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Abstract

XYZ functions and cone sensitivities appear to play little
role in visual perception in that colour computation does
not appear to be carried out in cone or XYZ coordinates.
In its first incarnation, spectral sharpening was proposed as
a method for finding the color space, a linear combination
of the cones, that best supported adaptation by a von Kries
type model. The term sharpening is used because the resul-
tant sensitivities have narrower support compared with the
cones. In this paper we show that spectral sharpening also
helps us to understand metamerism and color matching.

1. Introduction

Colour Science is a well established discipline with many
well tested rules and assumptions. As such, research in
colour often addresses detailed questions. For example, we
might ask ”how many sample points do we need to mea-
sure for the purposes of colour reproduction?” as Spieker-
mann et al did[18] or carry out detailed data analysis which
addresses the question of ”how well given chromatic adap-
tation formulae accounts for a given set of observer as-
sessments?” e.g. see[13]. These are, of course, interesting
questions and it is a worthy endeavour to search for their
answers. However, perhaps there is scope to revisit the
most basic assumptions used in colour science to see if we
might find different ways for carrying out colour computa-
tion? This idea should not be considered as controversial.
As an example, we all know that the standard XYZ colour
space has little to do with human visual perception. Rather
it was designed (in part) to make pencil and paper calcula-
tions easy. Given a more in depth understanding of visual
processing and the tools of modern mathematics it is inter-
esting to ask whether a different colour space might make
color computation easier?

To answer this question we will look at three of the
most fundamental topics of study in colour science:
Metamerism, Colour matching and Colour Adaptation. I

will argue that in each case a single Spectrally sharp colour
space can be usefully applied. In its simplest guise, Spec-
tral sharpening is a method for finding the linear combina-
tions of the cones that are maximally sensitive in the short-,
medium- and long-wave parts of the visible spectrum.

Of course if we consider any possible sensor (and not
just linear combinations of the cones), the sharpest sensors
are sensitive to a single wavelength of light. While it is
impossible to find linear combinations of the cones that
are even close to having monochromatic sensitivity, it is
useful to set out to attain this goal. In doing so the strong
link between metamerism, adaptation and matching will be
made clear. Moreover, we will argue later that the eye does
in fact behave as if it had single wavelength sensitivities.
So, for the rest of this introduction we will consider how
we might measure colour at 3 wavelengths.

Let us consider cone response, single wavelength re-
sponse (and ultimately spectral sharpening) from a mathe-
matical perspective. Denoting the spectral power distribu-
tion entering the eye as

� � � �
and the 3 cone sensitivities

as � � � �
, � � � �

and � � � �
, the � , 
 and � cone response can

be written as:

� � � � � � � � � � � � � �

 � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � �

where � denotes the visible spectrum (approximately 400
to 700 Nanometres).

Equation (1) can, from a computational perspective, be
viewed positively and negatively. On the positive side the
spectral functions—the spectral sensitivity of the eye and
the light entering the eye— are ’coded’ by three quanti-
ties: the scalars � , 
 and � . That is, colour vision is inher-
ently 3-dimensional and not spectral in nature. From an in-
formation processing perspective this is an advantage: the
more compact the visual encoding the more readily visual
information might be processed. A compact representation
has similar benefits for practitioners in colour science. The
negative, however, is that to determine the cone responses
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we need to full spectral measurements both of the cone
sensitivities and the colour signal spectra entering the eye.

To get around the need to deal with spectra we might
propose the following:

� � � � � �
�

� � � �
�

�


 � � � � �
�

� � � �
�

�

� � � � � �
�

� � � �
�

�
� � �

where
�

� and
�

� and
�

� are three wavelengths. Of course,
the measurements we might make at a single wavelengths
are probably not the same as the integral responses in Equa-
tion (1) (the approximation could be quite poor. So, let
us remove (for now) the cones from consideration and as-
sume three sensors 	 
 , 	 � and 	 � that have zero sensi-
tivity everywhere except at wavelengths � , � and � where

	 

� �

�
� � �

, 	 �
� �

�
� � �

and 	 �
� �

�
� � �

. Substituting
these three sensors for the cones in Equation (2):

� 
 � � � �
�

�
� � � � � �

�
�

� � � � � �
�

�
� � �

Equation (3) is simpler than (1) in that there are now no
spectral functions whatsoever. But, unfortunately the mea-
surements � 
 , � � and � � are not the same as � , 
 and � (to
remove spectra from the equations we have removed re-
moved the link to human vision). Yet, the whole of colour
science is based on the premise of accurate knowledge of

� , 
 and � (or equivalently, � , � and � ). That Equation (3)
does not yield cone responses is, however, not a problem
so long as for a given � 
 , � � and � � we can find the corre-
sponding � , 
 and � . Indeed, we will show later that:

� � � �
� � � � �

� � �

where � and � � � � � � denote the three responses calculated
in Equations (1) and (3) and � denotes a 3x3 matrix. The
subscript � � � � � draws attention to the fact that measurements
are only made at

�
� .

