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Abstract

Auto-correlation and cross-correlation have been used in
signal and image processing for many years, but have only
recently been applied to color images. Since the corre-
lation of individual signals and gray-scale images yields
a measure of structural similarity, in each of their di-
mensions, the correlation of n-dimensional signals should
yield similarity measures of n-dimensional space. This
paper presents, for the first time, evidence that a vector
correlation peak encodes both the structural similarity and
also a mapping of the vector-space rotation between two
color images.

Introduction

The basic use of correlation is to determine how similar,
or dissimilar, one signal is from another. This knowl-
edge of similarity has a multitude of uses in signal and
image processing. Two of the more popular are filtering
and registration. For one- and two-dimensional signals
the measure of similarity is given by the magnitude of
the response from a correlation operation. This measure
has been of considerable use but encodes nothing about
the transformation from one signal into the other. As part
of our investigation into use of correlation techniques on
color images, we have discovered that the extra informa-
tion contained within the hypercomplex (quaternion) rep-
resentation of color encodes both the similarity of struc-
ture and the vector-space mapping between two images.
Although our work demonstrates correlation of RGB im-
ages, the theory applies equally to other vector images.
Due to the novelty of the theory presented in this pa-
per, many of the practical applications of this discovery
have yet to be realized. However, an immediate appli-
cation could be the removal of global color distortions.
Such distortions are evident in color images captured at
widely differing time periods. This could be over a period
of hours, the difference between the sunlight illuminating
a scene in the morning and in the afternoon, or over a num-
ber of years, where film type and/or degradation may be
apparent. Our recent paper [1] demonstrated color image
registration, using single-stage vector phase correlation,
in spite of noise and color-space distortions. This paper
offers the alternative perspective; image processing solu-
tions which are tuned to, or depend on, the color content.

This paper begins with two sections giving a short re-
view of hypercomplex processing of color images. This is
followed by a section which identifies our previous work
on correlation, adds new understanding of the early results
and introduces the theory and proof of the encoding of
vector-space rotations. The penultimate section describes
our latest experiments and demonstrates the use of the new
theory and understanding of hypercomplex correlation.

Hypercomplex Numbers
and Color Images

Quaternions (also referred to as hypercomplex numbers)
are an extension of complex numbers to four dimensions.
Originally proposed by Hamilton in 1843 [2], quaternions
have been used to encode and compute transformation in
three-dimensional space for many years. They can be con-
sidered as a complex number with a vector imaginary part
consisting of three mutually orthogonal components. In
Cartesian form, a quaternion is usually represented as,
q=w+zxzt+yj+ zk, where w, x, y and z are all
real and ¢, 5 and k are the complex operators which obey,

iP=j52=k’=ijk=—-1  and
ij=k,gk=1,ki=j,ji=—-k,kj=—1,ik=—j
Given a quaternion ¢ = w + x ¢ + y j + z k its quaternion

conjugate is§ = w—x ¢ —y j — z k and its modulus given
by,

lal = Vw? + a2 + g2 + 22

A pure quaternion has a zero real part (w = 0) and a
unit quaternion has a unit modulus. It is often useful
to consider a quaternion as composed of a Scalar and a
Vector part, represented by ¢ = S(q) + V(g), where
V(g =zi+yj+zk.

An RGB color image may be represented using
quaternions by encoding the red, green and blue channels
of the image as a pure quaternion such that the image func-
tion is given by,

f(,y) =r(x,y)i+g(x,y)J+blz,y)k

where r(x,y) is the red component and similar from the
green and blue. This representation effectively equates the
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RGB color cube to the right-hand coordinate frame im-
posed by the imaginary part of quaternion-space. How-
ever, this is not an exclusive representation. An alternative
could be used to define the origin of the coordinate frame
to be coincident with the center of the RGB color cube, or
any other position, in any other color-space with appropri-
ate scaling.

