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Abstract 

In this paper, new sensors for the chromatic adaptation 
transform (CAT) are found. They have been obtained by 
the independent numerical minimization of 6 perceptual 
error metrics over 16 corresponding color pair (CCP) data 
sets, including Lam's set, using as starting point for the 
minimization 4 known and commonly used sensors. An 
analysis of their performances has shown that the best 
performance is always achieved by the sensors resulting 
from the minimization process over Lam's data set. Some 
of these performances are statistically equivalent to – and 
even better than - those obtained using the CMCCAT2000 
and the nonlinear Bradford transforms. This result 
reinforces both the use of Lam's set as a good 
representation for the other CCP data sets, and the efforts 
mentioned in the literature towards the removal of the 
nonlinearity of the CAT of the CIECAM97 model. 

Introduction 

When we look at an object separately under two different 
illumination conditions, for example under a tungsten 
lamp and a daylight illumination, we maintain almost the 
same appearance of the colors of the object, even though 
the visual stimuli are quite different in the two situations. 
This is due to a natural mechanism of adaptation to the 
change in illumination conditions, inner to the human 
visual system, and called chromatic adaptation. The 
persistence of the same color appearance in presence of 
illumination variations is called color constancy. 

The phenomenon of color constancy was known 
since the nineteenth century. Helmholtz, Ives, Hering, and 
Helson,1 first conducted tests to find a model for such 
adaptation of the human visual system. As a result of their 
efforts, the von Kries adaptation model was created.2,3 
This model mainly relies on two hypotheses: 1) The 
adaptation is done by a separated scaling of the three 
photoreceptor responses of the human visual system 
without changing their sensitivity shape; 2) The scaling 
coefficients are adjusted to keep the adapted appearance 
of a white reference surface constant. 

The first hypothesis means that, while adapting for an 
illuminant change, the cone responses do not interfere 
with each other, but are just scaled by a multiplicative 

factor. The second hypothesis suggests that the scaling 
factors are regulated by some conscious perception of the 
scene illuminant, and it is commonly referred to as the 
Illumination Estimation Hypothesis. 

This model has been extensively tested up to now. It 
has been found that it is coherent with many results 
obtained during subjective visual tests conducted in 
laboratory,5,6,7 and that it can well explain some 
phenomena such as the good adaptation to yellow-blue 
shifts of the color components of an illuminant, and the 
bad adaptation to red-green shifts.1 Anyway, it is still 
considered as an incomplete model because of its extreme 
simplicity. The chromatic adaptation should in fact also 
take into consideration other variables, such as the 
correlation between spatially local chromatic signals 
across illuminants, and the desensitization caused by the 
eye movement across spatial variations.4 Moreover, the 
illumination estimation hypothesis has been recently 
reviewed,8 demonstrating that it is not valid if formulated 
in terms of conscious perception. 

Despite these observed limitations, the von Kries 
model is still a valid model for the human chromatic 
adaptation, and its simplicity constitutes an advantage for 
the computational aspect of color constancy, i.e., to 
achieve color constancy for an artificial vision system. 
This is necessary, since systems like scanners, cameras, 
video displays and so on, use different kinds of light to 
acquire or reproduce an image, and they do not have the 
ability to adapt to illumination changes. Then, it is 
necessary to implement an operation that transforms a 
color obtained from one media under certain light 
conditions to the corresponding color used in another 
media, such that the perceived color appearance in the 
two cases is the same. This operation corresponds to a 
chromatic adaptation transform. 

In many applications, the transformation is linear and 
can be represented by a 3 x 3 matrix whose role is to 
obtain the post-adaptation cone response of the visual 
system to the color stimuli. It is in fact in this space that 
the adaptation takes place. The aim of the present paper is 
to propose several candidates for this matrix, and to 
compare the performance obtained by using them to those 
obtained by the Bradford,9 the CMCCAT2000,15 and the 
Sharp CAT.11 These known CATs differ from each other, 
since they have been obtained by using a minimization 
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technique over different corresponding color pair data sets 
and error metrics, as it will be recalled in the following 
sections. 

The Chromatic Adaptation Transform 

Let (X1; Y1; Z1) indicate the CIEXYZ color coordinate of a 
sample under a certain reference illuminant I1. The 
chromatic adaptation transform is used to estimate the 
color coordinates (X2; Y2; Z2) which would produce the 
same color appearance of the sample under I1 for an 
observer adapted to an illuminant I2, denoted as test 
illuminant. In other words, the chromatic adaptation 
transform is used to obtain the corresponding color under 
illuminant I2. This transform is obtained as follows: 
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where Rw, Gw, Bw and R’w; G’w, B’w are the RGB color 
components of the reference and test illuminations, 
respectively. As it can be noticed, Eq. 1 represents the 
formulation of the von Kries model as mentioned in the 
introduction. In fact, according to this model, the 
adaptation is done separately for each color channel, and 
this is represented by the use of a diagonal matrix. 
Moreover, this adaptation does not take place in the XYZ 
space, but in a transformed cone space obtained by the 
use of the matrix T. 