�
� and

�
� . Underscoring denotes vec-

tor quantities.
For the rest of this paper we will consider Equations (3)

and (4) in the context of metamerism, adaptation and colour
matching. In each case we will see that sampling spectra
at three wavelengths leads to considerable computational
simplicity. Moreover, in all cases the same three wave-
lengths turn out to be important. Finding linear combina-
tions of cones that at these ’prime’ wavelengths[1] yields
sensitivities which are spectrally sharp. These sharp sen-
sors provide a unified framework for understanding
metamerism, adaptation and colour processing.

2. Metamerism and Measuring Colour

The trichromacy of the eye, the fact that spectral distribu-
tions entering the eye are coded by three numbers, is the
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1b. Both spectra integrate to the same cone response

key reason why colour reproduction works. Indeed, be-
cause spectral quantities ’project’ to just 3 measurements
it follows that there are many spectra that induce the same
response. For a given observer and viewing condition,
two spectra that look identical to an observer are called
Metamers. In Figure (1a) the cone responses of the eye
are shown. In Figure (1b) two metamers are shown (these
metamers integrate to the same � , 
 and � response. The
smooth curve is typical of the kind of spectra that occurs
in nature, the jagged curve is indicative of the match made
on a CRT.

Suppose now we consider Equation (4) in more detail
i.e. we would like to measure real spectra at just 3 wave-
lengths such that the resulting measurements are a linear
transform from cone responses. How do we find the most
appropriate wavelengths? One way to answer this question
is to find the wavelengths � , � and � which minimises:

" # %
� � � � �

' '
� )

� * +
� � � � � � � )

� *
� � � � �

' ' � - �

where . and � denote the . th illuminant and � th surface
drawn from sets of measured surfaces. The

� / �
matrix

� � � � � � maps measurements in a least-squares sense at wave-
lengths � , � and � to corresponding cone responses. The
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quantity that is minimises (
' ' � ' '

) could be RMS error or one
weighted to take account of our perceptual response[17].

An optimisation of the form (5) was carried out in[5].
The 426 Munsell spectra[15] were used for exemplar re-
flectances and these were multiplied by 8 exemplar illumi-
nants: 5 Judd[10] daylight phases (D48, D55, D65, D75
and D100) and CIE standard illuminants A, B and C. Min-
imising Equation (5), it was found that the optimal � , � and

� wavelengths were: 450nm, 540nm and 610nm.

To assess colorimetric performance CIE Lab error was
calculated. Under highly controlled viewing conditions a
CIE Lab error of 1 correlates with a single just noticeable
difference. In complex imagery an error of up to 3 is not
significant[21]. For the Munsell dataset it was found that
Equation (4) delivered an error of less than 2 CIE Lab units
for 90% of the spectra. The 99th quantile error for the data
set was just 8 CIE Lab units. We might reasonably con-
clude that, for the dataset tested, we can use Equation (4)
instead of (1) without the loss of any colour accuracy.

However, the reader might feel uneasy that the 3 wave-
length model is justified on what is a reasonably small set
of measured spectra. Thus, we might look to other argu-
ments to help determine which three wavelengths to use
in Equation (4). Let us examine in more detail the shape
of spectra that are metamers. Suppose that we measure a
spectrum at wavelength � . We now change the spectrum
but keep the power at � constant. Clearly the two measure-
ments are the same at wavelength � and so are metamers
(for a single sensor system that is sensitive only to this
wavelength). In the general case where we measure light
at wavelengths � , � and � , metamers are defined as having
equal power at each of these three wavelengths: the spec-
tral power at in between wavelengths is of no consequence.
In Figure 2a we plot 3 metamers assuming measurements
are made at 450nm, 540nm and 610nm. Notice the 3 spec-
tra are equal at 450nm, 540nm and 610nm but are quite
different elsewhere.

