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Abstract 

In this paper, we present a new method to recover an 
approximation of the bidirectional reflectance distribution 
function (BRDF) of the surfaces present in a real or 
synthetic scene. This is done from a single photograph 
and a 3D geometric model of the scene. The result is a full 
model of the reflectance properties of all surfaces, which 
can be rendered under novel illumination conditions with, 
for example, viewpoint modification and the addition of 
new synthetic objects. Our technique produces a reflec-
tance model using a small number of parameters. These 
parameters nevertheless approximate the BRDF and allow 
the recovery of the photometric properties of diffuse, 
specular, isotropic or anisotropic textured objects. The 
input data are a geometric model of the scene including 
the light source positions and the camera properties, and a 
single captured image. We present several synthetic 
images that are compared to the original ones, and some 
possible applications in augmented reality such as novel 
lighting conditions and addition of synthetic objects. 

1. Introduction and Motivations 

Research in Computer Graphics has been more and more 
developed over the past few years. This domain has given 
the opportunity to produce photorealistic images using 
physical or empirical techniques. Even if the resulting 
images were often spectacular, full realism is under-
achieved when comparing the computer-generated images 
with real images captured with a camera. A new field 
called Image-Based Rendering enhances the quality of 
image synthesis, by directly using the real images to cre-
ate synthetic ones. A subfield known as Inverse Render-
ing aims to estimate object reflectances (BRDF) inside a 
real scene. Using this photometric reconstruction, it is 
possible to create new synthetic images under novel 
illumination conditions. Moreover, almost all the tech-
niques in inverse rendering use a 3D geometrical model 
and in some cases the positions and the intensities of the 
light sources. Consequently many augmented reality 
applications become appliable. We can add or remove 
some objects, and then compute the new interactions 
between the assembled objects of the scenes. Many 
authors have contributed to the resolution of the inverse 
rendering problem.6,10,11,14-19,21-27,32 These works can be 
divided into several different categories, depending on the 
complexity of the scene: one isolated object or a full 3D 
scene, and the complexity of the illumination: 

local or global. A lot of work has been accomplished in 
the determination of the BRDF for an isolated object 
under specific illumination conditions14,17-19,24-26 or under 
general unknown illumination conditions.20 Some of these 
techniques are able to produce the exact BRDF from a set 
images and they generally use a tailored approach to 
achieve this goal. Moreover, the emphasis of these past 
works are on the elimination of the costly measures 
incurred by the use of a gonioreflectometer, rather the 
creation of new synthetic images. Recently, several other 
methods have been proposed to extend the photometric 
reconstruction to augmented reality applications such as 
viewpoint moving and illumination changes for exam-
ple.6,32,15,16 These contributions generally use a sparse set of 
photographs to estimate the full BRDF of materials inside 
a real scene.6,32,15,16 This often generates additional work for 
the user, especially if several images have to be taken 
under specific viewpoints.32 Fournier et al.11 proposed 
another approach that estimates only diffuse reflectances 
using a single image. We extend this work by introducing 
a new hierarchical system to estimate the full BRDF of 
objects from a single image, following our previous 
works in the inverse rendering field.21,3,1,4 This paper is a 
description of this work and it includes a new experi-
mental validation on a synthetic scene comparing real and 
recovered parameters for different BRDF. 

2. PreviousWork 

All the techniques and ideas in this paper have been made 
possible by works about photorealistic rendering inclu-
ding global illumination and ray tracing, image-based 
modeling and BRDF modeling. However, this paper falls 
mainly within the description of inverse rendering, image-
based rendering and reflectance recovery. We limit here 
the overview of the previous methods to the most relevant 
algorithms to our technique. Therefore, the background 
described here includes only techniques which take into 
account a full 3D scene and use global illumination. A 
complete overview of all the existing algorithms is 
available in Refs. 4 and 2. 

2.1. Reflectance Recovery from Several Images 
Debevec6 used global illumination for augmented 

reality applications. To insert new objects inside a real 
image, he needed to take into account interreflections and 
computed the reflectances of the surfaces in the part of the 
scene influenced by this insertion. He created a geome-
trical 3D model of this part of the scene, called the local 
scene, and manually calculated the reflectance parameters 
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of all the modeled objects. Each of the non-diffuse BRDF 
parameters are changed by the user iteratively until the 
rerendered image becomes close enough to the original 
one. The perfect diffuse parameters are set by an 
automatic procedure. 