To find a suitable matrix T, Lam9 created at Bradford 
University a database of corresponding color pairs by 
subjective inspection of 58 dyed wool samples 
considering two different illumination conditions. Using 
this database he found a transform that maps 
corresponding color data pairs, minimizing a certain 
perceptual error metric. The transform, known as 
Bradford transform, is nonlinear in the blue component of 
the tristimulus values. In most applications, however, the 
linear form is used instead, thus discarding the 
nonlinearity in the blue component. The matrix T 
corresponding to this transform, denoted by TBFD in this 
paper, is given in Table 1. 

Finlayson et al.11,13 proposed a method to obtain 
different matrices, based on numerical minimization of 
the euclidean distance in the CIEXYZ space between 
actual and predicted corresponding colors, while preser-
ving white, i.e., no errors in the achromatic transform. 
This transform resulted in sharper, more decorrelated, 
sensors with respect to the Bradford transform. The 
corresponding T matrix is denoted by TSharp, cf. Table 1. 

Another proposal, corresponding to the matrix TvonKries 
in Table 1, was formulated by Hunt, Pointer, and 
Estevez,12 and consisted in a matrix which linearly 
transforms the tristimulus values XYZ to relative cone 
responses (LMS sensors). 

The nonlinear Bradford transform was embedded in 
the CIECAM97 color appearance model,10 but new efforts 
concentrated on removing its nonlinear correction in the 
blue channel. These efforts gave origin to a completely 

linear CAT, called CMCCAT200015 and here denoted by 
T2000. This transform represents a candidate for the 
substitution of the nonlinear Bradford CAT in the 
CIECAM97. The scientific community is currently 
discussing if this transform represents the only valid 
candidate or if there are some other equivalent or even 
better transforms. Some comparative studies between the 
Sharp and the other transforms13,16,14 put in evidence that 
the standardization of CMCCAT2000 is still premature, 
since many other matrices ensuring equivalent perfor-
mances have been found, thus shifting the problem to: 1) 
The choice of the criteria to establish which of the new 
CATs is the best; 2) The validity of this choice, 
considering the important experimental errors that are still 
present in the available CCP data sets. 

The Minimization Process 

As illustrated in the previous section, the matrices T 
corresponding to the different CATs proposed in the 
literature are the result of an error minimization process 
applied over certain CCP data sets. They thus differ either 
due to the choice of the perceptual error metric, or due to 
the choice of the CCP used for the minimization process. 
The idea of the present paper is to separately minimize 
different error metrics using different CCP data sets, in 
order to compare the best results found. 

We have chosen to use six different error metrics and 
sixteen different CCP data sets. Table 1 summarizes our 
choices. The first three error metrics, denoted by {PEM = 
1, 2, 3}, correspond respectively to the mean of three 
known color distance formulas. The other three metrics, 
denoted by {PEM = 4, 5, 6} correspond respectively to 
the Root Mean Squared (RMS) error of these color 
distances. These error metrics are computed between the 
CCP data, obtained by perceptual tests, and their 
prediction obtained from Eq. 1. The aim of the 
minimization process is to find a matrix T that minimizes 
a certain error metric over a given CCP data set. We have 
considered the CCP data sets at disposal from Ref. 17 
which correspond to those used by Susstrunk14,16 to 
compare CATs. 

We have chosen a modified descent minimization 
method to find the optimal coefficients of the 3 x 3 T 
matrix. Since this minimization method converges to local 
minima, we have chosen four different starting points, 
corresponding to the matrices shown in Table 1, which 
lead us to 16 x 6 x 4 = 384 resulting matrices. For each 
coefficient of the T matrix, a displacement δt was applied, 
i.e. we formed a new matrix with coefficients: 

ijijij
new ttt δ+=      (2) 

where tij with {i, j = 1, 2, 3} is the (i, j) coefficient of the T 
matrix. If the error metric obtained over the CCP data set 
using this new matrix has a smaller value than that 
obtained for the preceding matrix, then this displacement 
is kept, otherwise we changed the direction, i.e.: 

.ijijij
new ttt δ−=     (3) 

This is done individually for each of the nine 
coefficient. We iterate the process until a stable value of 
the error metric is reached. 
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This minimization process was repeated 384 times, 
one for each combination of the starting point (SP), error 
metric (PEM), and CCP data set, resulting in as many 
matrices obtained at the end of the process, denoted by 
M(SP,PEM,CCP) according to the corresponding parameters. For 
example the matrix M(4,2,13) was achieved using the TvonKries 
matrix (SP = 4) as starting point for the minimization of 

94CIEE∆  (PEM = 2) over the “Breneman 1" data set (CCP 
= 13). 