If metamers for cone sensors exhibited this same trend
(metamers converged at wavelengths 450nm, 540nm and
610nm) then we might expect Equation (4) to work quite
well. It has been shown that metamers for the human vi-
sual system must cross in at least 3 places across the visible
spectrum[24]. In Figure 2b we show (for an infinite cardi-
nality reflectance set [extrapolated from the set[23]] un-
der a D65[10] Judd Daylight), the relative likelihood that
metamers cross at particular wavelengths[6]. It is clear
the most likely (by far) crossover wavelengths are again
around 450, 640 and 610nm. The same wavelengths are
found for different reflectance data sets and different view-
ing illuminants[6].
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2a. Three metamers for sensors sensitive
to 450nm, 540nm and 610nm
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2b. The likelihood that metamers
cross at particular wavelengths

3. Adaptation: mapping colours between
illuminants

So far, we have not considered colour response across il-
lumination. We have used the notation

� � � �
to denote the

light entering the eye without making clear the role of light
and surface. Here, let us denote the spectral power distri-
bution of light as

� � � �
and surface reflectance � � � �

. The
colour signal spectrum entering the eye is defined as:

� � � � � � � � � � � � � � � �

Substituting (6) into (3) and using the superscript � to de-
note dependence on a particular illuminant:

� �
 � � � � � � � � � � �
� �� � � � � � � � � � � �
� �� � � � � � � � � � � �

� � �

Often we are interested in mapping responses captured
with respect to one illuminant to a second illuminant. For
example, if a picture is captured with a digital camera un-
der indoor Tungsten light then, because Tungsten is yel-
lowish, all the captured responses will have significant power
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in the middle and longer wavelengths. By removing the
relatively strong power in the longer wavelengths we can
’balance’ the camera measurements (in terms of our exam-
ple we might boost the short-wave measurement relative
to the medium and longer wave measurements). Such bal-
ancing is a prerequisite for colour reproduction where the
viewing illuminant (effective white point) will rarely be the
same as the capture light. This balancing can be thought
of as changing the illuminant (in this case from yellowish
to whitish). In turn, mapping responses to white lighting
conditions can be thought of as adapting to the illuminant
since post-mapping any biases due to the illuminant colour
will be attenuated.

According to (7) it is easy to work out how to bal-
ance colours relative to different light sources. Denoting
response to � � � �

under a second light
� �

as � �
�
, it is

straightforward to show that:

� �
 � �
� � � �

�
� � � � � � �

�



� �� � �
� � 
 �

�
� � � 
 � � �

�
�

� �� � �
� � � �

�
� � � � � � �

�
�

� � �

Rewriting (8) in matrix notation:

� � � � � � �
� � �

� � � �

Where � � � �
�

is a
� / �

diagonal matrix with diagonal en-
tries equal to the ratios of the powers of

�
over

� �
for

wavelengths � , � and � . Adaptation models of the form (9)
(where the scaling factors are the ratios of illuminant re-
sponses) are sometimes called ’von Kries’ type models.

Let us now re-examine Equation (4). If cone responses
are linearly related to the measurements at three wave-
lengths then the converse is generally true:

� � � � � � � � � � � � � � � � � � � 
 �
� � � �

Substituting (10) into (9) we see that:

� � 
 � � � � � � �
�

� � 
 � �
� � � � �

Pre-multiplying both sides by � :

� � � � � � � �
�

� � 
 � �
� � � � �

Equation (12) informs us that cone responses across
illumination are related by a set of 3 simple scalars. How-
ever, the scalars are not applied to the responses them-
selves but rather to the linear transform � � 
 of the cone
responses. In Figure 3a I have plotted the linear transform
of the cones where � � 
 is calculated using Equation (10)
to find wavelengths � , � and � and Equation (4) to fix the
transform. The calculation takes place under the maximum
ignorance assumption[22] ( that is, we assume all possible
spectra might occur not just those in a training set). With
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3a. Sharp sensors which behave like
monochromatic sensors at
450nm, 540nm and 610nm
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3b. Matching functions for primaries
at 450nm, 540nm and 610nm

respect to the maximum ignorance assumptions it can be
shown that:

� �

��
� � �

�
� � � �

�
� � � �

�
�

� � �
�

� � � �
�

� � � �
�

�

� � �
�

� � � �
�

� � � �
�

�

 !
� � � �

Looking at Figure 3a it is clear the sensors are sharper
than the cones. This is not surprising: these sensors gener-
ate numbers that best approximate spectral measurements
made at the wavelengths 450nm, 540nm and 610nm. It is
intuitive that in order to achieve similar numbers the sen-
sors must be strongly peaked at these measurement wave-
lengths.

There are, in fact, many other ways in which sensors
satisfying 10 might be discovered. Finlayson et al[4] pre-
sented 3 methods for spectral sharpening. Sensor based
sharpening is a method for finding the linear combination
of sensors which is maximally sensitive within a given
wavelength band. In the limiting case if an infinitesimal
wavelength band is chosen then the transform is again de-
fined by (13). The best transform might also be discovered
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directly from Equation (12). What sensor transform best
supports a diagonal matrix model of illuminant change?
Data-based sharpening answers this question through op-
timisation but again returns sensors similar to those shown
in Figure 3a. Perfect sharpening sets forth algebraic con-
straints for which (12) holds and again sensors similar to 3a
are discovered. These constraints were later generalised[3]
and more recently other constraints have been investigated[2,
11]. In all cases similar transforms and sensors are discov-
ered and Equation (12) was found to be an excellent model
of illumination change.

