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Abstract 

Coarseness or fineness of spatial color variation is one of 
the valuable features of a color image. 

This paper proposes a new metric for measurement of 
intensity of spatial color variation by mean of Haar 
wavelet transform. 

Several paintings are analysed by our method. The 
characteristics of the paintings are well illustrated by the 
result of the analysis. 

1. Introduction 

The pointillism, one of the painting techniques typically 
used in the works of G. Seurat, has two characteristic 
variation of colors. One is minute color variation by small 
dots in paint. The other is broad color variation entailed in 
the composition of an image. 

These kinds of color variations are caused by color 
differences between juxtaposed colors. This paper 
proposes a new measure on the coarseness (or fineness) of 
the placement of color differences on a picture plane, 
which characterizes color features of an image. 

In order to make a measure, one may think of an 
application of Fourier expansion. However, convergence 
of Fourier coefficients is slow when an image has 
discontinuity of color on the picture plane. For this 
reason, there might be a difficulty to interpret Fourier 
coeffecients, especially for high frequency. 

Alternatively we may use an expansion with 
piecewise continuous bases, e.g. Walsh transform. In this 
case, some bases have double periods, and the meaning of 
coefficients for a double periodic basis is not clear. 

It follows from what has been said that Haar wavelet 
transform become a candidate. We devised a new compre-
hensive measure composed of wavelet coefficients, which 
represents the magnitude of color difference for each 
wave-length and has good property for discontinuity of 
color. 

2. Theory 

2.1. A Wave-Length Analysis for Spatial Color 
Variation 

First consider one dimensional case for simplicity. 
Suppose a picture plane is an interval [0, 1] and an image 
is expressed by a piecewise continuous real function f on 
[0, 1]. 

Divide the interval [0, 1] into M = 2m-1 subintervals of 
width hm = 1/M = 2-m+1. Bisecting each subinterval into two 
juxtaposed resions, define a local color difference 
between these two resions by 
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is an average color in the interval [x, x + hm/2] and xi = 
ihm(i = 0,1,…M) is a equi-distant point on [0,1]. 

An average color difference can then be calculated as 
a root mean square of all local color differences: 
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The average color difference 
m

E∆  represents an 
intensity of spatial color variation for a given wave-length 
hm. 

Now consider the general case. Let an image f be a 
piecewise countinuous mapping from a square domain [0, 
1]2 (a square picture plane) to three-dimensional 
Euclidean space R3 (a color space). 

Let M = 2m-1 and N = 2n-1 be respectively a number of 
horizontal division and a number of vertical division of 
the domain [0, 1]2. Put xi = ihm(i = 0,1,…,M) and yj = jhn(j 
= 0,1,…,N). 

Applying the above one-dimensional definition (1) to 
x axis and then to y axis successivly, a local color 
difference nm

jif
,

,∆  can be defined on each sub-domain [xi, 
xi+1] x [yj, yj+1]. Note that the local color difference nm

jif
,

,∆  is 
a vector in R3 which corresponds to three components of a 
color. 

The average color difference with a horizontal wave-
length hm and a vertical wave-length hn is calculated by the 
equation 
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where ⋅  denotes an Euclidean norm in R3. 
 

nm
E

,
∆  represents an intensity of spatial color varia-

tion with a wave-length pair (hm, hn). (Note that 
nm

E
,

∆ is a 
scaler.) 
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The case that an image is not square, suppose that the 
height is less than the width and the width is equal to 1, 
without loss of generality. In this case change N in the 
equation (4) to 

],[' NhN ⋅=  

where h(< 1) is the height of a picture plane. 
The sub-domain for calculating the local color 

difference is contained in the picture plane either entirely 
or partially. For the former, calculate the local average 
color by the definition itself. For the latter, calculate the 
local average color for a part of the sub-domain contained 
in the picture plane. 

The algorithm to obtain an intensity matrix of spatial 
color variation from an original image is illustrated in Fig. 
1. 

2.2. Relation Between an Average Color Difference 
and Haar Wavelet Coefficients 

For m = 1, 2,…, and i = 0,…2m-1 –1, Haar basis {ϕm,I} 
is a complete orthnormal basis in L2[0, 1] and can be 
defined by 
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where hm = 1/2m-1 and ihm. 
In one-dimensional case, an expansion coefficient of 

Haar wavelet transform of an image ∈f L2[0, 1] is given 
by < f, ϕm,i >, where >⋅⋅< ,  represents an ordinary inner 
product in L2[0, 1]. The following relation between an 
expansion coefficient <f,ϕm,I> and a local color difference 

m
if∆  holds: 
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Using (3) and noting that M = 2m-1, it is found that the 
square of the average color difference is represented ori-
ginal image by the squared sum of expansion coefficients 
(“Power spectrum”) 

In the general case 
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which follows that the square of average color difference 
equals to the squared sum of expansion coefficients of 
two-dimensional Haar wavelet transform: 
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These relations tell that a color image can be restored 
from a set of local color differences and results of color 
image analysis using Haar wavelet transform can be 
interpreted in terms of color difference. 

