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Abstract 

We have developed a model to calculate chromaticity 
difference from a surface defined from the MacAdam 
ellipses in CIE 1931 (x,y)-chromaticity diagram. The idea 
is to tranform the MacAdam ellipses to circles on a 
surface. The height of the surface is obtained by 
projecting a circle of constant radius such that the 
projection is equal to the ellipse on the the (x,y)-plane. 
The chromaticity difference is calculated from the surface 
by a method based on the Weighted Distance Transform 
On Curved Space (WDTOCS). 

Introduction 

The MacAdam chromaticity difference ellipses are widely 
used in the chromaticity difference calculations. The area 
inside each ellipse appears as an equal color so that the 
chromaticity differences cannot be perceived.1 The 
ellipses have various sizes in different parts of the 
horseshoe shaped spectral locus, thus the calculated 
chromaticity differences in each part of the locus are 
perceived unequally.2 For example, in the bottom left 
corner in the blue area small Euclidean distance yields to 
a large chromaticity difference and in upper part of 
diagram in the green area the same chromaticity 
difference results in a much larger Euclidean distance. 
MacAdam has made also a model for chromaticity 
difference calculations.3 

Several color difference models have been 
developed, they try to compensate the nonuniform size of 
the ellipses in the (x,y)-plane. The CIELAB and CIELUV 
models were among the first one.4 Then CIE94 was devel-
oped with a set of variables for the parametric correction 
of the error from the CIELAB ∆E formula. The CMC 
model for textile industry is dividing the ab-plane into 
microfacets thus compensating the planar color difference 
errors.4 

Our purpose was to develop a model, which gives an 
equal perceived difference in every part of the CIE-1931 
(x,y)-chromaticity diagram for equal chromaticity 
differences. 

Defining the Model 

Defining the Surfaces 
The chromaticity differences are calculated from the 

surface which is defined from the MacAdam ellipses. The 

surface is based on the parameters of the 25 ellipses, see 
Figure 1. 

 

 

Figure 1. The MacAdam ellipses. The axes of plotted ellipses 
are 10 times their actual lengths.5 
 

The main idea is that the ellipses are projections of 
circles on the surface. Every circle is projected from the 
center of projection above each circle. The centers of 
projection are called illumination points and they all are at 
same height H from the (x,y)-plane. The height h of 
surface is obtained for each ellipse depending on the of 
each ellipse. For a large ellipse the projected circle closer 
to the illumination point and thus the height h gets a small 
value. For a small ellipse the height h gets a larger value. 
Two different surfaces are defined, the first one based on 
the major semiaxes a and the second one on minor 
semiaxes b of the ellipses, see Figures 2 and 3. In the 
previous case, the projected circle has radius r = ra and in 
the latter case the projected circle has radius r = rb. 

The surface Sb defined from the minor semiaxis b lies 
higher than the surface Sa defined from major semiaxis a, 
because the height h of the surface is measured from the 
illumination point. The surface S used in the calculation 
of chromaticity differences is a mixture of these two 
surfaces defined as 

S = pSb + (1 - p)Sa            (1) 

where the parameter p = p(θ1, θ2), 0 < p < 1. The angle θ1 
depends on the orientation of the two chromaticities and 
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the angle θ2 is the average value of the angles of the two 
ellipses closest to the two chromaticities, see Figure 4. 
 

 

Figure 2. Projection of the circle, major semiaxis. 

 

Figure 3. Projection of the circle, minor semiaxis. 

 
The angles θ1 and θ2 depend on the two 

chromaticities, whose difference will be calculated. The 
coordinates of these two chromaticities are (x0, y0) and (x1, 
y1), see Figure 4. The average value ∆θ is calculated from 
the two closest ellipses for both of the chromaticities. 
Then p is angle between θ1 and θ2 calculated as 

2/
2/

π≤θ∆
π

θ∆= ifp       (2) 

or otherwise as 

2/π
π−θ∆

=p          (3) 

where 

21 θ−θ=θ∆          (4) 

If θ1 = θ2 then p = 0 and the orientation of the 
chromaticities is parallel to the orientation of the ellipses 
major semiaxis in that area. Now the surface S consists 
only the surface Sa. If the line between the two 
chromaticities is perpendicular to the major semiaxis then 
p = 1 and surface S consists only of the surface Sb. 
Normally, surface S is a mixture of the both surfaces Sa 
and Sb, Figure 5. 

 

Figure 4. Angles θ1 and θ2 in the calculation of the parameter 

 

Figure 5. Defining surface S from the surfaces Sa and Sb. 