Yu et al.32 proposed a complete solution for the 
recovery of surface BRDF from a sparse set of images 
captured with a camera; 12 of the 150 images were taken 
specifically to get specular highlights on surfaces. They 
built 40 radiance maps for the estimation of the reflec-
tance parameters and the computation of the radiance-to-
pixel intensity conversion function (camera transfer 
function).7 Using an image-based modeling software such 
as Façade,8 a 3D geometrical model of the scene was built 
from the set of images. All the data were then utilized to 
recover the BRDF of the modeled surfaces. Their method 
minimized the error in the parameters of the Ward’s 
anisotropic BRDF model29 to estimate the best possible 
BRDF for each object. This work was applied to the 
insertion of new objects in the scene, to the modification 
of the illumination conditions and to the rendering of a 
new scene under novel viewpoints. However, this method 
only works if at least one specular highlight is visible on 
an object. Otherwise this object is simulated as perfectly 
diffuse. 

Loscos et al.15 proposed a method based on an ori-
ginal idea from Fournier et al.11 Their algorithm recovered 
the diffuse reflectances of the surfaces inside a set of 
photographs of a scene, taking into account the textures of 
the objects; each surface has to be unshadowed in at least 
one image of the set. They applied their technique to the 
insertion/removal of objects and to the modification of the 
lighting conditions of the original scene. More recently, 
Loscos et al.16 extended this technique by removing the 
constraint of the unshadowed surfaces. To improve the 
results, they transformed their reflectance recovery algori-
thm into an iterative process. However, the method 
remained limited to perfectly diffuse surfaces; the mirrors 
are considered to be diffuse textured objects for example. 

2.2. Reflectance Recovery from a Single Image 
A pioneering work in this domain was completed by 

Fournier et al.11 in 1993. He proposed to rerender an 
original image using a 3D representation of the scene, 
including the positions of the light source and the camera 
parameters and a single image of this scene. All the 
surfaces were considered to be perfectly diffuse, and they 
used their reprojection onto the real image to estimate 
their reflectances. A radiosity-based algorithm then com-
puted an image applying these reflectances to a pro-
gressive radiosity technique5 to obtain a new synthetic 
image. 

An extension of the previous method was developed 
by Drettakis et al.10 They proposed an interactive version 
of the initial paper and added a vision algorithm for the 
camera calibration and the automatic positioning of the 
3D geometrical model. They described a slightly different 
technique for the estimation of the reflectances of the 
surfaces and they used a hierarchical radiosity algorithm13 
to compute a new synthetic image similar to the real one. 

An approach similar to that of Fournier et al. was 
chosen by Gagalowicz.21 It included a feedback that com-
pares the real image to the synthetic one. He described a 

technique to generate a new synthetic image from a single 
image using an iterative method that minimizes the error 
between the real image and the synthetic one. Note, 
however, that the 3D geometrical model obtained in the 
process was built from two stereo images. This technique 
is limited to a pure lambertian approximation of the 
surface reflectances. An extension of this work has been 
realized by Boivin et al.,4 who introduced a new technique 
taking into account complex BRDFs of objects inside a 
real scene. They proposed a hierarchical and iterative 
method which minimizes the error between the real and 
the synthetic image to estimate various types of BRDF, 
such as anisotropic surfaces. They applied their work to 
augmented reality applications. 