Polar Form and Visualization

In order to simplify both the notation and explain rotations
in color-space it is easier to consider the polar form of a
quaternion. Euler’s formula for the complex exponential
generalizes to the hypercomplex form:

ePt® = cos ® + psin @ )

where p is a pure quaternion. Any quaternion may be
represented in polar form by,

q=q| e*®

where p and @ are referred to as the eigenaxis and the
eigenangle respectively, We generally refer to the former
simply as the axis and the latter as the phase. The eige-
naxis, or axis, is computed as . = V(q)/ |V (q)| with the
only exception being when V' (¢) = 0, in which case p is
undefined. The eigenangle, or phase, is computed as

1%
& = tan~* |—

and is always positive in the range 0 < & < 7. If the
quaternion is zero the phase is undefined.

The components of the polar form of a quaternion
may be visualized as follows. The modulus can be rep-
resented by a gray-scale image, appropriately scaled with
logarithmic scaling such that:

I(q) = log(1 + [q])/log(1 + K)

where K is the largest modulus in the image. The phase
can be visualized by a color represented based on the THS
color-space [3]. By using an appropriate transformation
and clipping values outside the valid range we represent
the phase by half of the hue range. This effectively trans-
lates a phase of zero to the reference hue of red with a
phase of /2 represented by a green hue and a phase of
by a cyan hue. The use of only half the hue range is de-
liberate since the phase is only unique in the range 0 to 7.
A phase outside this range is negated by the use of the
opposite axis which is more mathematically tractable.
Due to the orthogonal nature of its coordinate frame
and the fact that it is defined by a pure quaternion, with
three non-zero components, the axis is readily represented
by an RGB color cube. However the axis can take up any
arbitrary direction in 3-space so it should be considered as
being constrained by a unit sphere. The sphere can then be
imagined as occupying the volume inside the color cube.
The representation is scaled such that an axis in the direc-
tion of either of the six faces is represented by the fully

saturated value of the appropriate color. This representa-
tion is convenient for human interpretation, so the fact that
neither the saturated values equating to the vertices of the
color cube can be used, due to the constraint of the unit
sphere, is of little importance compared to the structural
information that is conveyed. Although both the eigenaxis
and eigenangle have degenerate cases where they are un-
defined, these can be easily visualized using the represen-
tations given above. An undefined phase is represented
by the color black and an undefined axis is represented by
mid-gray to indicate the center of the RGB color cube.

Quaternions provide a convenient representation for
rotations in 3-space. A rotation through an angle «
about an axis p is represented by the quaternion operator
R[ |R,where R = e*5 and the square brackets indicate
space for the quaternion which is to be operated upon. The
use of the rotation operator has been demonstrated in [4],
where a number of quaternion filters, based on traditional
gray-scale filters, were derived using the standard gray-
scale convolution mask technique.

Vector Correlation

In [5] the cross-correlation of two images was extended to
hypercomplex images using quaternion arithmetic:

M—-1N-1

rimn) =Y > fla,p)gla—m.p—n) (2

q=0 p=0

where the shift operation on g(m,n) was implemented
cyclically using modulo arithmetic. If the images f(m,n)
and g(m,n) are the same the auto-correlation of the im-
age is computed. If the mean, or DC level, of each image
is subtracted first the cross-covariance is obtained. Direct
evaluation of the cross-correlation function is impractical
for all but the smallest images due to the high computa-
tional cost, O(N?) fora N x N image. This necessitates
the use of fast Fourier transforms, the hypercomplex form
of which was first published in [6].

