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Abstract  

We introduce a new opponent color space, which aims to 
mimic the color processing in the primate retina. Recent 
data from physiology and morphology are used to 
determine the model and its parameters. The input signal 
in LMS representation is first nonlinearly transformed by 
a response saturation stage. Then a linear, spatially 
extended transformation computes the opponent repre-
sentation. In contrast to other opponent color spaces, our 
model does not have a luminance component. Our three 
components are blue-yellow, red-green, and green-red. It 
is the spatial extension that allows us to distinguish 
between the last two. Furthermore, we show that we can 
reverse the transformation and obtain a LMS represen-
tation from the opponent encoding.  

Introduction 

There are different motivations for the definition of a 
color space. One can use a XYZ representation, in which 
it is possible to match every visible color with a linear 
combination of the primaries with positive coefficients. 
The LMS encoding is motivated by the fact that it 
represents the cone responses in the retina. One can 
define an opponent color space that is suitable for 
compression, e.g. YCRCB. But they are all based on the 
idea of color encoding of a point-light source, and they 
view a digital image as a collection of light spots. In our 
coding model, we use the topological structure of an 
image to encode color. How this coding is done is 
motivated by the color processing in the primate retina.  

Color Coding in the Retina 

An image presented to the retina is sampled by cone 
photoreceptors maximally sensitive to long (L cones), 
middle (M cones), or short (S cones) wavelengths. 
Because of response saturation, cones respond nonline-
arly to flashes of light of increasing intensity. The peak 
response r of a cone to a flash of light, relative to its 
maximal value rmax, is given by 

  r/rmax=1-exp(-ki)                (1) 

where i is the flash intensity and k is a constant 
characteristic to each cell.8 There are adaptation 
mechanisms in cones, which we don't include in our 
model. Then the signal is processed through bipolar cells 

and ganglion cells, which are the output cells of the 
retina. Furthermore, there are two layers of lateral 
connections, the horizontal cell and the amacrine cell 
layer. With the current knowledge of physiology and 
morphology one distinguishes three populations of 
ganglion cells5: the midget, the parasol, and the small 
bistratified ganglion cells. Midget ganglion cells receive 
indirect input from L and M cones, but they lack 
significant S cone input. They have a center surround 
organization. In the parafoveal region the center receives 
input from a single cone, and there midget ganglion cells 
show color opponency, whereas in the periphery they are 
non opponent.4 In the parafovea there are four types of 
midget cells, ON and OFF cells, and both types have 
either a red or a green center.  
 The small bistratified are the blue-ON ganglion 
cells.6 They have spatially overlapping ON and OFF 
receptive fields and are color opponent, with input from 
2-11 S cones to the ON field.3 The OFF part has input 
from L and M cones and has about the same size as the 
blue-ON field.5 
 Parasol ganglion cells have a center-surround 
organisation but are non opponent. They receive mixed 
input from L and M cones in their center and surround. 
They have a different dynamical behaviour than the 
other two types2 and project to the magnocellular layer in 
the lateral geniculate nucleus. Because the magnocellular 
layer is generally linked with the analysis of motion, we 
exclude this cell type from our color space model. 

Opponent Color Space 

In a digital image each pixel is represented by its RGB 
values. With the cone sensitivity functions10,9 we can 
calculate the cone excitation at each location. Let us 
denote by L(x), M(x) respectively S(x) the cone excita-
tion at point x. To get to our opponent representation we 
first compute a pointwise nonlinear transformation like 
(1) 

 Ls=1-exp(kL)     

Ms=1 - exp(kM)                             (2) 

Ss=1 - exp(kS) 

where k is a constant. The value of k depends on the 
choice of the range of the input values, so we arbitrarily 
fix k=1. Then we compute a red-green (RG) and a green-
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red (GR) opponent signal, which corresponds to the 
midget ganglion cell with either a red or a green center 
and an opposite surround. Further, there is a blue-yellow 
(BY) signal corresponding to the small bistratified  
ganglion cell. We take the center size of BY to be just one 
pixel so that we get an invertible mapping. More 
precisely 

RG = L s - p * Ms 

GR  = Ms - p * Ls                             (3) 

BY  = Ss -  p* (Ls+Ms) 

where p and q are lowpass filters. We use regularly 
spaced samples of a cubic B-spline for the discrete filters 
p and q. Different surround sizes for the midget ganglion 
cells are reported in the literature. In Ref. 7 the surround 
is about 2-3 times bigger than the center, in Ref. 1, 6-14 
times, so different values for p are possible. A reasonable 
size for the BY surround filter q is 20 samples.5 We use a 
weighting of the surround of 4/5 in relation to the center, 
as in Ref. 7, i.e. we normalized the filters to sum to 4/5.  
 Now we want to reconstruct the LMS color 
encoding from our RG, GR, BY representation. Let A be 
the linear operator p*. From equations (3) we get 

 
Ls  = RG + A GR + A2 RG + A3 GR + ...              (4)  

 
We see that there are two geometric series and we get 
 

Ls  = (1-A2)-1 RG + A(1-A2)-1 GR                        (5) 
 

Analogous  
 

Ms  = GR + A RG+A2 GR +A3 RG+...                    (6) 

= (1-A2) -1 GR + A(1-A2) -1 RG  

From these results we can easily calculate L, M and 
S. Denotes F the Fourier transform, which maps p to its 
Fourier transform F(p), then we have 

 
 F((1-A2)-1)=1/(1-F(p)2)                             (7) 

 
Of course it's possible to calculate first the Fourier 
transform of equations (3) and then solve it, but we like 
to have the series expansion (4), which allows us to 
compute approximations without computing the Fourier 
transform. 

Analysis of the Color Space 

The above described opponent color space, although a 
bit more complex than just a linear transform of the three 
color values at each location, has the following 
advantages. It reinforces intensity edges, so that more 
importance is given to them. We can see this when we 
look at the series expansion (4) e.g. the Ls signal is 
decomposed into the RG component and more and more 
blurred components, which carry mean signals. The 
edges are strongly represented in the RG part. This is 

illustrated in the following example: Figure 1 shows the 
red component of an image. We computed the opponent 
representation, and figure 2 shows the RG component. It 
is easily seen that edges are strengthened, whereas 
slowly varying shadows (low frequency information) are 
weakened. 

 

 

Figure 1. The red component of an example image. 

  

Figure 2. The opponent RG component of the image in figure1. 

  

Figure 3. The reconstruction using only the first two terms of 
equation (2). 

 
In figure 3, we used equation (4) respectively (6) to 

reconstruct the original image from the opponent 
representation. Thereby we used only the first and the 
second term. We can see that already the second term 
adds some shadows to the image. By using the first five 
terms, we achieve a reconstruction with less than 5% 
mean squared error. 

Another advantage of the opponent representation is 
that it depends less on the absolute intensity, because it 
computes differences between intensity values. 
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 Of course, the properties of our color space depend 
on the sizes of the filters p and q. For very large sizes the 
filtered image is nearly constant. In equation (3), we 
subtract nearly constant values from the result of (2). So 
the encoding in the opponent color space is nearly 
constant with respect to the non-linear saturation 
correction. On the other hand, if one chooses p and q to 
have the size of just one sample, the color space 
computes a pixelwise encoding.  

Conclusion 

We showed how to code the color information in an 
image in a way similar to the one in the primate retina. 
Furthermore, we showed how to decode it and discussed 
the properties of this retinal encoding. A future direction 
of research is to analyze the statistical properties of 
natural color images encoded in our opponent color 
space. 
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