3. Data and Work Base 

3.1. Two Fundamental Data 
The method that we propose here requires two data. 

First of all, we need a full three-dimensional geometrical 
model of the scene including the intensities and the 
positions of the light sources. The construction of the 3D 
model can be achieved by many different ways including 
manual ones. We used Maya (Alias Wavefront) to man-
ually position the 3D geometrical models of objects in the 
original image and to approximately build the light 
sources. All the camera parameters have been recovered 
using the Dementhon and Davis9 technique combined 
with a downhill simplex minimization method.12 How-
ever, many other techniques can be used to obtain the 
camera parameters and the 3D geometrical model.8 
Moreover, in our algorithm, all these reconstructed 
objects must be grouped by the type of reflectance. This 
means that the user must declare inside a groupall the 
objects which are supposed to have the same BRDF (for 
example perfectly diffuse or isotropic). This is a very 
important heuristic, because the inverse rendering algori-
thm will now be able to compute or attribute reflectances 
to objects which are not directly seen in the original 
image. This structuring of data also allows for some 
augmented reality applications, such as viewpoint modifi-
cation and object insertion for example. This grouping 
operation is a very fast manual operation performed dur-
ing of after the modeling step. Finally, the second data 
that we need is one single image of the real scene 
captured using any camera*, without any constraint on the 
position of the observer. 

3.2. Accuracy of the Geometrical Model 
The precision required by the inverse algorithm for 

the positioning of the geometrical model tolerates several 
pixels of difference between the projection of the model 
and the real objects in the image. The acceptable number 
of misclassified pixels depends on the size of the pro-
jected object in the original image. For example, if the 
projection of all objects belonging to the same group has a 
total number of ten visible pixels, then the inverse 
algorithm will compute the wrong BRDF when at least 
about three or four of the ten pixels do not belong to the 
currently analyzed objects. We use very classical filtering 
methods, such as edge detectors, edge removal filters and 

                                                           
* We used a 3xCCD Sony camera, DCR-VX1000E. 
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a planar approximation, to reduce inconsistencies with the 
geometrical model by minimizing the number of pixels 
assigned to a wrong object. 

4. Our Inverse Rendering Algorithm 

The inverse rendering algorithm can be described using 
two concepts: an iterative one and a hierarchical one 
(see Figure 1). When the algorithm starts, it considers all 
the objects inside the scene as perfectly diffuse. The 
BRDFs of all the objects are initialized to the average of 
the radiances computed from the pixel intensities†

 covered 
by the projection of the group in the original image. 

Following this diffuse assumption, our algorithm 
compute a new synthetic image using photo-realistic 
rendering techniques.‡ Our inverse method attempts to 
minimize the error between the real and the synthetic 
image in order to obtain the best possible approximation 
for the BRDF. The iterative step seeks the best parameters 
following a given assumption about the BRDF. The 
hierarchical step changes the hypothesis regarding the 
BRDF if the iterative step fails to obtain a small error 
between the real and the synthetic image. 

Each time a new image has been generated, an image 
difference is then computed to determine which object 
BRDF must be changed. If the perfectly diffuse 
assumption produces a big error between the two images 
for a given group, then the inverse rendering algorithm 
chooses another hypothesis regarding the reflectance of 
this group. It tries a more complex BRDF model (a 
perfectly specular one here). Again, Phoenix generates a 
new synthetic image using the new hypothesis, and the 
inverse algorithm computes a new error image to 
determine which object BRDF must be modified. As we 
can see, the inverse algorithm uses more and more 
complex hypotheses (hierarchical principle) to obtain the 
correct BRDF and the corresponding parameters. Several 
hypotheses are successively applied and the algorithm 
stops when the error between the real and the synthetic 
image is smaller than a global user-defined threshold. The 
determination of the thresholds is not critical to our 
method and it can be found in Refs. 2 and 4. 

4.2. Computing the Ward’s BRDF parameters 
All the BRDF parameters that are estimated here, 

come from the Ward’s BRDF model.29 We chose the same 
BRDF model as Yu et al.32 because of its small number of 
parameters and its ability to simulate anisotropic surfaces. 
This model only requires the knowledge of five para-
meters for a complex BRDF: ρd the diffuse reflectance, ρs 
the specular reflectance, x

&

 the anisotropy direction 
(called the brushed direction) and the anisotropic rough-
ness parameters αx and αy. Furthermore, this model avoids 
the costly computation of the Fresnel term which has been 
replaced by a normalization factor. A detailed description 
of this BRDF model can be found in Ref. 29. 

