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Abstract 

Very few linear vector filters are known for color images 
and this may be due to the lack of a mathematical 
framework. This paper explores some possible 
mathematical approaches to linear vector filtering, 
including hypercomplex numbers, and dot and cross 
products. It also considers the fundamental pixel level 
operations that must exist to make linear vector filtering 
possible. 

Introduction 

Linear filtering is well-established in greyscale image 
processing, and of course, in digital signal processing 
generally. In color image processing, however, there have 
been very few developments of linear filters, excluding 
those that operate separately on the color image 
components as if they were greyscale images. It is 
believed that the first linear vector color filter is that 
published by Sangwine in Ref. 1 in which convolution 
with quaternion (hypercomplex) masks was used to define 
a novel color edge detector based on rotation of pixel 
values about the ‘gray line’ of RGB space. In effect, the 
filter was a vector version of the classic Prewitt edge 
detector. Later, in Refs. 2 and 3, Evans, Sangwine and Ell 
published two more filters based on convolution with 
quaternion-valued masks. These papers showed the need 
for some systematic understanding of the fundamental 
pixel-level operations from which a linear vector filter 
may be composed, and for an algebraic approach to the 
design of linear filters. 

The situation is very different with non-linear filters, 
where there are many known non-linear vector filters,4 
including generalizations of order-statistics filters to 
vector pixels (the classic example being the vector median 
filter). In this paper, we explore possible mathematical 
approaches to linear vector filtering, and we list some of 
the possible fundamental pixel-level operations that might 
be used to compose linear vector filters. 

In a vector colour image filter, the pixel values within 
an image are considered as vector quantities, and vector 
operations are applied to the pixels. In the vector median 
filter, for example, the norm of the vector difference 
between two pixel values is used (a scalar quantity which 

measures some ‘length’ or magnitude of a vector) to rank 
the pixels within a window according to centrality. We 
also consider whether it is worthwhile to try to develop 
linear vector filters, and whether there are new types of 
filter that may exist, waiting to be discovered. 

Linearity 

A linear filter obeys the principle of superposition. In the 
context of image processing, this may be stated as 
follows. Given two images, x1 and x2 which are pro-
cessed by a linear filter f to yield output images y1 and y2: 
 

y
1
 = f(x

1
) and y

2
 = f(x

2
) 

 
then an input image obtained by adding x1 and x2 pixel by 
pixel, when processed by f will yield an output image 
identical to the pixel by pixel sum of y1  and y2: 
 

y(m, n) = y
1
(m, n) + y

2
(m, n), ∀ (m, n) 

 
and 
 

x(m, n) = x
1
(m, n) + x

2
(m, n), ∀ (m, n) 

 
then we must have y = f(x). A corollary is that an arbitrary 
input image may be decomposed and the components 
processed by f to yield the components of the output 
image. When these components are added pixel by pixel, 
the result will be identical to that obtained if f had been 
applied to the original image without decomposition. 

A second corollary is that the input image may be 
scaled by a constant (that is all pixels are multiplied by 
the constant) and the result of filtering with f will be a 
scaled version of the output image: f(kx) = kf(x), where k 
is constant. Usually, k is a real constant, but in the case of 
vector filters, there may be other possibilities. 

Linear Spaces 

The concept of a ‘linear space’ is also relevant to the issue 
of linear vector filters. In a linear space the following 
conditions will hold for any vectors x and constants k 
where ·  denotes multiplication: 
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These equations are not logically independent. Note 

that commutative multiplication is not a requirement. The 
significance of this will be discussed later in the paper. Of 
course, there are practical ways in which a filter may 
depart from linearity, the most significant of which is due 
to the finite range of the pixel values. This is well known 
in digital signal processing, where sample values must 
remain within a finite range, but it does not invalidate the 
theory of linear filtering – it simply means that 
implementations of linear filters must be carefully 
designed to avoid sample or pixel overflow, for example, 
by computing intermediate arithmetic results with a 
greater number of bits. In the context of colour image 
processing, we must be aware that addition of pixel values 
(vectors) may easily yield vectors outside the finite range 
of the colour space. This is no different to the problem of 
sample overflow in digital filtering (e.g. of audio) but it is 
sometimes not clearly understood by those without a 
signal processing background working in image 
processing. 