M—-1N-1

1 my | nu
F(v,u) = m,n) e 2R+
= A S5 s

m=0 n=0

3)
with the reverse transform:
1 M—-1N-1
m,n) = ——— F(v,u) e?? 57 %) (4
fmn) = s zzjo 2;0 (v,u) &)

In this transform pair, p is an arbitrary unit vector, but
the standard, general case, choice for RGB images is
p = (i + 7+ k)/+/3 which is aligned to the luminance,
or grayline, axis of the color cube. The form of the trans-
forms given in Equations (3) and (4) is not unique but one
of a pair of different, but closely related, transforms which
the authors call transpose transforms. The transpose trans-
form is obtained by interchanging the hypercomplex ex-
ponential from the right with the function from the left.
The ordering of these terms is important due to the non-
commutative nature of quaternions and such exchanges



CGIV2002: First European Conference on Colour Graphics, Imaging, and Vision

lead to different results. The application of these trans-
forms therefore requires particular care. In this paper the
transform in Equation (3) is denoted by F R_its reverse in
Equation (4) by F —1 and the related transpose transform,
with the hypercomplex exponential on the left, by F and
its reverse by F L.

Computing the cross power spectrum of two hyper-
complex Fourier transformed images requires more than
the standard F' (v, u)G(v,u). It is therefore necessary to
consider the decomposition of a quaternion into its paral-
lel and perpendicular components. Given two pure quater-
nions » and v, w may be decomposed into components
parallel and perpendicular to v such that:

= if(utovww), v L us )

u = 3(u+ouww), v | y (6)

This extends to full quaternions such that the decomposi-
tion of ¢ about some vector v yields ¢ = S(q) + V| (q)
and ¢; = V| (q). The quaternion u can be recovered by
adding the two components back together. The proof for
these is given in [7] and can be applied in both the spatial
and spatial-frequency domains.

Parallel quaternions (strictly co-planar quaternions, or
quaternions with parallel vector parts) commute. If ¢ is a
full quaternion and p is a pure quaternion, or a vector,
where ¢ L p, they can be reordered such that ¢p = pg.
The proof for this is given by:

qp =[S(¢) +V(¢)lp=S(¢)p+V(¢g)p and
pq = p[S(q) — V(g)] = S(g)p — PV (q) @)

Two perpendicular vectors (here p and V'(q)) reverse their
sign on reordering since the product of any two vectors v
and w is given by vu = —v-u+v X u, and whenv L u
the dot product is zero.

Using the transforms given in Equations (3) and (4),
together with the theory of decompositions, the stan-
dard Wiener-Khintchine theorem, which relates the auto-
correlation and the power spectral density of a scalar im-
age by F{r(m,n)} = |F(v,u)|*, where r(m,n) is the
auto-correlation function and F'(v, w) is the Fourier trans-
form of the image f(m,n), was extended in [7] to give a
generalized hypercomplex form:

r(m,n) =F {FR [u] W} +
FR{FR ) GT ]} ®)

where: [u] = (v,u), G [u] = F{g(m.n)}. Gy [u] |
and G [u] L p. Note that all of these are right-hand
transforms.

Recently in [1], an alternative form, with mixed left
and right transforms, was derived:

R(m,n) = FLu]Gf [u]+ F~L [u]GT[u]

r(m,n) = FR {R(m,n)} 9

and used to compute the vector phase correlation given by:

p(m,n) = F~ " {%} (10)

The advantage of this form is that it has a single reverse
transform to return to the spatial domain, but both forms
have the same computational expense. Since there is at
least a two-fold symmetry in quaternion space, there are,
in general, equivalent forms for any given hypercomplex
operation.

Interpretation

In [5] initial results proved the concept of hypercomplex
correlation and gave an insight into the encoding of more
information than just the structural similarity between two
images. These results were, however, confused by the ef-
fective DC level present in the images. In order to make
sense of the correlation and covariance results, the effect
of the DC level must be taken into account. We have
therefore returned to the most pathological of cases, that
of plain color images. These have no structural content
and are effectively DC signals. Computing the cross-
correlation of different colors yields the obvious maxi-
mum modulus but more importantly encodes a perfect
mapping, from one color to the other, in the phase and
axis responses. Figure 1 shows the relationship of the
phase and axis quantities for correlating a plain cyan im-
age with a plain magenta image. The values were de-
rived directly from the correlation response of an exper-
iment and are equivalent to a 60° rotation about an axis of

cyan whi
blu
magnenta
(] N ¢
ylw
red

phase: ¢ = 1.0472
axis: p = (—0.5773,—0.5773,0.5773)

Figure 1: Phase & axis relationship in the correlation of cyan to
magenta.