                                                           
† These radiances have been obtained using the inverse of the 

camera transfer function that was simulated as a γ correction 
function with a γ value of 2.2 according to Tumblin et al.28 
However a more powerful algorithm could be applied if we had 
more than one photograph of our scene.7 

‡ We use our own rendering software called Phoenix2 to compute 
the new images, but any global illumination software such as 
Radiance30 can be used as well 

4.1. Overview 

 
Figure 1. General iterative and hierarchical algorithm for 
reflectance recovery. Each surface of the scene is analyzed 
separately, depending on the assumption about its reflectance 
(perfectly diffuse, perfectly specular, etc.). If the assumption is 
false (the error between the real and the synthetic image is big), 
then the surface reflectance is assumed to be more complex 
(hierarchical principle). If the assumption is correct then the 
surface reflectance is modified accordingly in order to minimize 
the error between the two images (iterative principle). During 
each global rerendering iteration, the reflectances of all 
surfaces are then continuously updated, to take into account the 
incident energy coming from any surface for which the BRDF 
has changed (a diffuse surface modified to be perfectly specular 
for example). 

4.2.1. Perfectly Diffuse Surfaces 
The perfectly diffuse case is very simple because 

only one parameter (ρd) has to be computed. During the 
first iteration, all objects are assumed to be perfectly 
diffuse. Every reflectance for each group is initialized to 
the average of the radiances covered by the projection of 
the group in the original image. Phoenix generates a new 
synthetic image using these reflectance. A new error is 
computed as the ratio between the average of the radi-
ances covered by the projection of the groups in the 
original image, and the average of the radiances covered 
by the projection of the groups in the synthetic image (see 
Eq. 1). This error balances the original diffuse reflectance, 
and after several iterations an optimum value of ρd is 
found.§ 

                                                           
§ it is shown in Ref. 2 that only 4 iterations are sufficient to 

converge to an optimum value of ρd 

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

273

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

270



 

    (1) 

where: 
 and  are respectively the average of the radiances and the 

pixels covered by the projection of object j in the original 
image. 

 and  are respectively the average of the radiances and the 
pixels covered by the projection of object j in the synthetic 
image. 
T() is the camera transfer function. 
 

Since the average radiance jB̂  of object j is 
proportional to the diffuse reflectance ρdj, the iterative 
correction of the ρdj can be written for each rerendering 
iteration k as: 
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where: 

iε̂ and jε̂  are respectively the total error between the original 

and the synthetic image for group i and object j. 
ni is the number of objects for group i. 
md is the median of the errors (selects the middle value of the 
sorted samples). 
λ is the authorized dispersion criteria. 
mj is the number of pixels covered by the projection of object j. 
The function f() eliminates problems generated by smaller 
objects for which the error is very important, because they are 
more sensitive to the image noise (their projection in the image 
covers a small amount of pixels). An example of iterative 
correction of ρd (and ρs) is provided by Figure 2 on a simple real 
interior scene, containing both diffuse and specular objects. 
 
 

After several iterations, a new error image is still 
computed as the difference between the real and the latest 
synthetic image. If this error remains bigger than a user-
defined threshold for a given group, then the algorithm 
now decides that all these objects are perfectly specular. 

4.2.2. Perfectly and Non-Perfectly Specular Surfaces 
In the case of perfectly specular surfaces, it is 

extremely easy to compute the reflectance parameters, 
because ρd has a null value and ρs is constant (ρs =1). A 
new synthetic image can be immediately generated taking 
into account the new BRDF. But, if the new error for 
objects assumed as perfectly specular remains large, the 

                                                                                               
 

algorithm tries to enhance the ρs parameter. This new type 
of BRDF corresponds to the non-perfectly specular case. 
This specular parameter is modified according to equation 
3 applied to ρs instead of ρd. The images of Figure 2 have 
been generated using this technique and clearly shows a 
significant decrease in the error during the inverse 
rendering iterations. 

If the resulting synthetic image still differs from the 
original one in terms of error (image difference by group 
of objects), then the diffuse and specular hypothesis is 
applied. 

 
 

 

Figure 2. Simulation of hierarchical inverse rendering, where 
the top row from left to right consists of the real image captured 
with a camera, the synthetic image with a pure diffuse 
assumption (first iteration), the synthetic image with perfect 
diffuse and perfect specular assumptions (fifth iteration) and the 
synthetic image with pure diffuse and non-perfect specular 
surfaces (seventh iteration). On the bottom row, we can see the 
error images corresponding to the difference between the real 
and the synthetic image. 