If a vector filter is linear, then it should have all the 
usual characteristics of linear filters, such as an impulse 
response (the output of the filter when applied to an 
‘impulse’ image containing a single non-zero pixel). 
There are some problems with this idea, as evidenced by 
one of the few particular examples available so far of 
linear vector filters. The filter published in Ref. 1 
depended on convolution with two quaternion masks, so 
that the filter ‘coefficients’ are in fact pairs of quaternions 
multiplied on the left and on the right of the pixels. 
(Quaternion multiplication is noncommutative, and a 
rotation, as used in this filter, requires left and right 
values, which are in fact hypercomplex conjugates.) 
There is therefore no simple definition of the impulse 
response of this filter, since neither quaternion mask is 
sufficient on its own to characterize the filter, and the two 
masks cannot be combined without loss of information 
about the filter. It appears therefore that the notion of 
‘impulse response’ has to be extended in some way for 
linear vector filters in the general case. It is not yet known 
what this extension to the concept will be. 

Fundamental Pixel-Level Operations 

In greyscale filtering (and classical digital signal 
processing), the fundamental operations that may be 
applied to pixels (signal samples) are: scaling by a 
constant; addition; and spatial shift (time delay in the case 
of digital filters processing signals which vary over time, 
spatial shift in the case of images). These three operations 
are sufficient to allow implementation of any linear filter. 
Clearly, these operations may be applied to colour image 
pixels, and the resulting filters will be linear, but they will 

not be vector filters because these three fundamental 
operations cannot exploit the vector nature of the pixel 
values, since the results of scaling, adding, and shifting, 
do not permit any interaction between the vector 
components of the pixel. More precisely, the outputs of 
these operations in any combination in any one of the 
three components of a colour pixel do not depend on the 
inputs in the other two components. Thus the set of 
fundamental pixel-level operations required to define 
linear greyscale filters, are not sufficient for linear vector 
filters. 

So, a significant question addressed in what follows 
is this: what additional fundamental operations are 
required to implement linear vector filters? Given some 
candidate operations, what constitutes a minimum set of 
additional operations (some operations may be defined in 
terms of others and may not therefore be fundamental)? 
Possible candidates are: 

 
• the scalar (dot) product between two vectors, also 

called the inner product, 
• the outer product between two vectors, 
• the vector (cross) product between two vectors, 
• projection of a vector onto a direction, 
• reflection, 
• rotation. 
 

The scalar product yields a scalar, that is, the result of 
the scalar product applied to two pixels would not be a 
(vector) pixel but a scalar quantity. It is therefore not very 
useful for defining a vector filter, although it does yield a 
result dependent on the angle between the two vectors and 
it can be used in implementing projection. 

The outer product is nothing more than a matrix 
product [Ref. 5, p3] and it therefore yields a matrix (3 × 3 
in the case of 3-space vectors). It does not appear to be 
useful as a linear filtering operation, unless some further 
operation is applied to the result to yield a vector, and it is 
not clear to the authors that there is any advantage in 
doing this. 

The vector (or cross) product yields a vector result 
perpendicular to the plane of the two vectors in question, 
and therefore is potentially useful as a fundamental vector 
operation. It can be defined in terms of unit vectors as a 
determinant, and it is therefore easy to implement 
numerically.6 Given two vectors u = ai + bj + ck and v = 
di + ej + fk the vector product is given by: 
 
  i j k  
u × v = (bf−ce)i + (cd−af)j + (ae−bd)k=  a b c  
  d e f  
 

The cross product is not commutative, but as was 
seen above, this is not a problem. 

Rotation is not a fundamental operation because any 
rotation can be composed as the sum of two reflections 
[Ref. 7, p41], although it has been used directly in a 
published linear vector filter already cited.1 

The quaternion algebra provides a concise algebraic 
representation for all of the above fundamental operations 
apart from the outer product: the scalar (dot) product, the 
vector (cross) product, and projection, rotation and reflec-
tion. The basic definitions and properties of quaternions 
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are reviewed briefly in the Appendix. Here we show how 
each of the fundamental operations is expressed 
algebraically, without proof (the proofs are not difficult). 

