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Abstract

It is well-known that the knowledge of the natural geome-
try of a problem is often crucial in finding solutions. Prob-
lems involving functions on a circle are, for example, often
solved using the theory of Fourier series. This is the math-
ematical explanation of the enormous success of the DFT,
FFT and DCT-based methods. Another example is the re-
lation between scaling properties and wavelet theory.

In this paper we show that spaces of spectral distri-
butions, like color stimuli, have a natural cone-like struc-
ture. We use the framework of the Karhunen-Loéve trans-
form in a Hilbert space context to describe this cone-like
structure and demonstrate how to compute natural coordi-
nate systems from empirical data, like multi-spectral mea-
surements and images. We will illustrate the theoretical
findings with databases consisting of collections of multi-
spectral measurements of color chips from color systems
like Munsell, NCS and Pantone, multi-channel images of
natural scenes, satellite data and daylight spectra.

We will also comment on the possible application of
group theoretical methods in color science based on those
findings.

1. PCA for spectral distributions

Color spectra are by definition non-negative functions ����
where � is the wavelength variable with values in the visi-
ble range of the spectrum. Typically � takes values in the
interval: ����� � � � �����. The space of such spec-
tra is an infinite-dimensional Hilbert space and therefore
one can describe these spectra by the coefficients �� in a
series expansion:

���� �

��
���

������� (1)

When the basis functions �� form an orthonormal system
then the expansion coefficients �� are given by the scalar
products ��� ��� in the Hilbert space. In the following we
will assume that the scalar product can by computed by an
integral (which is not necessarily the ordinary integral)

������� ������ �

�
���������� �	��� (2)

In many applications only a few coefficients are used to
give a description of the spectrum � by the finite vector
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 � �� �. The mapping
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is a projection from the Hilbert space to the (N+1)-dimen-
sional subspace spanned by the basis functions. When we
consider the spectra as realizations of a stochastic process
then we write � � ������ where � is the stochastic vari-
able. In this case also the coefficients are random vari-
ables: �� � �����. For each realization � the projec-
tion ���� �� �� ��� gives an approximation error
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�
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�����

�����
� (4)

that depends on the selected basis. The minimization of the
mean squared approximation error is equivalent to maxi-
mization of the mean squared norm of the approximation
vector:

� �
�

���
�����

�
��. For the one-dimensional ap-

proximation with one basis function ����� the mean of the
squared norm is given by the double integral:
� � �

����� ������������� �������� �	�����	������

�
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� ������� (5)

Here is the autocorrelation function

���� ��� �

�
����� ������� �� �� (6)

It defines an integral operator given by

� �� ������� �

�
���� �������� �	���� (7)

The mean of the squared norm of the approximations is
maximum if the basis vector �� is the eigenfunction of the
integral operator  � �� � ����with the largest eigen-
value ��. In the same way it can be shown that the other
eigenfunctions of are the basis functions that maximize
the approximation length. This expansion is known as the
Karhunen-Loéve Transform (KLT) or Principal Compo-
nent Analysis (PCA). A more detailed description of the
KLT in a Hilbert Space setting can be found in [5, 8].

This selection of the basis functions as the eigenfunc-
tions of the auto-correlation function is the usual descrip-
tion of Principal Component Analysis of color spectra (see
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for example [4]). For stochastic processes of spectral dis-
tributions it was often observed that the first eigenvector is
a positive function.The expansion coefficient for the first
eigenfunction is therefore non-negative and the remaining
eigenfunctionsmust have negative values since they are or-
thogonal to the first eigenfunction. The coefficients of all
spectra that are elements of the finite-dimensional vector
space spanned by the first � eigenfunctions satisfy there-
fore the inequality:

��� � ���
�
� � 
 
 
 ���

�
� � � (8)

with constants �� that depend only on the basis functions
(independent of the spectra). For all databases investigated
so far these constants were given by �� � 	
We will sum-
marize this fact by saying that the spectra are located in a
cone. This fact has been verified for a large set of different
multispectral distributions. For more details the reader is
refered to [6, 7].

From an arbitrary series expansion of the spectra (6)
and (1) we find:
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When the basis functions �� are eigenfunctions of the in-
tegral operator with kernel  we find that the expansion
coefficients are uncorrelated: ��� � � for � 	� �.

An alternative to the PCA based on the auto-correlation
function of the stochastic process ������ is the PCA de-
rived from the centered new process ������ � ������ �

���� where ���� is the mean of the original process �.
If � �� �� is the projection defined by the auto-correlation
basis functions ����� of the centered process � then we get
the approximation of the original process � as:
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or � 
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In general nothing can be said about the differences be-
tween the two approximations (10) and (3). In the spectral
databases we investigated we found however that the mean
was identical to a constant multiple of the first eigenvector.
In this case both approaches result in the same eigenfunc-
tions. To see this write the spectra � as sum of the mean
and a centered process � � � � � 
 � � ���� 
 �. For the
expansion of � we get � � ��� � ����� 


�
�

��� ����.

