
response of the filter (usually called a mask in image
processing). This is because finite impulse response filters
are the norm in image processing. However, any linear
filter may also be implemented in the Fourier domain,
with the advantage of speed over direct implementation in
the spatial domain when the mask size is greater than
some threshold level. The implementation in the spatial
frequency domain is a point operation, and is therefore
fast compared to the convolution required in the image
domain, but the gain in speed is obtained at a cost of
computing the Fourier transform of the image and an
inverse Fourier transform to obtain the filtered image. For
masks beyond a certain size, there is a net gain in time.

Fourier transforms of color images have already been
demonstrated,11-15 and since the Fourier transform is a
linear operation, it should be possible to implement a
linear vector filter in the same way (in the spatial fre-
quency domain using a vector Fourier transform). The
general case of a quaternion convolution requires left and
right quaternion masks and to date no direct method has
been published for implementing such a convolution in
the frequency domain. Pei et al.11 have described mathe-
matically a method for implementing such convolutions
as four separate single-sided convolutions that may be
implemented in the frequency domain, but they have not
demonstrated any results with an actual filter.

Several authors have reported results with
hypercomplex Fourier transforms and methods have been
published for implementing correlation using hyper-
complex Fourier transforms.16,17

Conclusions

Linear vector filtering of colour images is a subject still in
its infancy, and there is as yet no certainty that it will
develop into a significant field. This paper has shown
some of the concepts and has highlighted some of the
questions that are still in need of answers.

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

353

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

350

Acknowledgement

The research presented in this paper is partly funded by
the UK Engineering and Physical Sciences Research
Council under grant number GR/M 45764.

Appendix: Quaternions

The quaternions were discovered by Hamilton in 1843.
They combine by the normal rules of algebra with the
exception that multiplication is not commutative. A
quaternion has four components, one real and three
imaginary. The usual notation, extended from that of the
complex numbers is q = w+xi+yj+zk where w, x, y and z
are real, and i, j and k are complex operators which
obey the following rules:

i2 = j2 = k2 = ijk =−1
ij = k jk = i ki = j

ji = −k kj = −i ik = −j

The conjugate of q is w – xi – yj – zk and its modulus
is √(w2+x2+y2+z2). A quaternion with zero real part is
called a pure quaternion, and a quaternion with unit
modulus is called a unit quaternion. The imaginary part of
a quaternion has three components and may be associated
with a 3-space vector. For this reason, it is sometimes
useful to consider the quaternion as composed of a vector
part and a scalar part, thus: q = S(q) + V(q), where the
scalar part, S(q), is the real part (w in our notation above),
and the vector part is a composite of the three imaginary
components, V(q) = xi + yj + zk.

Given two quaternions q
1
 = w1

+x1
i+y

1
j+z

1
k and

similarly for q
2
, their product expressed in Cartesian terms

(in 4 dimensions of course) is:

q1q2 = (w1w2
 − x1x2

 − y1y2
 − z1z2)

 + (w1x2
 + x1w2

 + y1z2
 − z1y2)i

 + (w1y2
 − x1z2

 + y1w2
 + z1x2)j

 + (w1z2
 + x1y2

 − y1x2
 + z1w2)k

It is more useful to express this in terms of the scalar

and vector parts:

q1q2

= (S(q1)S(q2) − V(q1
) · V(q2

))
 + (S(q1)V(q2

) + S(q2)V(q1
) + V(q1

) × V(q2
))

We can see therefore that the scalar part of the pro-

duct consists of the sum of the product of the scalar parts,
minus the dot product of the vector parts; and that the
vector part of the product consists of each of the vector
parts scaled by the other scalar part, plus the cross product
of the two vector parts. Any quaternion may be
represented in polar form, thus: q = |q|exp(µθ) where µ is
a unit pure quaternion, and 0 < θ < π. The two values µ
and θ are known respectively as the eigenaxis and
eigenangle of the quaternion. Euler’s formula generalizes
to quaternions:

exp(µθ) = cos θ + µ sin θ

where the cosine component is the scalar part, and the
sine component is the vector part. Note that, because µ is
a unit pure quaternion, its square is –1. It is thus a gen-
eralization of the complex operator to three dimensions.

The eigenaxis µ is very simply computed as:

µ = V(q)/|V(q)|

with the only exceptional case when V(q) = 0, in which
case µ is undefined.

The eigenangle, or phase is easily computed as

θ = tan-1
 |V(q)|/S(q)

and is always positive. It is undefined if q is zero, (as is
the argument of a complex number).

References

1. S. J. Sangwine, Electronics Letters, 34, 10, (1998).
2. C. J. Evans, S. J. Sangwine, and T. A. Ell, Colour sensitive

edge detection using hypercomplex filters, Proc. Eusipco
2000, pp. 107–110, (2000).

3. C. J. Evans, T. A. Ell, and S. J. Sangwine, Hypercomplex
color-sensitive smoothing filters, Proc. ICIP2000, pp. 541–
544, (2000)

4. K. N. Plataniotis and A. N. Venetsanopoulos, Vector
filtering, in The Colour Image Processing Handbook, S. J.
Sangwine and R. E. N. Horne, Eds., chapter 10, Chapman
and Hall, London, 1998, pp. 188–209.

5. Gene H. Golub and Charles F. Van Loan, Matrix
Computations, Johns Hopkins University Press, Baltimore
and London, second edition, 1989.

6. David Nelson, Ed., The Penguin Dictionary of Mathe-
matics, Penguin Books, London, second edition, 1998.

7. P. M. Cohn, Solid Geometry, Routledge and Kegan Paul,
London, 1961.

8. H. S. M. Coxeter, American Mathematical Monthly, 53,
Mar. 1946.

9. S.-C. Pei and C.-M. Cheng, IEEE Transactions on
Communications, 45, 5, (1997).

10. S. C. Pei and C. M. Cheng, IEEE Transactions on Image
Processing, 8, 5, (1999).

11. Soo-Chang Pei, Jian-Jiun Ding, and Ja-Han Chang, IEEE
Transactions on Signal Processing, 49, 11, (2001).

12. S. J. Sangwine, Electronics Letters, 32, 21, (1996).
13. S. J. Sangwine and T. A. Ell, The discrete Fourier

transform of a colour image, Proc. Second IMA Conference
on Image Processing, pp. 430–441, (1998).

14. T. A. Ell and S. J. Sangwine, Decomposition of 2D hyper-
complex Fourier transforms into pairs of complex Fourier
transforms, Proc. Eusipco 2000, pp. 1061–1064, (2000).

15. S. J. Sangwine and T. A. Ell, Hypercomplex Fourier
transforms of color images, Proc. ICIP 2001, I, pp. 137–
140 (2001).

16. T. A. Ell and S. J. Sangwine, Hypercomplex Wiener-
Khintchine theorem with application to color image corre-
lation, Proc. ICIP2000, pp. 792–795 (2000).

17. S. J. Sangwine, T. A. Ell, and C. E. Moxey, Electronics
Letters, 37, 25, (2001).

Biography

Stephen Sangwine is a Senior Lecturer in the Department
of Electronic Systems Engineering at the University of
Essex, UK. He received a BSc in Electronic Engineering
from the University of Southampton, UK in 1979 and a
PhD from the University of Reading in 1991. His interests
include linear vector filtering and transforms of colour
images; non-linear vector image filtering; and digital
hardware design. He is an IEE Member, and a Senior
Member of the IEEE.

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

354

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

351

