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Abstract 

A study by Fairman showed that the optimum weights 
calculated by Venable’s method performs better in most 
cases in comparison with those calculated using the 
Stern’s correction method. However, the Venable method 
is an iterative method. Although these weights are 
effective in reducing computation errors, the method is 
difficult to implement. In this study, a simple analytical 
method is described for computing optimum weights. Its 
performance was tested together with the other methods. 
The results showed that the optimum weights from the 
new method performs equally well or better compared 
with the Venable’s optimum weights. 

Introduction 

Tristimulus values are the basis of colorimetry. They are 
transformed to colorimetric coordinates for industrial 
applications such as colour specification, colour quality 
control and recipe formulation. Accurate calculation of 
tristimulus values is highly desired by industry for open 
environment applications such as colour management 
between different computer platforms across different 
input and output imaging devices.  

CIE (International Committee on Illumination)1,2 
originally defines the tristimulus values in terms of the 
integrals: 
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where S(λ) is the relative spectral power distribution of 
an illuminant, )(λx , )(λy , )(λz are the colour matching 
functions of CIE 1931 or 1964 standard observer, and 
R(λ) is the reflectance function of a colour. k is a 
normalizing factor. (a,b) is the visible range of the 
spectral wavelength, i.e. a = 360 nm and b = 830 nm. The 
CIE1 defines only the colour matching functions and the 
relative spectral power distributions of some illuminants 
at 1-nm intervals. Thus, although the CIE defines the 

above tristimulus values as integrals of the continuous 
functions: )(λS , )(λx , )(λy , )(λz  and R(λ), the analytical 
expressions for them are not available. Therefore, to 
calculate the tristimulus values becomes a problem. 
Between 1981 and 1983, Working Group VIII 3 of U.S 
was formed to tackle this problem. Finally, they 
recommended that the definition of the CIE tristimulus 
values be based on numerical rather than analytical 
integration and the integration may be carried out by 
numerical summation at wavelength intervals ∆λ = 1 nm, 
which were adopted by the CIE.2 Thus, the alternative 
practice for calculating the tristimulus values by CIE2 is 
the following: 
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with  

niia
n

ab
i ,,1,0   ,   , �=λ∆+=λ−=λ∆  and λ∆ = 1. 

Reflectance Measurements 

In eq. (2), the reflectance function values at points λi, i = 
0,1,…,n, of an object colour at 1-nm intervals must be 
known. However, they are not available in practice, since 
they generally are measured in larger intervals such as ∆λ 
= 5, 10, or 20 nm with a spectrophotometer. Hence there 
is a need to transform the measured data to the desired 
reflectance values at 1-nm intervals. Note that a 
spectrophotometer is an instrument that can be regarded 
as making a sequence of observations, each of which 
involves a very limited spectral range. If we let R’i be the 
value measured, then it satisfies 

λλλ= ∫
b

a
ii dRPR )()(' ,                              (3) 

where Pi(λ) is the instrumental function of a 
spectrophotometer at a setting number i corresponding to 
the wavelength at λi and the integration (eq. (3)) is carried 
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out over the entire visible wavelength region. In practice, 
Pi(λ) is scaled to make R’i = 1 for a perfect diffuser, i.e.,   

1)( =λλ∫
b

a
i dP , ni ,,1,0 �= .                       (4) 

For the purpose of this study, it is assumed that Pi(λ) 
is symmetrical and triangular in shape, and its half-peak 
width is equal to the measurement interval as shown in 
Fig. 1. It represents the most common situation 
encountered in industrial practice.4-7 Thus,  
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Note that when the reflectance function R(λ) is a 
linear function of wavelength within the range of 
bandpass, then the measured values R’is are the same as 
the true reflectance values R(λi). However, when R(λ) is 
not a linear function of wavelength within the range of 
bandpass, then there are differences between the 
measured values R’is and the true values R(λi). This 
difference is called the bandpass effect. Sterns and Sterns8 
and Venable6 proposed methods for correcting the 
bandpass effect. It is clear that if eq. (2) is used to 
calculate the tristimulus values, it is not possible to obtain 
the desired reflectance values at 1-nm intervals by 
directly interpolating the measured data R’is. There is a 
need to correct the measured data R’is using the Sterns 
and Sterns (SS) correction8 before the interpolation. The 
Stearns and Stearns bandpass dependence correction 
formula is given by   

'
1

''
1 )21( +− α−α++α−= iiii RRRR ,   (6)    

where α = 0.083. When correcting the bandpass 
dependence for the first or the last measured bandpass, 
eq. (7) should be used: 

'
1
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Weighting Tables 

From eq. (2) it can be seen that only the reflectance 
values change with the object colour, all other quantities 
are unchanged. It is possible therefore that the products of 
these unchanged quantities can be pre-calculated for 
calculating tristimulus values of the object colours for a 
particular illuminant-observer combination. These pro-
ducts depend on the illuminant-observer and are called 
weights and a set of them under the same illuminant-
observer is called the weighting table. Thus, using the 
CIE standard illuminants and observers in 1-nm intervals 
some 1-nm weighting tables can be established. Let )1(