The first two fundamental operations are based on the 
product of two pure quaternions (vectors). The full 
quaternion product is defined in the Appendix, and the 
case of two vectors is a special case of the full quaternion 
product. If we denote the two vectors by u and v, then 
their product uv is –u·v+u×v, which is a full quaternion 
with scalar part –u ·  v and vector part u × v. (The dot 
indicates the scalar product.) Changing the order of the 
product to vu does not affect the scalar part, but it negates 
the vector part (the cross product reverses direction when 
its operands are interchanged). Thus we have: 

 
u ·  v = −½(uv + vu) and u × v = ½(uv − vu) 

 
Projection can be expressed algebraically in terms of a dot 
product and multiplication with a unit vector. From this, 
we can derive a direct algebraic expression for projection. 
Assume that we have a unit vector u, and an arbitrary 
vector v, and that we want the projection of v onto u. In 
conventional mathematical notation, this can be expressed 
as (u ·  v)u, since the dot product is a scalar quantity 
dependent only on the magnitude of v (the magnitude of u 
is unity), and multiplying the unit vector u by this 
magnitude achieves our aim. Using our expression above 
for the dot product we have: 
 

(u ·  v)u = −½(uv + vu)u 
 
which simplifies to 
 

(u ·  v)u = −½ (uvu + vu2) 
 

The square of any unit pure quaternion (vector) is –1 
(this follows from the dot product expression above) and 
hence we obtain for projection: 
 

(u ·  v)u = ½(v − uvu) 
 
As an aside, this may also be derived in a different way, 
by recognising the term uvu as a reflection (below). 

Reflection of an arbitrary vector v in a plane normal 
to a unit vector u is expressed algebraically as uvu.8 

Rotation of an arbitrary vector v about a direction 
represented by a unit vector u through an angle θ is 
expressed algebraically as exp(½θu)vexp(−½θu).8 The 
two exponentials are full quaternions, and they are also 
conjugates. 

It should be readily apparent from the above that the 
quaternion product is sufficient to implement all of the 
operations proposed as fundamental pixel level vector 
operations and that no other product is needed. In 
contrast, an approach based on dot and cross products 
requires more than one product operation. It follows from 
the sufficiency of the quaternion product that the scalar 
(dot) and vector (cross) products are also a sufficient set. 

Implementation 

There are at least two possible approaches to imple-
menting the operations suggested in the previous section. 

Rotations and reflections may be implemented as 
matrix products between a rotation/reflection matrix (3 × 
3) and a column vector (3 × 1) holding the pixel value. 
The dot and cross products between two vectors require a 
different implementation, but they are both straight-
forward to implement in software, given the two vector 
pixels as inputs. Projection may be directly coded in terms 
of the dot product scaling a unit vector. 

An alternative which has been used by two groups9-15 
is to use hypercomplex numbers or quaternions, and to 
implement the operations that were expressed alge-
braically in the previous section directly in quaternion 
arithmetic. This requires a library of code to be written 
since no standard programming language to date has a 
built-in library for quaternion arithmetic, but the 
complexity of this library is not great. This approach has 
the advantage that the implementation is closely linked to 
the algrebraic derivation of any filter that is developed. 

Transforms 

Linear greyscale filters can be implemented in the spatial 
(image) domain, usually by convolution with the impulse 
response of the filter (usually called a mask in image 
processing). This is because finite impulse response filters 
are the norm in image processing. However, any linear 
filter may also be implemented in the Fourier domain, 
with the advantage of speed over direct implementation in 
the spatial domain when the mask size is greater than 
some threshold level. The implementation in the spatial 
frequency domain is a point operation, and is therefore 
fast compared to the convolution required in the image 
domain, but the gain in speed is obtained at a cost of 
computing the Fourier transform of the image and an 
inverse Fourier transform to obtain the filtered image. For 
masks beyond a certain size, there is a net gain in time. 