From Equation (2), consider only a single point, say
the central pixel, in the correlation response between the
two plain, single-color, images such that:

m n
rl—,=| =CeHt? 11

[ 2’ 2} 1
The correlation of this pathological case yields a flat re-
sponse. Ignoring the size of the image, this can be con-
sidered as the product of two quaternions. Any quaternion
can be expressed as the product of two pure quaternions.
Therefore, the correlation function can be modeled by:

Cete? = Aet1s Betas = Ay By (12)

where the simplification is given by the generalized Eu-
ler’s formula from Equation (1) with ® = 7 /2.
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Image B can be considered as an appropriately
scaled, color-space rotated version of A, given by a ro-
tation about an axis p, where L ;& p,, by some
“unknown” angle, 6, such that:

B
Bu, = (eH% Apy e_“%> (13)

Substituting in Equation (12) yields,

B
CeHe® — AMIZ ehs Apy e HE (14)

which, by removing the conjugate and canceling terms,
simplifies to:

Cete® = —AB py eM? py e 2 (15)

Since ¢ L pq we can apply the reordering rule from
Equation (7) (where ePS is a full quaternion and g is
an axis vector, or pure quaternion), to Equation (15) such
that,

Cet? = —AB p, p, eTHEeTHE = AR e 0

where pq pr; = —1.

The axis of rotation, u, is therefore given by the axis
of the correlation peak, g, and the rotation angle, 4, by
the negated phase of the correlation peak, ¢.

Latest Results

Extending the theory of color-space mapping given above
to natural images, Figure 2 shows two versions of the
Lena image with the second color shifted by 60° about
the red/cyan axis. The color-space rotation is produced by
convolving the image with the rotation operator described
earlier. Computing the cross-correlation of these images

Figure 2: Original and color-space rotated versions of the Lena
image.

does not produce any useful information because both the
phase and axis response are dominated by the DC content
in the images. However, computing the cross-covariance
and extracting the phase and axis from the same position
as the peak modulus response yields the color-space map-
ping from the first to the second image. Using this infor-
mation, a quaternion rotation operator can be constructed,
as described above, and an “approximation” of the origi-
nal image can be recovered, as demonstrated in Figure 3.

Figure 3: Recovered Lena image.

Consider the two images as two individual color-
spaces, each occupying some abstract 3-space but dis-
placed from each other by some unknown rotation. Each
pixel in each image has its own vector representation of its
color and summing all the pixels in each image yields an
average vector for the color-space. Hypercomplex, or vec-
tor, cross-covariance effectively computes the average ro-
tation quaternion over every corresponding pixel between
the two images. Perfect restoration of the image can there-
fore only be achieved under specific conditions (for exam-
ple, when the axis of rotation is perpendicular to the entire
contents of both images, as demonstrated in the previous
section. The type of color-space distortion used in these
experiments is extreme and yet a rather good approxima-
tion of the original image is achieved. Our latest exper-
iments, extending this and our previous work on vector
phase correlation, have recovered a spatially shifted, color
rotated and noise corrupted image using a reference image
as a guide.

Conclusions and Future Work

Hypercomplex, vector, correlation of color images yields
more than a measure of similarity. The phase and axis
information acquired from the cross-covariance of two
quaternion representations of color images encodes the
color-space, or vector, mapping between the images.
While this information can only encode an approximation
of the color-space mapping in natural images, the quality
of restoration of a distorted image is directly dependent on
the original level of distortion.

This paper presents only an introduction to the hyper-
complex correlation of vector images or signals and it is
expected that more applications, as well as improvements,
have yet to be discovered. Our future work is likely to con-
centrate on investigating the effects of large differences in
luminance levels on hypercomplex cross-covariance and
applying these techniques to the correlation of color and
non-color images.
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