,iXW , 
)1(

,iYW , )1(
,iZW be the weights, then 
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Here the superscript (1) means weights in 1-nm intervals. 
Thus, if the reflectance values Ri = R(λi) of the object 

colour are known, then the tristimulus values are given 
by: 
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However, current industrial practice requires weighting 
tables at 10-nm and 20-nm intervals. After an object 
colour is measured by a spectrophotometer, the 
measurement reflectance data (eq. (3)) or its corrected 
data using eqs. (6) and (7)), and the corresponding 
weighting table are used to do the similar summation in 
eq. (9) to obtain the tristimulus values. Hence there is a 
need to have weighting tables with larger intervals 
derived from the corresponding 1-nm interval weighting 
tables. The first set of (larger intervals) weighting tables 
were calculated by Foster et al10 and Stearns.11 In 1985, 
the American Society for Testing and Materials (ASTM) 
12 recommended a set of weighting tables as the ASTM 
E308-85 standard. These tables should be used with 
reflectance values previously corrected for bandpass 
dependence using the Stearns and Stearns’ correction. 
These tables were obtained by first interpolating the 
reflectance values in 10-nm or 20-nm to obtain the 
reflectance values in 1-nm intervals, then using the 
summation (9), and finally reorganizing the summation in 
terms of the reflectance values in 10-nm or 20-nm 
intervals. In 1989, Venable6 derived an iterative computa-
tion procedure by which a correction for spectral band-
pass effect could be built into weights directly. This 
would allow calculation, once for all, of both the weights 
and the spectral bandpass correction, and users would 
integrate spectral data as yet uncorrected for spectral 
bandpass effect with the resulting set of weights and 
obtain tristimulus values that were then corrected for 
spectral bandpass effect. In 1995, Fairman4 pointed that 
the Sterns and Sterns correction can also be applied to the 
weighting tables and the resulting tables can be used with 
the measured reflectance data (uncorrected data) to give 
the tristimulus values corrected by the Sterns and Sterns 
method. Fairman named this kind of tables as Sterns 
correction tables. Furthermore, he found that the 
Venable’s weighting tables out-performs the Sterns 
correction tables at 10-nm interval for continuous 
illuminants, but the opposite for fluorescent illuminants.  
He also found that the Venable weighting tables out-
perform the Sterns correction tables at 20-nm interval for 
all illuminants tested. Therefore, an mixed strategy was 
proposed, i.e., the Venable’s weighting tables at 20-nm 
interval are used for all illuminants, while for 10-nm 
interval the Venable’s weighting tables are used for 
continuous illuminants and the Sterns correction tables 
are used for the fluorescent illuminants. In 1995, ASTM 
adopted the above strategy and published another set of 
weighting tables to be used for reflectances that have not 
been corrected for bandpass dependence. Both sets of 
weighting tables were included in ASTM E308-95 
version,7 called weighting tables of Tables 5 and 6 for 
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applying to reflectances with and without bandpass 
dependence correction respectively.   

The ASTM only provided weighting tables for some 
standard illuminants. However, in practice the illuminant 
used may be different from the standard illuminant. 
Therefore, users have to prepare their own tables.  
However, there is no standard procedure to produce 
Venable’s weights since it is an iterative procedure. Hunt5 
pointed that “it is clear that the optimum weights 
(Venable’s weights) will be different for each 
combination of observers, wavelength interval, bandwith 
function (instrument function)  and illuminant, and they 
are not easy to calculate; but they can be very effective in 
reducing errors”.  Thus, there is a need to provide a 
simpler method to produce the Venable’s weighting 
tables, which is the main aim of this paper and will be 
discussed next. 

The Proposed Algorithm for Calculating 
Optimum Weighting Tables 

In order to save space, we will outline the algorithm only 
and omit the details for deriving the algorithm.  

Let A be the tridiagonal matrix of order (n + 1). Its 
diagonal elements are all equal to 4, and all elements of 
its upper and lower sub-diagonals are equal to 1. And let 
w(∆λ,V)1 = (W(∆λ,V,0), W(∆λ,V,1),…,W(∆λ,V,n)) with  
V = X,Y, and Z. Note that W(∆λ,V,i) are the weights 
wanted at ∆λ nm interval. For example, ∆λ can be 10 or 
20. Once ∆λ is determined, the integer n can be 
determined by using n = (b – a)/ ∆λ. 

Now the algorithm for computing weights W(∆λ,V,i), 
i = 0,1,…,n with V = X, Y, and Z respectively can be 
described below. 

Algorithm: Computing the Optimum Weights 
W(∆λ,X,i), W(∆λ,Y,i), W(∆λ,Z,i), i = 0,1,…,n  

Step 1:  Input 
 Input the CIE colour matching functions 

)(),(),( jzjyjx  and the spectral power distribution S(j) 
of the illuminant used  with j = a, a + 1, a + 2, …,b, 
and input ∆λ, the length of the interval for the 
wanted weights and determined the integer n and    
with λj = a + j∆λ with j = 0,1,…,n. 