4.2.3. Both Diffuse and Specular Surfaces 
In the Ward’s BRDF model,29 we now consider the 

case where ρd and ρs have a non-null value. All the 
surfaces are assumed perfectly smoothed which means 
that there is no roughness factor to compute. 

These two parameters can be analytically estimated 
by minimizing the error between the real image and the 
synthetic image as a function of ρd and ρs: 
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where: 
nbg, the number of pixels covered by the group projection. 
Bsynth,Borg the pixel intensities converted to radiances respectively 
for the synthetic and the original images. 
 

This minimization has an analytical solution for each 
wavelength R,G,B: 

1

2

2

)(

)(
−
































=





ρ
ρ

∑∑

∑∑
∑
∑

nbg
d

nbg
sd

nbg
sd

nbg
d

nbg
orgs

nbg
orgd

s

d

BBB

BBB

BB

BB

 

In practice, such surfaces in real cases are very rare 
but not impossible. For example, the top face of the desk 
in Figure 9 presents some photometric properties very 
close to this approximation. 
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4.2.4. Isotropic Surfaces 
In order to solve the case of isotropic surfaces, we 

must now find three parameters: the diffuse reflectance ρd, 
the specular reflectance ρs and the roughness parameter 
α.29 In most cases, a direct minimization algorithm can be 
used to find these parameters. However, we have shown 
in Ref. 4 that it is not always easy to minimize such a 
function. Therefore, it could be useful to separate the case 
ρs = 1 from the other cases. We then minimize these two 
cases separately using a downhill simplex method12 and 
we choose the parameters which produce the smallest 
error. 

Figure 3 shows the result of these minimizations: the 
aluminium surface (in the center of image) has been 
simulated as isotropic, and an optimum value of ρd = 0.04 
and ρs = 0.96 has been found. However the error image 
shows that a better approximation might be possible for 
this particular surface. The error remains important in the 
region bordering the specular reflection area of the two 
books on this surface. Therefore a more complex BRDF is 
needed and the algorithms now attempts to simulate the 
surface as an anisotropic one. 

 

Figure 3. Approximation of the aluminium surface (anisotropic) 
of the real image (left) by an isotropic surface in the synthetic 
image (center). The error between these two images for the 
aluminium surface is visible in the right image. We note that the 
error is still important in the area of the specular reflection of 
the books. The red pixels correspond to a high error but they 
are not significant because they are coming from an 
approximate positioning of the 3D geometrical model on the 
image, especially on the edges of the objects. 

4.2.5. Anisotropic Surfaces 
In the case of isotropic surfaces, we saw that we had 

three parameters to compute (ρd, ρs and α). For the 
anisotropic case, we must now compute the anisotropy 
direction )(x

&

 and two other roughness parameters (αx, αy) 
replacing the previous α in the isotropic case. It has been 
shown in Ref. 4 that a direct minimization algorithm to 
estimate these parameters produces results of poor quality 
even if the method converges. Therefore we propose a 
direct estimation of the anisotropy direction from the 
original image. 

If we could zoom in, we could see that an anisotropic 
surface has small wave-like features (roughness) on the 
surfaces characterized by a common direction. This 
direction called the brushed direction is the anisotropy 
direction that we are looking for. These waves are clearly 
visible on the left image of Figure 4 computed for an 
anisotropic surface. However, they are not directly visible 
from the original image: the left image of Figure 4 is 
displayed as a 3D surface and it is produced from several 
processing steps that are described below. 

In a first step, we consider the anisotropic surface as a 
perfect mirror and compute a synthetic image. Next, we 
estimate the difference between the real image and the 
synthetic one to visualize the part of the anisotropic 
mirror where the specular reflection is “extended”. This 
area corresponds to an attenuation of the specular 
reflection, and this effect is always very important in the 
direction perpendicular to the brushed direction (or 
anisotropy direction). 

 

Figure 4. The selected object used here to recover the 
anisotropy direction is the violet book of the lower left real 
image of figure 9. The 3D surface (left image) shows the error 
image for the difference between the perfect specular reflection 
area of this selected object, and its corresponding area in the 
real image. The 2D curve (right) shows the average of the 
standard error deviations computed from the error image along 
the sampled anisotropy directions (see also figure 5). 