 
In Figure 6, we show the surfaces Sa and Sb. The 

surface Sb is elevated by 0:03 units for better visualization 
the two surfaces. These surfaces are not dependent on 
chromaticities selected for the difference calculation. 

In Figure 7 we illustrate the surface S calculated from 
two chromaticities (x0, y0) = (0, 304, 0, 433) and (x1, y1) = 
(0, 314; 0, 453). The surface S depends on the two 
chromaticities selected, and it is accurate only in the 
vicinity these chromaticities. 

The MacAdam ellipses cover the center of the 
horseshoe shaped diagram, but the edge of the horseshoe 
to be defined in another way. We extrapolated the edge of 
the horseshoe on the basis of the contour diagrams the 
covered area in the CIE 1931 (x,y)-chromaticity diagram. 
We examined the CIE-diagram to decide where surface 
rises near the edge and where it falls. We assumed that 
there were not any irregularities near the edge, but the 
slopes were in harmony with the covered areas. Another 
method is to extrapolate the edges through the Just-
Noticeable-Differences (JNDs). JNDs are defined in the 
spectral locus and JNDs are three times larger than the 
corresponding standard deviation from the MacAdam 
ellipses.1,5 

All the ellipse parameters are used in creation of the 
surface S. The major and minor semiaxis define the two 
surfaces and the surface used in the chromaticity 
difference calculation is a mixture of these two surfaces 
depending on the orientation of the selected pair of 
chromaticities. 
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Figure 6. Surfaces Sa and Sb, which was elevated for visualizing, see text.
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Figure 7. Surface S according to the two chromaticities (x0, y0) and (x1, y1), see text.
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Calculating the Distance on a Curved Surface 
The chromaticity difference is calculated as 

)()()( 2
10

2
10 SfyyxxE α+−+−=∆    (5) 

where f(S) contains the contribution of the surface S. We 
applied theWeighted Distance Transform On Curved 
Space,6 where ∆E was replaced by partial Euclidean 
distances. In WDTOCS, every subdistance between 
neighboring pixels was Euclidean, but the whole distance 
between the two chromaticity points was not. 

The Weighted Distance Transform on Curved Space 
(WDTOCS) between two points is defined as the 
minimum of all possible paths linking those points. The 
WDTOCS algorithm requires only two passes over the 
image with a chosen kernel. In order to implement the 
WDTOCS algorithm, two surface models are needed: the 
original gray-level image, and the second image, which 
determines the region or regions in which the transform is 
calculated. The transform is performed on this image. 
Now, the horseshoe shaped area constitutes the region for 
calculation and we have to select one point from that area 
as the starting point. This point is one chromaticity point 
and after the calculation, the distances to all other 
chromaticities are obtained. 

 

 

Figure 8. The kernel for the WDTOCS calculation. 

 
The algorithm, which applies the WDTOCS, 

proceeds as follows. Let G(x) denote the original gray-
level image and let F(x) denote the binary image which 
determines the region(s) in which the transform is 
calculated. F*(x) means an already calculated point. F*(e) 
denotes the new distance value of the point e in the image 
F. Let N4(e) denote the 4 horizontal and vertical neighbors 
of a pixel e similarly as in the city block kernel. G(e) 
denotes the gray value of the center point in the 3 x 3 
kernel and G(xi) denotes the gray values of the pixels xi 
∈ N4(e). The kernel is depicted in Figure 8. 

1st Iteration 
The first iteration round proceeds “direct video 

order” (from top to bottom, and right) calculating the new 
point F*(e). The points with asterix * hold already once 
calculated distance values while the point F(e) has the 
initial value, which maximal representative integer 
number. The iteration proceeds as follows: 
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The parameter values β = 2 and δ = 1 are 
corresponding values in the WDTOCS definition. 

2nd Iteration 
The second iteration round proceeds in the “inverse 

video order” (from bottom to up, right to left) calculating 
the new point F*(e). The points marked with asterix * 
hold already once calculated distance values while the 
point F(e) has a value obtained when applying Equation 
6. The second iteration as follows. 
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Again, β = 2 and δ = 1 corresponding to the 
WDTOCS definition. 

Experimental Results 

Defining the Independent Variables 
There are three independent variables in our model. 

The height H of the illumination point, the radius r of the 
projected circle and the multiplier α in the distance 
measuring can be defined almost separately. 

Now the radius r of the projected circle is the shortest 
of the major ra and minor rb semiaxis from MacAdam 
ellipses. The radius r cannot be longer than the shortest 
axis, since otherwise the projection is impossible or the 
circle would lie under the (x,y)-plane. Fixing the 
illumination point it is possible to define the surface in a 
desired height. The height H of the illumination point was 
derived from a computational procedure, where the best 
fit of the projections was found by varying the height H. 
Now, the illumination point was placed at the height H = 
0:15. The multiplier α is now defined as α = 1. With this 
multiplier it is possible to change the weight of the 
surface in the calculation of the chromaticity difference. 

