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Abstract 

We have previously studied the approaches which permit 
to associate a texture to an image, and some properties of 
such transformations. To do so, we use image 
transformations which act on the pixels of the original 
image. Some of these transformations have the following 
property: they statistically mix in a very homogeneous 
way the pixels of the image. We say that such a 
transformation is a Quasi-Mixing Transformation (or 
QM-transformation for short). 

For an image, with the use of a QM-transformation 
we obtain a locally very homogeneous spatial 
representation of this image (which was previously not 
homogeneous). This representation appears to be a 
texture. It is possible to define criteria which permit to 
quantify the local homogeneity degree of this texture in 
order, for example, to extract some statistical attributes 
from a reduced part of the image. 

We show that the statistical model of the texture that 
we obtain allows to define a representation space in order 
to discriminate the texture classes and thus the colour 
images. 

Introduction 

We are interested with the approaches which permit to 
associate to an image a texture by means of a 
transformation of the set of pixels of the original image 
(see Refs. 3 and 4). 

Such a transformation is a permutation or a 
composition of permutations of all the pixels of the given 
image. So, these transformations are one to one and thus 
are invertible. For a right choice of the permutation and a 
right number of iterations, we get a locally very 
homogeneous spatial representation from an original 
image which was not previously. 

About the last point, if we refer to classical defi-
nitions of microscopic textures (see Refs. 5 or 7), we can 
speak of transformation image ↔ texture. It is thus 
possible to define statistical criteria which allow us to 
quantify the local homogeneity degree of the texture so 
obtained in order to, for example, extract (compute) some 
characteristic statistical attributes on a reduced part of the 
image. 

Some of these parts can be used to reproduce the 
original image with different scale: thus we have a model 

of the image representation which appear to be a class in 
a statistical attribute space. 

In this paper, in the case of color images, we present 
some results to illustrate the points mentioned above, and 
we discuss the perspectives which such an approach may 
offer in the frame of statistical modelisation and the one 
of identification or image recognition. 

Mixing Systems and Image-Texture 
Transformations 

The definition of the image transformation that we 
propose here is based on the definition of mixing 
dynamical systems. These dynamical systems are defined 
on continuous spaces. Because of lack of place, it is not 
possible to introduce these systems in this paper. We 
refer the reader to  Ref. 1 for some definitions. We just 
give an informal but rather intuitive and comprehensive 
definition (borrowed from Ref. 1) of a mixing 
transformation: let G be a glass with 90% of Martini and 
10% of gin, and let S be a spoon. Then mix the cocktail 
by turning the spoon in the glass (each turn of the spoon 
being an iteration). Physically, after a while, one can 
hope that any part of the cocktail contains 90% of 
Martini and 10% of gin. 

Here, we see the main interest of these 
transformations: they mix in a very homogeneous way all 
the elements of the involved space. Always intuitivelly, 
we can imagine that with a part E of the cocktail, if we 
apply an inverse transformation restricted to E, we can 
separate the component in order to have unmixed Martini 
and gin. It is sure that such a reverse transformation is 
not possible because “ after a while” means when the 
number of spoon iterations goes to infinity. Nevertheless, 
we will see later that for digital images (which are finite 
sets of pixels), this intuitive insight is not erroneous. 

Arnold et Avez - see Ref. 1 - give a lot of examples 
of such mixing transformations, which are defined on the 
unit square  [0, 1] × [0, 1]. In the sequel we will only use 
one of them, namely the Baker Transform (BT for short). 
We just mention here that all the examples given by 
Arnold and Avez are defined on continuous sets. On the 
other hand, digital images are finite sets of points (pix-
els). Unfortunatelly, it appears that a transformation of a 
finite set is never mixing (this fact is intuitivelly compre-
hensible - see Ref. 2). But for some peculiar mixing 
transformations like BT, when restricting to finite sets, it 
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remains some mixing like properties: the pixels are 
statistically well mixed when iterating the transformation. 

In order to describe the Baker Transformation, we 
decompose an iteration in two steps: use first an affine 
transformation which give an image twice larger and half 
high (the number of pixels remains unchanged). For Lena 
(512 × 512 pixels), this is shown on Figure 1. Thus cut 
and past the resulting image in order to obtain the image 
shown on Figure 2  (which has the same size as the 
original image). 

 

Some Properties of the BT 
A digital image is a finite set of points, then the BT 

is a permutation. Such a transformation is periodic, and 
the period is a function of the size of the image. For 
example, for a 2

n
 × 2

n
 image the period is 4n. If we stop 

after 2n iterations we obtain an image which is the 
original one rotated of 180°. With n iterations the image 
is perfectly mixed (as we have shown it - see Ref. 3). 
Figure 3 shows the resulting image after n iterations.  

As it can be seen on Figure 3, the transformed image 
presents a good spatial homogeneity, and thus we can 
reasonably speak of texture. On the other hand, this kind 
of transformation works equally for colour images and 
for grey level images. 

 
 

 

 
Figure 1. Lena during the first iteration of the BT 

 
Figure 2. The image at the end of the first iteration

  

Original 512 × 512 image Transformed image 

Figure 3. From the image to the texture after 9 iterations of the BT 
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A 64 × 64 block extracted from the texture (Figure 3) A 64x64 pixel image computed from the block 

Figure 4.  From a block extracted from the texture to an image with 18 iterations of the BT 

 

Now, if we divide the 2
n
 × 2

n
 texture image in such 

a way that we get 2
2(n - m) 

 blocks of size 2
m

 × 2
m

 (we 
have a partition of the texture), with one of these blocks 
(say the upper left one, but it works for any of the blocks 
- see Ref. 4) we can compute a 2

m
 × 2

m
 image which is 

semantically identical to the original one (here 
semantically identical means that we accept a light loss 
of quality so that the image remains recognizable). This 
is done with the BT with 3m iterations (or equivalently 
with m iterations of the inverse of the BT). Figure 4 
illustrates this property (here n = 9 and m = 6, so it needs 
9 iterations to get the texture and 18 iterations to go from 
the the extracted block of the texture to the image. 