 

 

Figure 5. Computation method of the anisotropy direction x
&

 
for a glossy surface. 

 
In a second step, we compute an index buffer for this 

mirror of all the surfaces visible through it. We then look 
for a reference surface that has the biggest reflection area 
on the anisotropic surface, while being as close as 
possible to it. This surface is then selected in such a 
manner that the ratio  
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is maximized (with d(S,P), the euclidean distance between 
the center of gravity of the selected surface and the center 
of gravity of the anisotropic mirror). The motivation of 
this choice resides in the fact that surfaces very far from 
the anisotropic object exhibit a reflection pattern that is 
too small or too noisy to be usable for the recovery of the 
brushed direction. In a third step, the anisotropy direction 
is sampled creating x

&

 vectors around the normal to the 
anisotropic surface. Each of these sampled directions 
determine a direction to traverse the error image and 
compute the average of the standard error deviations 
computed in the error image. Finally, the algorithm 
selects the direction for which this average value is the 
smallest one (see Figure 4). Figure 5 summarizes the 
complete procedure. 

Once the anisotropy direction x
&

 has been recovered, 
a downhill simplex minimization algorithm is used to 
estimate the roughness parameters αx and αy. 

4.2.6. Textured Surfaces 
When the anisotropic simulation of a surface still 

produces large errors in the difference image, we proceed 
to texture extraction. 

Extracting the texture from the real image is an easy 
task that can be realized using the technique proposed by 
Ref. 31 for example. However, we have to extract this 
texture while taking into account the fact that it already 
has received the energy from the light sources, and that 

the pixels covered by its projection in the real image 
contain this information. Otherwise, if we send the energy 
of the light sources to these textures again, they will be 
over-illuminated. Therefore, we introduce a notion called 
radiosity texture that balances the extracted texture with 
an intermediate texture in order to minimize the error 
between the real and the synthetic image. As for the 
perfectly diffuse reflectance case, this intermediate texture 
is computed by an iterative method. 

At the first iteration, the texture used to rerender the 
image is the texture directly extracted from the real 
image. At the second iteration, the texture used to obtain 
the resulting synthetic image is multiplied by the ratio 
between the newly extracted texture of this synthetic 
image and the texture of the real image. This iterative 
process stops when the user-defined threshold for textured 
surfaces has been reached. The textures of the poster and 
the books in the rerendered images of Section 4.3.2 have 
been obtained using this technique. The problem of this 
method is that it computes a texture including the 
shadows, the specular reflections and the highlights. As 
an example, consider a marbled floor on which a sphere is 
reflected. The texture of this floor in the real image then 
includes the marble characteristics, its reflectance 
properties and the sphere reflection including its own 
reflectance properties. How then do we extract the marble 
characteristics and independently of the rest of the scene? 
This is an extremely hard problem, and Y. Sato et al.26 
have stated that no algorithm has yet been proposed to 
solve it using a single image. 

 

 

Figure 6. From left to right: original anisotropic floor, floor simulated as an isotropic object, and the error image between the 
original and the rerendered images. 

 

Figure 7. Left: the original computer-generated image. Right: 
the new synthetic image produced by our inverse rendering 
technique. 

4.3. Results and Computation Times 

4.3.1. Comparison of Recovered Parameters 
In this section, we propose to give the values 

obtained for the recovered BRDF of a computer-
generated scene (see left image of Figure 7). We compare 
them to the original known values used to render the 
original image with Phoenix. 
 

The first level of the hierarchy in the inverse render-
ing process computes all the parameters of the surfaces in 
a straightforward manner. However, the error remains 
large for the floor and the next levels are tested for this 
object. The specular assumptions (perfectly, non-
perfectly, both diffuse and specular) produced large errors 
forcing the algorithm to choose the isotropy hypothesis. 
During the isotropy case, a global minimum has been 
found for ρd, ρs and α, and the synthetic image is visually 
very close to the original as shown by Figure 6. However, 
as we only set 1% for the maximum tolerated error to 
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switch from the isotropy hypothesis to the anisotropy, our 
method tries to simulate the floor as an anisotropic object. 