 

 

Figure 1. Algorithm to obtain an intensity matrix 

 

3. Application 

3.1. Experiment in CIELUV 
The above wave-length analysis was applied to some 

number of paintings (about 200 works of 11 artists). 
Most of the source images are taken from art books 

or catalogues of exibitions and scanned by an image 
scanner. A few images are directly obtained by a digital 
still camera. Their color values are originally represented 
by RGB, which are transformed to CIEXYZ, then 
converted to a uniform color space CIELUV. 
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A color value in CIELUV consists of three 
components L*,u*,v*, from which an auxiliary attribute 
C* = 22 ** vu +  are computed. In this experiment, a 
local color difference image and an average color 
difference were calculted for each component and for 
each color difference component. A computation flow 
diagram to obtain intensity matrices in CIELUV is given 
in Fig. 2. 

Four images of color components L*, u*, v* and C* 
are prepared first. For a given pair (m,n), divide each 
image into M x N segments (M, N are already defined in 
the previous section) to make a corresponding local color 
difference image (through a local average color image). 
From local color difference images ∆L, ∆u, ∆v, and ∆C, 
two more local color difference images ∆E and ∆H are 
calculated, using the relation ∆E2 = ∆L2 + ∆u2 + ∆v2 and 
∆H2 = ∆E2 – ∆L2 – ∆C2 (here superscript (m,n) and 
subscript (i,j) are omitted for readability). Then take root 
mean squares of all local color differences to obtain the 
average color differences ,

,nm
L∆  ,

,nm
u∆  ,

,nm
v∆  ,

,nm
C∆  

nm
E

,
∆  and .

,nm
H∆  

 

 

Figure 2. Computation flow in CIELUV 

 
Lastly assemble average color differences for all 

(m,n) (m and n are restricted to be finite) to make intensity 
matrices of spatial color variation ,L∆ ,u∆ ,v∆ ,C∆ ,H∆  
and .E∆  

An intensity matrix of spatial color variations is 
interpreted as follows (Fig. 3). The larger is the parameter 
m, the finer is the horizontal color variation. The larger is 
the parameter n, the finer is the vertical color variation. 

 

 

Figure 3. Meaning of an intensity matrix of spatial color 
variation 

 
The column m = 0, n > 1 shows the spatial color 

variation of average color for the horizontal direction and 
the row n = 0, m > 1 shows the spatial color variation of 
average color for the vertical direction. 

3.2. Results 
Four results of the experiment are shown in Fig. 4, 

which illustrate typical color variation from fine touch to 
coarse composition. Two-digit number in the entry (m,n) 
of an intensity matrix indicates the degree of intensity of 
spatial color variation with a wave-length pair (hm, hn). 

(a) V. Gogh, “Starry Night”, 1889 
Comparison of three intensity matrices of spatial 

color variation ,L∆  ,u∆  and v∆  clearly indicates v∆  is 
dominant. This means, the color changing along v axis 
(“blue - yellow” direction) is stronger than the others. 
This might be caused by the contrast of yellow stars and 
the crescent and bluish night sky. 

The swirled starry sky accross the canvass brings 
large value of m = 0, n = 2 in v∆ . The bright moon and 
twinkling stars express large color difference in lower-left 
region of v∆ . Slightly large values in the upper-right 
region of v∆  are caused by the painter’s strong touch with 
blue, yellow, and orange colors. 

(b) P. Picasso, “Mother and Child”, 1921 
The painting is mainly composed of the gradation of 

gray and skin color. In L∆  and ,C∆  the gradation appears 
as continuative change of ‘wave-length’ component. 
Comparing ,L∆  ,C∆  and ,H∆  the values of L∆  are 
slightly greater than C∆  and the values of H∆  are very 
small. This tells that the painter uses gradation in lightness 
and in chroma, not in hue. In ,H∆  short ‘wave-length’ 
components are decreasing rapidly, which suggests 
discontinuity of hue change. 

Roughly speaking the painter uses only two colors, 
gray and skin color, and their gradation. 

(c) P. Klee, “Highway and Byways”, 1929 
The painting is composed of many horizontally 

oblong rectangles whose colors are orange, yellow, blue, 
grayish green and greyish purple. This leads to the large 
values in the upper-left region of the intensity matrix. The 
values of C∆  dominate the others, because the chroma of 
orange or yellow is quite higher than the other colors. 
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(d) G. Seurat, “A Sunday Afternoon on the Island of La 
Grande Jatte”, 1884-86 

Comparing three intensity matrices ,L∆  ,C∆  and 
,H∆  it is found that, for any entry of the matrices, the 

value of C∆  is greater than the other two, L∆  and H∆ . 
This means that chroma variation is an effective and 
dominant technique in the painting. Especially, the upper-
right region of C∆  has large values, which is caused by 
fine touch of brush, i.e., ‘pointillage’. 

The reason that the values of H∆  are small is 
presumed by the fact that the most part of the canvass 
except persons is painted mainly in green of the same hue. 
As for lightness the canvass is divided into two parts, 
sunny upper half and shadowy lower half. This 
characteristic light-dark composition is shown in the entry 
m = 0, n = 2 in L∆ . 

4. Conclusion 

A new method based on Haar wavelet transform to 
measure the magnitude of spatial color variation for each 
wave-length was proposed. This method has good pro-
perty for discontinuity of color on a picture plane. The 
mesure used in the method is not only a simple 
mathematical quantity but also a percentual metric, which 
has a deep connection with color difference generated at 
the border of juxtaposed colors. 

Several paintings are analysed using our method, and 
the results well correspond to our intuitive impression on 
color variation such as fine touch of brush and broad 
arrangement of colored regions. 

There might be many applications of our method, one 
of which is a field of image retrieval by contents. 
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