We denote the auto-correlation functions of � and �

by � and �. These functions have an expansion of
the type (9) with coefficients ������ and ������ respectively.
From the expansion of the processes � and � it follows that
�
���
�� � �

���
�� for all pairs ����� 	� ��� ��. The eigen-

functions of the operators given by � and � are thus
identical.

A summary of the basic facts described so far is as fol-
lows

� The first eigenvector of the auto-correlation operator
is positive everywhere.

� The mean is a multiple of the first eigenvector

� The coefficient vectors of the eigenvector expansion
are all located in a cone.

� The auto-covariance and the auto-correlation func-
tion have identical eigenvectors.

2. Intensity and Chromaticity

The first eigenfunction is equal to the mean and positive
everywhere. The first coefficient in the eigenfunction ex-
pansion of a spectral distribution is the scalar product of
the spectral distribution and the first eigenfunction. It fol-
lows that the first expansion coefficient is a measure of the
intensity of the spectral distribution. The remaining coef-
ficients describe the chromaticity of the distribution and
from the general theory follows that the intensity coef-
ficient and the chromaticity coefficients are uncorrelated.
Given an N-dimensional approximation � 


��

��� ����
it is natural to describe � by the intensity coefficient �� and
the intensity-independent vector	

��

��
� 
 
 
 �

��

��



(11)

The space formed by these projected vectors will be called
the chromaticity plane or hyperspace. Since the mean was
a multiple of the first eigenfunction it is also clear that the
mean is projected to the origin in the chromaticity hyper-
space. In most cases the mean is approximately a constant
function of the wavelength. It is therefore natural to in-
troduce polar coordinates in the chromaticity hyperspace
and identify the radius with the saturation and the direction
with the hue. For a two-dimensional chromaticity space
the hue corresponds to an angle.

Geometrically it is also clear that the monochromatic
distributions (ie. the distributions that are non-zero only
for one wavelength) are at the boundary of the space of
spectral distributions. Expanding the monochromatic dis-
tribution located at � we get in (11) the chromaticity co-
efficient �����������. This describes for each value of � a
function of � and for � � � this defines a curve	
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which corresponds to the spectral locus.
Next we characterize the coefficient vectors which lead

to valid spectral distributions, ie. linear combinations with
non-negative function values. We consider the case� � �

and �� � 	 for which we get the combination

����� 
 ������� 
 �������

which must be non-negative for all �. This is equivalent to

���� � 	 
 ��
�����

�����

 ��

�����

�����
� � (12)

In the coefficient space we introduce polar coordinates

���� ��� � � ���� ���� �������

The curve where the reconstructed � is zero for some � is
now constructed in two steps: First we compute for a given
value of � the �� for which

���� �� � ������
�����

�����

 ������

�����

�����

is minimal. From this result the value of � can be com-
puted. A necessary condition for a minimum point is

����� ��

��
���� �� � �

which has to be solved for ��. For the case where �� is
constant this leads to the equation ���� � ���

������
�

����

where ��

� �
	
����

	�

 In our investigations we saw that val-

ues of � for which ��

���
�

� had significant singularities cor-
respond to corner points of the spectral locus.

3. Fourier Series, Color Atlas and
Multispectral Images

As an example where we can do all the necessary calcu-
lations analytically we consider the model where we as-
sume that the spectra are functions defined on a circle thus
gluing the ends of the wavelength interval together. The
wavelength variable � describes now an angle. A spec-
tral distribution is then a realization of a stochastic process
and if we assume that this stochastic process is invariant
under shifts of the underlying circle then it can be shown
that PCA leads to an expansion of the spectral distribu-
tions in Fourier series. In this case ����� is a constant
and ����� � ������� ����� � ������. Both, the spectral
locus and the border of the parameter region leading to
non-negative reconstructed distributions, are circles in this
case. The space of 3-D coefficient vectors that result in
non-negative reconstructed distributions is thus a cone.

Next we illustrate the results with experiments using
a database consisting of 1750 spectra measured from the
NCS color system in the range 400nm to 700nm in 10nm
steps. In Figure 1 illustrate the similarity between the first
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Figure 1: Scaled Mean Vector and First Eigenvector

eigenvector of the correlation matrix and the mean vec-
tor. Both were normalized so that their maximum value
is equal to one. Similar relations between the mean vec-
tor and the first eigenvector were obtained from databases
based on color systems like the Munsell and the Pantone
system, from satellite and collections of daylight spectra.