Step 2:  Compute Weights W(∆λ,X,i), i = 0,1,…,n  
Compute λλλλλ∆= ∫ +

−

λ

λ
dPxSkb ii

i

i

)()()(6 1

1

, i = 0, 1, 
…, n, form a column vector b with bis computed, 
and solve Aw(∆λ,X) = b for weights W(∆λ,X,i), i 
= 0,1,…,n. 

Step 3: Compute Weights W(∆λ,Y,i), i = 0,1,…,n  
Compute, λλλλλ∆= ∫ +

−

λ

λ
dPySkb ii

i
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1

, i = 0, 1, 
…, n, form a column vector b with the bis 
computed, and solve Aw(∆λ,Y) = b for weights 
W(∆λ,Y,i), i = 0,1,…,n. 

Step 4: Compute Weights W(∆λ,Z,i), i = 0,1,…,n  
Compute, λλλλλ λ

λ dPzSkb ii
i
i

)()()(6 1
1

∫ +
−

∆= , i = 0, 1, 
…, n, form a column vector b with the bis 
computed, and solve Aw(∆λ,Z) = b for weights 
W(∆λ,Z,i), i = 0,1,…,n.  

Step 5: Output Weights W(∆λ,X,i), W(∆λ,Y,i), 
W(∆λ,Z,i) i = 0,1,…,n  
 

Note that the function Pi(λ) in the above Algorithm is 
the instrumental function defined by eq. (5). Since the 
colour matching functions and the spectral power 
distribution of the illuminant are defined at 1nm intervals, 
therefore numerical integration technique should be used 
for integrations in the above algorithm. Note also that 
Venable proposed an iterative method for obtaining the 
optimum weights. It is clear that the above algorithm is 
much simpler to implement. 

Conclusions 

A simple analytical method for computing the Venable’s 
optimum weights is derived. It was tested together with 
the other methods. The results in Tables 1 to 6 con-
sistently  in terms of CIELAB ∆E values showed that the 
optimum weights computed by the new algorithm 
performs equally well or better than the weighting tables 
of ASTM Table 6, which was calculated using either the 
Venable’s optimum weights or ASTM Table 5 corrected 
using Sterns and Sterns method as proposed by Fairman.4 
In many industrial applications, the real illuminants are 
different from the standard CIE illuminants. Hence, there 
is no standard weighting table at larger intervals, say at 
10 or 20 mn intervals. Therefore, the proposed method 
can produce weighting tables for practical industrial 
applications.  
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Table 1. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10 nm and 20 nm 
intervals for illuminant: D65 (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00015 0.02806 0.00731 0.00422 0.37647 0.07393 
Table 6 0.00011 0.00862 0.00159 0.00096 0.05069 0.01595 
Optimum 0.00008 0.00557 0.00107 0.00044 0.04511 0.01466 

 
 

Table 2. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10nm and 20nm 
intervals for illuminant: D50 (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00061 0.02507 0.00732 0.00172 0.36079 0.07475 
Table 6 0.00029 0.01873 0.00400 0.00050 0.05796 0.01225 

Optimum 0.00002 0.00477 0.00123 0.00034 0.05263 0.01266 
 
 

Table 3. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10nm and 20nm 
intervals for illuminant: A (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00026 0.02158 0.00515 0.00202 0.32652 0.06329 
Table 6 0.00025 0.01010 0.00301 0.00059 0.04748 0.01257 

Optimum 0.00005 0.00414 0.00114 0.00028 0.04514 0.01340 
 
 

Table 4. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10nm and 20nm 
intervals for illuminant: F2 (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00010 0.05144 0.00875 0.00203 0.49224 0.11500 
Table 6 0.00055 0.05904 0.00875 0.00204 0.64219 0.05561 
Optimum 0.00007 0.02254 0.00232 0.00086 0.32076 0.02966 
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Table 5. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10nm and 20nm 
intervals for illuminant: F7 (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00053 0.05305 0.00876 0.00389 0.57771 0.09616 
Table 6 0.00006 0.05660 0.00764 0.00218 0.58001 0.05161 
Optimum 0.00006 0.02182 0.00226 0.00051 0.31818 0.03397 

 

Table 6. Performances of the weighting tables from ASTM Tables 5 and 6, and the optimum at 10nm and 20nm 
intervals for illuminant: F11 (CIE ∆E*ab) 

10nm interval 20nm interval Weighting 
Tables Min Max Median Min Max Median 
Table 5 0.00072 0.29392 0.03189 0.01260 2.58160 0.28554 
Table 6 0.00306 0.26887 0.03624 0.00561 1.31776 0.21685 
Optimum 0.00007 0.04514 0.00570 0.00406 1.39941 0.18088 
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Figure 1.Instrumental Function Pi(λ)
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