Tests and Results 

The performances of the 384 matrices found in the 
minimization process were compared to those obtained 
using the Sharp, the linear and nonlinear Bradford, and 
the CMCCAT2000 transforms over the sixteen available 
CCP data sets. We have chosen to use the same 
comparison test as in Ref. 13, i.e., a t-Student test with 
95% confidence interval. The null hypothesis was that the 
mean difference between the prediction errors obtained 
using respectively the reference and test transforms, is 
equal to zero, where the prediction errors are expressed in 
the ∆ELab or ∆ECIE94 perceptual metric. In case the null 
hypothesis was rejected, we determined which from the 
reference and test transforms provided the best results. 

To have a global indication of the performance of a 
particular transform, we calculated an index which is the 
difference between the number of times the test transform 
was evaluated better, and the number of times it was 
evaluated worse than the reference transform. This was 
done over the sixteen available CCP data sets. This index, 
denoted by In with n = 1,2,…,384, spans from In = -16 to In 
= 16, corresponding to the cases in which the test 
transform performs respectively worse or better than the 
reference transform for all the 16 CCP data sets 
considered. In case In = 0, the test and reference 
transforms are considered equivalent. Moreover, we 
define the factor Ak indicating the number of transforms 
whose index In is greater than k, i.e.: 

}:{# kInA nk >=      (4) 

where the symbol # specifies the cardinality of the set 
considered. In Table 2 we show the number of transforms 
which are statistically equivalent to or better than the 
reference transforms according to Ak. 

In Table 3 we list the transforms that provided the 
best performance, including the corresponding parameters 
that led to these transforms after application of the 
minimization process. The index Imax corresponds to the 
maximum value of In obtained among the 384 transforms 
with respect to the reference transform considered at each 
time. As an example, the transform based on the matrix 
obtained starting from T2000 (SP = 3) by minimizing 

94CIEE∆  (PEM = 2) over Lam's set (CCP = 1) has an index 
Imax = 5 comparing the performance to the linear Bradford 
transform, and this represents the best result found among 
the proposed transforms. 

Figures 1 through 4 illustrate the shapes of the 
sensors that are statistically equivalent to - or better than - 
a reference transform, while Figure 5 compares the 
reference sensors to those corresponding to M(4,2,1), which 
represents one of the seven sensors that ensure 

performances equivalent to the nonlinear Bradford 
transform, as indicated in Table 3. 

 
 

 

Figure 1. Sensitivity curves for the sensors statistically better 
than the reference transform (In > 0). Comparison with Sharp 
transform (for ∆ECIE94). 

 

 

Figure 2. Sensitivity curves for the sensors statistically better 
than the reference transform (In > 0). Comparison with linear 
Bradford transform (for ∆ECIE94). 

 

 

Figure 3. Sensitivity curves for the sensors statistically better 
than the reference transform (In > 0). Comparison with 
CMCCAT2000 transform (for ∆ECIE94). 
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Figure 4. Sensitivity curves for the sensors statistically equal to 
- or better than - the reference transform (In > 0). Comparison 
with nonlinear Bradford transform (for ∆ECIE94). 

 

 

Figure 5. Comparison between reference sensors and M
(4,2,1)

, 
best sensor with respect to nonlinear Bradford transform. 

 
 
Following Table 3, we also report three among the 

best matrices obtained, according to the t-Student test (for 
94CIEE∆ ): 
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Discussion 

A certain number of observations can be made from the 
tests we have performed. 

Firstly, it is clear from Table 2 that a certain number 
of equivalent or better CATs exists with respect to the 
reference ones, at least from the statistical analysis 
performed by the t-Student test. This shifts the problem in 
establishing some criteria to choose a good CAT matrix. 
Fairchild18 recommends that the best choice should be a 
CAT which ensures performances similar to those 

obtained by the current CIECAM97 model. However, two 
main problems are still not considered: 1) The CCP data 
sets used for comparisons are still affected by a 
considerable noise; 2) The Von Kries model is still far 
from being complete, since it is either too simple to 
describe what actually happens in the visual system, or 
the visual system applies a von Kries transformation to a 
combination of the cone signals, rather than scaling 
individual cone signals.18 

Secondly, we have shown that Lam's database reveals 
to represent quite efficiently the other data sets used in 
our tests. In fact, it can be noticed in Table 3 that the best 
performances have always been obtained by the 
minimization of Lam's CCP data set. In other words, the 
best transform T that minimizes a certain error metric 
between the CCPs of Lam's database and their predictions 
obtained from Eq. 1, is the best transform for the 
prediction of the entire collection of 16 CCP data sets. 
This is an important result, since it tends to show that it is 
possible to limit the data to Lam's data only, an 
observation that corroborates choices that were made in 
several papers.13,14 