Figure 2 illustrates some of the other properties of the
spectra in the NCS database. Here we computed first the
first three eigenvectors of the spectra and projected the
spectra to the three-dimensional space spanned by these
eigenvectors. Then we used the perspective projection in
Equation (11) to compute two dimensional chromaticity
vectors. The single points in the Figure are the coordinate
vectors of the chips in the database. The inner, solid curve
describes the boundary of the coefficient space which lead
to non-negative reconstruction vectors. The outer, dashed
curve is the spectral locus, ie. the location of the projected
mono-chromatic spectra. From the Figure it can be seen
that nearly all (expect the red points in the upper, right
corner) coordinate vectors lead to non-negative reconstruc-
tions and that all mono-chromatic spectra are outside the
non-negativity region.

Also shown in the Figure are the projections of the
three photopigment optical density curves (see [12, 11]).
The location of these three vectors are shown as solid red
(L-cone), green (M-cone) and blue (S-cone) dots. Next we
converted the cartesian coordinates of these points to po-
lar coordinates (where the origin was the projection of the
first eigenvector) and adjusted their radial value such that
the scaled points were located on the curve bounding the
positivity region. These projected points are shown as the
red, green and blue * in the Figure. When we reflected the
projected green point on the origin we obtained the point
marked as opp-green in the Figure. We see that the three
points marked as ”red”, ”opp-green” and ”blue” are very
near the corners of the triangle-shaped region.

Essentially the same results can be obtained from other
color systems. We used another database measured from
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Figure 2: Properties of the NCS-database

the NCS-system, a database measured from the Pantone
system and two databases measured from the chips in the
Munsell color atlas. All of them show essentially the same
features.

We also investigated the properties of 22 multispectral
images, 10 taken in coral reefs and 12 in forests (for a de-
tailed description of the images see [2] and [3]). From
these images we computed two eigenvector systems: one
from the coral and one from the forest images. We then de-
scribed the spectra from these images in both the Munsell-
NCS coordinate system and in the system computed from
the spectra in the same class.

For the forrest images we find that only three spectra
did not satisfy the inequality (8). For the underwater coral
images the corresponding numbers are not as small as in
the forest case but also here there are only around 200 ex-
ceptions (out of 	�� 	��

�). Many of these outliers have a
very low intensity.

Another dataset used data from the Global OzoneMon-
itoring Experiment (GOME). The spectrometer mounted
on the satellite measures the solar radiation scattered by
the atmosphere. In our experiments we extracted data from
two detectors (with 1024 detector pixels each) and inter-
polated the measurements so that the final spectra repre-
sented the satellite data in the range 407nm to 794nm with
1nm sampling. We rejected spectra which were obviously
flawed and collected finally 59975 spectra from 31 origi-
nal files. We found that 619 spectra did not satisfy (8). An
inspection of these outliers showed that almost all of them
were measured at consecutive time steps. For all of them
the data in the third band had very low values whereas the
data vectors from the fourth band had normal values. We
therefore concluded that these spectra were obtained while
one of the sensors did not work properly. The number of
points not fulfilling inequality (8) mentioned so far is com-

puted from a three term approximation of the spectra. We
found however that the corresponding inequality also holds
for higher order approximations. For the NCS database
with 1750 spectra only the sixth- and seventh order ap-
proximation of one spectral distribution do not satisfy (8).
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Figure 3: Chromaticity in �
�
� �

�

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Lab hue vs. angle

Lab hue

A
ng

le

Figure 4: Comparison of hue-angles in (a,b) and projection

Another remarkable property of the projected coordi-
nates is the similarity to the chromaticity coordinates in
the CIELab and CIELuv-systems. Comparing Figures 2
and 3 we see that both, the projected coordinates as de-
scribed so far, and the chromaticities of the color chips in
the u’v’ system are located in similar regions. (For the
computation of the u’v’ coordinates we used as whitepoint
the equal energy spectrum). Another similarity is demon-
strated in the relation between the angular variable in the
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polar coordinate system introduced in the projection plane
and the polar coordinates in the standard CIE-(a,b) chro-
maticity coordinates. The relation between the two angles
(related to the hue of the color spectrum) is shown in Fig-
ure 4. Most of the spectra for which the linear relation
between the angles do not hold are achromatic. For these
colors the angular value is not very meaningful.