Using the method described in Section 4.2.5, our 
algorithm finds all the reflectance parameters for the ani-
sotropic object. All the recovered values are summarized 
in Figure 8 and the final resulting image is shown in 
Figure 7. 

 

 

Figure 8. Comparison between the recovered reflectance 
parameters and their original values. Note that Ceil is not 
directly visible in the original image. When this happens, the 
algorithm considered this object as a perfect diffuse white 
object. In practice, if such a case happens, the user should find 
an object whose photometric properties are close to Ceil. Ceil 
will then be declared in the same group as this object. 

 
 

4.3.2. Rerendered Scenes 
All the following synthetic images have been 

generated using Phoenix as the rendering and inverse 
rendering software. The first synthetic image at the top 
right of Figure 9 has been generated in 37 minutes using 
the hierarchical algorithm from the left real photograph. 
Two specular surfaces have been recovered and simulated 
as non-perfect mirrors and 14 rerendering iterations were 
necessary to generate the final image. 

The inverse algorithm required 4 hours and 40 min-
utes to produce the image at the bottom right of Figure 9. 
Roughly 4 hours of this time were necessary to recover 
the anisotropic BRDF of the aluminium surface. The final 
rendering stage required 32 minutes to render the final 
image (100 bounced rays have been used for the aniso-
tropic surface). 

The images of Figure 11 show examples of appli-
cations in augmented reality. Some synthetic objects have 
been added such as a small robot and a luxo-like desk 
lamp. It is also possible to modify the reflectances without 
much difficulty. New viewpoints can be generated and 
new illumination conditions can be created as well. 

5. Conclusion and Future Work 

In this paper, we have presented a new technique to 
determine an approximation of the reflectance properties 
of the surfaces of a 3D scene, and we have proposed an 
experimental validation of our method. An incremental 
and hierarchical algorithm iteratively estimates various 
types of reflectance parameters, including anisotropic and 
textured surfaces. The method takes as input a single 
photograph of the scene taken under known illumination 
conditions as well as a 3D geometric model of the scene. 
The result is a complete description of the photometric 
properties of the scene which may be used to produce a 
photorealistic synthetic image very similar to the real one. 
We showed that the method is robust and gives the 
opportunity to display the original scene from novel 
viewpoint, with unrestricted illumination conditions and 
with the addition, removal and modification of objects. 

 

 
Figure 9. Example of a pure diffuse approximation of a whole 3D scene. From left to right: the original image captured with a 
camera, the synthetic image and a synthetic image generated under a new viewpoint. The perfect diffuse assumption is realistic 
enough for many surfaces, except the computer monitor and the door. Moreover, even if the desk is a real anisotropic surface, a pure 
diffuse approximation produces a realistic enough result for this object. Note that a book on the left bookshelf has not been modeled. 
Due to the filtering step and the principle of the method, this does not disturb the inverse rendering case. However, this remains true 
only for small objects that do not interact much with the real environment. A “very“ large error in the modeling step would definitely 
produce wrong results. 
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Figure 10: Two different examples of synthetic images (right) rerendered from a single real image (left). We note that the perfectly diffuse assumption is realistic enough
for many surfaces including the walls, the �oor , the desk among others.

Figure 11: Examples of several augmented reality applications. All these new images were rendered using our global illumination software Phoenix, which �rst recovered
the surface re�ectances from the bottom left image of Figure 9. The top left image shows the original scene with some objects removed: the feet of the desk and the red
cube. Note that the right mirror has taken into account the modi�cation. The right top image shows the original scene rendered under a novel viewpoint. The bottom left
image shows the scene with modi�ed photometric properties, and the addition of an object: a small robot. The bottom right image presents the scene under novel illumination
conditions with the addition and deletion of objects.
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Currently, our work has some limitations, especially 

regarding textured surfaces. Until now, we are not able to 
discriminate the shadows or highlights from an assumed 
textured surface. In this regard, it will be interesting to 
extend our method to these cases, although we think that 
this is a very difficult problem, if one remains restricted to 
a single image. 

Moreover, several other extensions are possible 
because of the hierarchical property of our technique. For 
instance, we may extend the reflectance recovery 
algorithm to objects that have more complex photometric 
properties such as light beams, small fires and caustics as 
a few examples. 
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