Thirdly, another interesting result is obtained by the 
comparison with the CMCCAT2000 matrix. This matrix 
was found by Li et al.15 by the minimization of ∆ELab over 
certain data sets, including Lam's data set. In Table 3 we 
show that better results can be obtained by minimizing the 
RMS of ∆ECIE94 or ∆ECMC1:1, which are clearly different 
from the perceptual error metrics used by Li. We also 
show that in the minimization of the RMS of ∆ECIE94, 
equivalent results are obtained by selecting any of the 
four starting points considered. Thus the minimization 
does not depend, in this case, on the starting point (Table 
3, right column, comparison with CMCCAT2000). It is 
interesting to notice that the best results, apart from the 
one corresponding to the CMCCAT2000, are obtained by 
the minimization of 94CIEE∆  (boldface values indicated in 
Table 3), which can thus be considered as a good error 
metric to take into consideration when minimizing the 
color difference in a data set. 

Finally, Table 3 shows us that similar or even better 
performances are found with respect to the nonlinear 
Bradford transform. A better performance is obtained 
considering the mean ∆ELab error metric, while an 
equivalent performance is obtained in the sense of ∆ECIE94. 
This reinforces the interest in orienting the research 
towards removing the nonlinearity present in the CAT of 
the CIECAM97 model. 

Conclusions 

In this paper we show that new sensors for the chromatic 
adaptation transform can be found with respect to those 
already proposed. The performances obtained by some of 
the new sensors are equivalent or even better for a certain 
database of corresponding color pairs. We show that 
Lam's set can significantly represent the other considered 
data sets, since the performance of the CAT obtained by 
the minimization process performed on Lam's set permits 
to obtain the best performances also for the other CCP 
data sets considered. Moreover, some sensors have proven 
to ensure a performance equivalent to the one obtained by 
the nonlinear Bradford transform. This suggests that this 
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CCP Data Sets PEM (Perceptual Err. Metric) SP (Starting Poin t)

1! Lam 1! �ELab 1! TSharp =

"
1:2694 �0:0988 �0:1706

�0:8364 1:8006 0:0357
0:0297 �0:0315 1:0018

#

2! Helson
3! CSAJ

4! Lutc hi 2! �ECIE94

5! Lutchi D50

6! Lutc hi WF 2! TBFD =

"
0:8951 0:2664 �0:1614
0:0367 1:7135 0:0367
0:0389 �0:0685 1:0296

#

7! Kuo&Luo 3! �ECMC1:1

8! Kuo&Luo TL84
9! Braun&Fairchild 1
10! Braun&Fairchild 2 4! RMS of �ELab

11! Braun&Fairchild 3 3! T2000 =

"
0:7982 0:3389 �0:1371

�0:5918 1:5512 0:0406
0:0008 0:0239 0:9753

#

12! Braun&Fairchild 4
13! Breneman 1 5! RMS of �ECIE94

14! Breneman 8
15! Breneman 4

16! Breneman 6 6! RMS of �ECMC1:1 4! TvonKries =

"
0:3897 0:6890 �0:0787

�0:2298 1:1834 0:0464
0 0 1

#

Table 1: List of data sets, perceptual error metrics, and starting points used in the article [11, 16, 17, 19].

Reference transforms

P erceptual Err. Metric Sharp (A0) CMCCAT (A0) BFD (A0) Nonlinear BFD (A�1)

�ELab 62 55 87 16

�ECIE94 46 15 63 7

Table 2: Number of test transforms with In > 0 ( i.e A0) or In � 0 ( i.e. A�1) with respect to the reference transforms.

Reference Transforms �ELab �ECIE94

Sharp Imax 7 6

SP 2 3
PEM 2 2
CCP Data Set 1 1

CMCCAT Imax 5 1

SP 2,4 1,2,3,4,4
PEM 6,6 5,5,5,5,6
CCP Data Set 1,1 1,1,1,1,1

BFD Imax 5 5

SP 1,1,2,2,2,3,3,4,4,4 1,1,2,2,3,3,4
PEM 2,3,1,2,3,2,3,2,3,6 1,2,1,2,1,2,3
CCP Data Set 1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1

Nonlinear BFD Imax 3 0

SP 4,4 1,2,2,3,3,4,4
PEM 2,6 6,3,6,3,6,2,6
CCP Data Set 1,1 1,1,1,1,1,1,1

Table 3: Summary of the conditions (choice of starting point, minimizing function, and data set) that led to the
transforms ensuring the best performances in comparison with the reference transforms. The SP, PEM, and CCP values
have to be read in a vertical sense, as a triplet which actually represents the matrix M(SP;PEM;CCP ).

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

169

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

168



 

 

transform, embedded in the CIECAM97 model, could be 
substituted by a more economic linear one, as it is 
currently wished. 
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