For the radial variable, roughly corresponding to the
saturation of a spectral distribution, the correlation is not
as strong as can be seen from Figure (5). Analyzing the
data further shows however that the relation between these
radial values are almost linear when only colors in a re-
stricted hue sector are considered. The proportionality fac-
tor varies however with the hue sector.
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Figure 5: Comparison of saturation radii in (a,b) and projection

4. Group theoretical methods

A key observation of this paper is the relation between the
non-negativity of the spectral distributions and the inequal-
ity in Equation (8) which implies that the space of spectral
distributions has a conical structure. It has been mentioned
before that the shift-invariance of stochastic processes lead
to Fourier series and Fourier transformations as solutions
to the corresponding PCA-approximations and also to so-
lutions to invariant recognition strategies. Given the fact
that the spectral distributions form a cone-like space it is
therefore tempting to assume that the natural transforma-
tions operating on color spectra are the elements of the mo-
tion group of the cone. This leads to the hypothesis that
the Lorentz-group is the natural transformation group of
color space. The relevance of group theoretical methods in
general, and the Lorentz group in particular, for color pro-
cessing is not new. A few references are [13, 1] and [9].
All of these approaches are however based on facts on hu-
man color perception. In this paper we showed that the

positivity of the spectral distributions is enough to give the
space of spectral distributions a cone-like structure. Be-
fore we sketch some potential consequences of these re-
sults it seems necessary to mention one important open
problem that has not been investigated yet. Up to now we
have shown that the spectral distributions are contained in
a space that has a cone-like structure, that the boundary of
this space is formed by the mono-chromatic spectra and
that the main axis is given by the achromatic distributions
which are scalar multiples of the mean of the databases
which is equal to the first eigenvector of the correlation
function. A basic idea in the theory of groups it however
the definition of a group as a set of linear transformations
that leave some distance measure invariant: Euclidean mo-
tions are those linear transformations that preserve the Eu-
clidean distance in a vector space and the Lorentz-group
consists of those linear transformations that preserve the
hyperbolic distance in a cone. In our application we have
only shown that the coordinate vectors of the spectral dis-
tributions are located within a cone-like part of ordinary
Euclidean space. Nothing has been said about a natural
distance measure between two such coordinate vectors.

From the inequality (8) we have:
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�
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 ���
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�
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and it is therefore possible to define ��

�
����

�

�
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 ���

�

�

as the norm of the coordinate vector ���� ��� 
 
 
 � �� � but
we feel that such a definition requires further justification.

If we assume that the space of spectral distributions
posseses a group of natural transformations then we can
use the powerful tools from the theory of groups to solve
problems in color science. As one example we mention
briefly one application in which dynamical illuminations
changes are described in the framework of Lie-groups (see
[6] for details). The basic idea behind this approach is
the observation that each illumination spectrum can be de-
scribed by a coefficient vector that is an element in the cone
defined by the spectral distributions. When the spectral
characteristics of the illumination changes as a function of
time these coordinate vectors describe a curve in the cone.
Under some assumptions it can be shown that the trans-
formations T(t) that move the coordinate vector at a given
time t=0 to the coordinate vector at time t form a subgroup
of the group of natural transformations of the cone. Since
the elements in this group depend on the time-variable t
alone it is seen that these transformations T(t) form a one-
parameter subgroup of the transformation group.

The illumination spectra interact with the spectral re-
flection distributions of the objects in the scene and the
spectral characteristics of the sensors to produce a mea-
surement vector. A typical measurement vector is the RGB
vector at a pixel in an image. Under an illumination change
these measurement vectors change and in that way the one-
parameter group T(t) operates on the measurement vectors.
A basic task in the interpretation of these images is now
to estimate the characteristics of the illumination change
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from the measured pixel vectors. Formulating the problem
in this abstract setting has the advantage that the general
theory of Lie-theory and differential equations can be ap-
plied to estimate the characteristics of the transformation
group T(t) from the measurements.

This is an application where the assumption of a group
theoretical structure of the problem leads to well-known
solution strategies. Other applications were the conical
and group theoretical framework might lead to new re-
sults are the design of new color edge detection methods
and the design of new scale-space methods for color image
processing, for example in the framework of the Beltrami-
framework investigated by Sochen et.al. (see [10]).

5. Conclusion

We found that the space of spectral distributions has a nat-
ural conical geometry. We showed that many geometri-
cal properties of representative databases of spectral dis-
tributions have direct correlates in color spaces that were
derived from properties of human color perception alone.
This suggests that human color perception is taking advan-
tage of these geometrical properties of the space of color
stimuli.

In the second part of the paper we sketched some possi-
ble applications of group theoretical methods in color sci-
ence. These include the study of Lorentz-transformations
that have been used earlier in color science.
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den. He received a diploma in mathematics from the Georg-
August University in Göttingen, Germany and a PhD-degree in
computer engineering from Linköping University. From 1979
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