Calculating Chromaticity Differences 
The results show the influence of the surface S of the 

measured distance compared to the Euclidean distance on 
the (x,y)-plane. In Table 1 we show pairs of chromaticity 
coordinates from different parts of the horseshoe diagram 
with variable distance on (x,y)-plane. 

Table 2 represents pairs of chromaticity coordinates 
with constant Euclidean distance on the (x,y)-plane with 
variable orientations and from different parts of the 
diagram. 

In Table 3 we show the chromaticity coordinates with 
constant Euclidean distance from same locations as in 
Table 2, but the orientations are perpendicular to the 
orientations of the chromaticity pairs in Table 2. 

In the Figures 9, 10, and 11 we illustrate the 
chromaticities, whose differences were calculated in the 
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experiments. A line in (x,y)-plane is connecting each 
chromaticity pair. 

The chromaticities plotted in Figure 9 are reported in 
Table 1, the chromaticities plotted in Figure 10 in Table 2, 
and the chromaticities plotted in Figure 11 are in Table 3. 
All the experiements were run in Matlab-environment. 

The surface model acted as expected, now the 
chromaticity differences are closer to the perceived 
differences. This can be derived from the results in Tables 
1, 2, and 3. 

 

 

Figure 9. Chromaticities in the first experiment, the results are 
in Table 1. 

 

Figure 10. Chromaticities in the second experiment, the results 
are in Table 2. 

 

Figure 11. Chromaticities in the third experiment, the results 
are in Table 3. 

Conclusions 

We have developed a method to calculate chromaticity 
differences such that the calculated value matched with 
the perceived chromaticity difference. A surface based on 
the MacAdam ellipses was defined and the chromaticity 
difference was calculated from that surface by the 
Weighted Distance Transform on Curved Space. The 
surface varied according to the two chromaticities, whose 
difference under consideration. 

The results show that the surface increases the 
chromaticity difference more in the bottom left corner, in 
blue area, than in the upper part, in the green area, of 
diagram, see Tables 1 and 2. This is natural, since the 
sizes of ellipses differ heavily in these two areas. From 
Table we can see that the orientation of the chromaticity 
pair affects the difference measured from the surface. 

Our method can be applied to any set of ellipses. The 
projection principle is not fixed to the MacAdam ellipses, 
these were just used to illustrate the method. Thus, our 
method will produce better results also with other data 
available in the literature. 

In the future, we will extend the method to color 
difference calculation thus including the effect of the 
illumination level. 

 
 
 

Table 1. Points from different parts of diagram with variable distance on (x,y)-plane. 
x0 y0 x1 y1 distance on (x,y)-plane difference from surface S relative gain 

0.200 0.620 0.210 0.580 0.0412 0.0442 7.3 
0.200 0.050 0.175 0.042 0.0262 0.0345 31.7 
0.304 0.500 0.175 0.202 0.3247 0.3546 9.2 
0.124 0.751 0.235 0.642 0.1556 0.1557 0.1 
0.621 0.251 0.562 0.242 0.0597 0.0641 7.4 
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Table 2. Chromaticity coordinates with constant Euclidean distance on (x,y)-plane. 

x0 y0 x1 y1 distance on (x,y)-plane difference from surface S relative gain 
0.521 0.251 0.511 0.271 0.0224 0.0242 8.0 
0.151 0.111 0.141 0.131 0.0224 0.0247 10.3 
0.171 0.031 0.161 0.051 0.0224 0.0541 141.5 
0.164 0.731 0.154 0.751 0.0224 0.0241 7.6 
0.304 0.433 0.294 0.453 0.0224 0.0241 7.6 

 
 
Table 3. Chromaticity coordinates with variable orientation in the (x,y)-plane. 

x0 y0 x1 y1 distance on (x,y)-plane difference from surface S relative gain 
0.164 0.731 0.174 0.751 0.0224 0.0242 8.1 
0.164 0.731 0.154 0.751 0.0224 0.0241 7.6 
0.171 0.031 0.181 0.051 0.0224 0.0308 37.5 
0.171 0.031 0.161 0.051 0.0224 0.0541 141.5 
0.521 0.251 0.531 0.271 0.0224 0.0241 7.6 
0.521 0.251 0.511 0.271 0.0224 0.0242 8.1 
0.304 0.433 0.314 0.453 0.0224 0.0242 8.1 
0.304 0.433 0.294 0.453 0.0224 0.0241 7.6 
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