Fourier transforms of color images have already been 
demonstrated,11-15 and since the Fourier transform is a 
linear operation, it should be possible to implement a 
linear vector filter in the same way (in the spatial fre-
quency domain using a vector Fourier transform). The 
general case of a quaternion convolution requires left and 
right quaternion masks and to date no direct method has 
been published for implementing such a convolution in 
the frequency domain. Pei et al.11 have described mathe-
matically a method for implementing such convolutions 
as four separate single-sided convolutions that may be 
implemented in the frequency domain, but they have not 
demonstrated any results with an actual filter. 

Several authors have reported results with 
hypercomplex Fourier transforms and methods have been 
published for implementing correlation using hyper-
complex Fourier transforms.16,17 

Conclusions 

Linear vector filtering of colour images is a subject still in 
its infancy, and there is as yet no certainty that it will 
develop into a significant field. This paper has shown 
some of the concepts and has highlighted some of the 
questions that are still in need of answers. 
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Appendix: Quaternions 

The quaternions were discovered by Hamilton in 1843. 
They combine by the normal rules of algebra with the 
exception that multiplication is not commutative. A 
quaternion has four components, one real and three 
imaginary. The usual notation, extended from that of the 
complex numbers is q = w+xi+yj+zk where w, x, y and z 
are real, and i, j and k are complex operators which 
obey the following rules: 
 

i2 = j2 = k2 = ijk =−1 
ij = k jk = i ki = j 

ji = −k kj = −i ik = −j 
 

The conjugate of q is w – xi – yj – zk and its modulus 
is √(w2+x2+y2+z2). A quaternion with zero real part is 
called a pure quaternion, and a quaternion with unit 
modulus is called a unit quaternion. The imaginary part of 
a quaternion has three components and may be associated 
with a 3-space vector. For this reason, it is sometimes 
useful to consider the quaternion as composed of a vector 
part and a scalar part, thus: q = S(q) + V(q), where the 
scalar part, S(q), is the real part (w in our notation above), 
and the vector part is a composite of the three imaginary 
components, V(q) = xi + yj + zk. 

Given two quaternions q
1
 = w1

+x1
i+y

1
j+z

1
k and 

similarly for q
2
, their product expressed in Cartesian terms 

(in 4 dimensions of course) is: 
 

q1q2 = (w1w2
 − x1x2

 − y1y2
 − z1z2) 

 + (w1x2
 + x1w2

 + y1z2
 − z1y2)i 

 + (w1y2
 − x1z2

 + y1w2
 + z1x2)j 

 + (w1z2
 + x1y2

 − y1x2
 + z1w2)k 

 
It is more useful to express this in terms of the scalar 

and vector parts: 
 
q1q2 

=  (S(q1)S(q2) − V(q1
) ·  V(q2

)) 
 + (S(q1)V(q2

) + S(q2)V(q1
) + V(q1

) × V(q2
)) 

 
We can see therefore that the scalar part of the pro-

duct consists of the sum of the product of the scalar parts, 
minus the dot product of the vector parts; and that the 
vector part of the product consists of each of the vector 
parts scaled by the other scalar part, plus the cross product 
of the two vector parts. Any quaternion may be 
represented in polar form, thus: q = |q|exp(µθ) where µ is 
a unit pure quaternion, and 0 < θ < π. The two values µ 
and θ are known respectively as the eigenaxis and 
eigenangle of the quaternion. Euler’s formula generalizes 
to quaternions: 
 

exp(µθ) = cos θ + µ sin θ 
 
where the cosine component is the scalar part, and the 
sine component is the vector part. Note that, because µ is 
a unit pure quaternion, its square is –1. It is thus a gen-
eralization of the complex operator to three dimensions. 

The eigenaxis µ is very simply computed as: 

µ = V(q)/|V(q)| 

with the only exceptional case when V(q) = 0, in which 
case µ is undefined. 

The eigenangle, or phase is easily computed as 

θ = tan-1
 |V(q)|/S(q) 

and is always positive. It is undefined if q is zero, (as is 
the argument of a complex number). 
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