The sharp transform which is justifiable through math-
ematical/engineering argument finds support in the psy-
chophysical and colour science literature. In colour sci-
ence colour adaptation transforms attempt to model colour
response across illumination change. Sharp transforms of
the form (12) (and being based on sensors similar to those
shown in Figure 3a) have been found to account for corre-
sponding colour paper[14, 7] and importantly to improve
over (in terms of modelling error) antecedent methods. Sharp
sensors are also found in a variety of psychophysical ex-
periments including the determination of test- and field-
spectral sensitivity[20, 8, 19, 9, 12] and investigations into
colour discrimination[16].

4. Colour Matching

Since we ourselves are trichromatic, it follows that we can
reproduce the sensation of colour with three primary stim-
uli. A single primary induces a single � , 
 and � response.
A second primary yields a second response vector and a
third response vector is induced by a third primary. Since
Equation (1) is linear, it follows that linear combinations
of the primaries result in linear combinations of the cor-
responding cone response vectors. Given monochromatic
primaries of unit power anchored at wavelengths � , � and

� , the response of the eye is equal to:

� �

��
� � � � � � � � � � � � � � �

�
� � � �

�
� � � � � � � � �

� � � � � � � � � �
�

� � � �

 !
� � � �

where each column contains the response to a single pri-
mary. The response to a monochromatic test light at wave-
length � is equal to � � �

�

� � �
�

� � � �
�

� � � �
�

� � �

. In color
matching we seek the linear combination � �

�

� 
 � � � � � �

of the columns of � (and hence of the primary lights) that
induces the same response � � . Simple linear algebra im-
plies that:

� � � � �

� � - � �

� � � � 
 � �

� � - 	 �

That is, the relative powers of the primaries needed to achieve
a match (defined as a component of the 3-vector � ) is a
linear transform � � 
 of the corresponding cone response.
Taking the test light across the visible spectrum we get one
coefficient vector per wavelength. The values of the three
coefficients are plotted as a function of wavelength in Fig-
ure 3b (assuming primaries at 450nm, 540nm and 610nm).
Again because (1) is linear it is straightforward to show
that the mixture of primaries needed to match an arbitrary
stimulus can be found by integrating the stimulus with re-
spect to the matching curves shown in Figure 3a.

At this point the reader might wonder if a mistake has
been made. The matching curves shown in 3b are iden-
tical to the sharp sensors shown in Figure 3. No mistake
has been made. Mathematical argument which supports a
simple diagonal model of illuminant change results in sen-
sors that are also matching curves. The practical import of
this is that if a camera is equipped with sharp sensors, then
illumination is readily discounted using a diagonal matrix
resulting in values that can directly drive a display without
further matrixing.

The astute reader may be concerned that we have per-
formed a sleight of hand. We have derived matching curves
assuming primary wavelengths anchored at those wave-
lengths found to be optimal for adaptation calculation. But,
are these wavelengths themselves the most appropriate choice
of primaries for a colour display? To answer this question
we might consider two criterion: gamut size and energy ef-
ficiency. In carrying out colour matching we can only use
positive coefficients (the components of � must be greater
than zero). The import of this is that a 3 primary CRT can
only match a subset of all the colours we might see. The
size of the gamut of colours we can reproduce is therefore a
useful criterion to judge the usefulness of a CRT. Similarly,
energy efficiency is also important. A monitor which could
reproduce many colours but consumed a large amount of
power would not be practical. Ideally, we would like to
have a monitor that consumed as little power as possible:
used as few Watts as possible to match colours.

It has been shown elsewhere[1] that, assuming monochro-
matic primaries, that the largest gamut is induced for pri-
maries anchored close to 450nm, 540nm and 610nm. More-
over, these same primaries are optimal in terms of energy
efficiency.

5. Conclusion

Spectral sharpening is a method for finding linear combi-
nations of cone functions optimally sensitive to a partic-
ular band of the visible spectrum. The sharpest sensors
(those which are relatively the most sensitive to light at
450nm, 540nm and 610nm) are those that best account for
metameric matching data, support optimal von Kries type
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colour adaptation and are also matching curves for a mon-
itor with primaries at 450nm, 540nm and 610nm. Such
a monitor is optimally energy efficient and has the largest
possible colour gamut.
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