In this context, we can consider that it is possible to 
use approaches  which permit to statistically characterize 
or give a model of the textures.6,7,8 The applications we 
have in mind are characterization, classification and 
recognition of images. To this end, we have chosen to 
get a model of the texture by means of  computed local 
statistical attributes which permit a representation of the 
images as classes. This approach is described in the next 
section. 

Modelisation and Statistical Analysis 

Previously, in the case of grey level images (see Ref. 9), 
we have chosen to get a model of the textures by means 
of their grey level second order spatial distributions 
(coocurrences) and to extract from them a set of 
statistical attributes. Presently, all the images we 
processed are RGB images and we have computed a 
coocurrence matrix for each chanel. For the tests that we 
have carried out and which are presented in the sequel, 
we have not reduced the number of levels as this is 
usually recommanded before the coocurrence distribu-
tion computation (in the case of grey level images). We 
have done so because we wanted to preserve the one to 
one image ↔ texture relation. For every image, after 
obtaining the texture with the right number of iterations 
of the BT (Figure 3), we have computed 3 coocurrence 
matrices for a distance of 1 pixel in the four main 
directions, and then, for each matrix, the 12 attributes 
proposed by Haralick & Al.7 The coocurrence 
distributions have been computed on windows of size 32 
× 32 pixels. Each image is described by a set of attribute 
vectors (64 for a 256 × 256 image and 256 for a 512 × 
512 image) in a 36-dimensionnal representation space. 

We are here in the case of statistical pattern 
recognition based on the knowledge of a reference or of 
a set of references (learning set). 

Figure 5 shows  the 18 images we have used. We 
have performed a principal component analysis on the 
whole set of data and we have observed that the main 
contribution is given by the attribute F7 (sum variances) 
for the three chanels. Figures 6 and 7-a present the 
texture classes represented in the 3 planes obtained by 
combining the three features F7 two by two. Figure 7-b 
presents the texture classes in the plane (F5-Red , F7-
Red), this result shows that we can achieve better 
discrimination results if we use a set of features larger 
than the one composed of the three features F7. The 
recognition results presented in the sequel validate this 
remark. We can also observe that the classes have a few 
intraclass and a good interclass dispersion. The small 
dispersion in each class proceeds from the good texture 
homogeneity obtained with the TB.  

We have performed a recognition test with a priori 
knowledge. For the learning set, we used 50% of the 
vectors of each class, and the remainder was used as the 
test set. In the 3-dimensionnal space composed by the 
three features F7 and using the Mahalanobis distance, we 
reached 100% (resp. 99,97%) of good classification 
results on the learning set (resp. test set). In the 
36-dimensionnal space, using the euclidean distance, we 
reached 100% of good classification results on the 
learning and test sets. The euclidean distance was used 
here because the Mahalanobis distance requires the 
inverse covariance matrix, and it is not possible to 
compute it in the case of a 36-dimensionnal space with a 
minimum sample size equal to 32 for the classes 
corresponding to 256 × 256 images. The information 
reduced to a small window produces a good 
discrimination and we recall that each of these windows 
corresponds to a representation to a inferior scale of the 
original image (cf. the properties of the BT and 
Figure 4). 

On the other hand, we can see that the distance 
proximity between classes do not, in general, agree with 
a visual or semantic proximity between the corre-
sponding images. This means that we have to choose or 
define another space representation data to perform 
recognition and detection of visual similarities between 
images. 
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1 - Jocon 256x256 

 

2 - Lena  512x512 

 

3 - babo 512x512 

 

4 - fruit0  256x256 

 

5 - fruit1  512x512 

 

6 - fruit2  512x512 

 

7 - UTT11  256x256 

 

8 - UTT12  256x256 

 

9 - UTT13  256x256 

 

10 - UTT14  256x256 

 

11 - UTT2  512x512 

 

12 - UTT3  512x512 

 

13 - UTT4  512x512 

 

14 - UTT5  512x512 

 

15 - UTT6  512x512 

 

16 - UTT7  512x512 

 

17 - UTT8  512x512 

 

18 - UTT9  512x512 

  

Figure 5. Set of images used for classification and recognition 
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Figure 6. Class image representations - attributes computed on 32x32 windows of textures (see Figure 3) 
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Figure 7. Class image representations - attributes computed on 32x32 windows of textures (see Figure 3) 

 

 
Conclusion 

We have introduced a transformation (BT) which allows 
to associate in a one to one way a texture to a color or to 
a grey level image. We have shown that the statistical 
model of the textures so obtained permits to define a 
representation space in order to discriminate texture 
classes and thus the images. On the other hand, we have 
also previously observed (see Ref. 9) that if the original 
images were (grey level) textures, the BT gives rise to a 
class representation rather more accurate, the spatial 
interclass relations being preserved. From a statistical 
pattern recognition point of view, this latter point shows 
that the BT permits to improve the discrimination 
between classes. The case of color textures has not yet 
been addressed. 

Beside the fact that the BT has some rather interest-
ing properties, we actually search some other quasi-
mixing transformations (with better mixing properties) 
which may hopefully produce better results. 

On the other hand, we have seen that proximity 
relations between classes generally do not correspond to 
semantic proximity between images. If we wish by 
example to use such an approach to classify images with 
resemblance criteria, we have to define some textures 
attibutes which allow a good discrimination and which 
are near from the visual content of the images. We also 
actually work on these aspects in the case of color 
images and of grey level images. 
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