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Abstract 

The light reflected from an object depends not only on 
object colours but also on lighting geometry and 
illuminant colour. As a consequence the raw colour 
recorded by a camera is not a reliable cue for object based 
tasks such as recognition and tracking. One solution to 
this problem is to find functions of image colours that 
cancel out dependencies due to illumination. While many 
invariant functions cancel out either dependency due to 
geometry or dependency due to illuminant colour, only 
the comprehensive normalisation has been shown 
(theoretically and experimentally) to cancel both. 
However, this invariance is bought at the price of an 
iterative procedure. 

In this paper we develop a non iterative log 
comprehensive normalisation procedure. We begin by 
reviewing the idea that lighting effects due to geometry 
and light colour can, under certain reasonable simplifying 
assumptions, both be modelled using simple scalar 
multipliers. We nowtake logarithms and turn geometry 
and light colour dependency into additive processes. We 
show how in this log color space two simple projection 
operators lead to invariance to geometry and light colour. 
Moreover, because projection operators are idempotent, 
illuminant invariance is achieved in a single step. 
Experiments demonstrated that log comprehensive 
normalisation used as a preprocessing step supports 
accurate colour based object recognition independent of 
lighting conditions. 

1. Introduction 

Colour is an important cue for object recognition and 
often used as a feature for indexing image databases.2,7,18,20 
However, object recognition experiments based on the 
raw RGB values fails when the illumination condition 
change. For example, the shading observed on objects is a 
function of the light source position: there is a lighting 
geometry dependence on colour. Also, as the illumination 
colour changes so too do the colour of the measured 
RGBs. 

Two approaches are reported in the literature for 
dealing with illumination problems. First, colour 
constancy algorithms17,14,8,11,22 attempt to recover surface 
reflectance (or more precisely correlates of surface 
reflectance) and this is, by definition, independent of 
lighting conditions. Unfortunately colour constancy has 
proven to be a very hard problem to solve. The current 
state of the art can only deliver approximate constancy. 

Moreover, it has been shown that the constancy delivered 
by many of the algorithms13 is insufficient to render 
colour a stable enough cue for object recognition. 

An easier way to deal with the illuminant colour 
problem is the colour invariant approach.5,10,4,19,1,15 The goal 
here is to find functions of proximate image pixels which 
cancel out lighting dependencies. As an example the 
chromaticity function, used extensively in colour science 
and computer vision, removes the intensity from an RGB 
response vector. Since shading in an image is an intensity 
artifact, it follows that the chromaticity normalization can 
be used to remove lighting geometry. Another 
normalization common in the colour literature is the grey-
normalization.24 Here the average RGB pixel in an image 
is calculated and the other pixels described relative to the 
average (if (Ri,Gi,Bi) denotes an image pixel and (µR,µG,µB)  
the average then (Ri/µR,Gi/µG,Bi/µB) is calculated). Under 
most conditions25,23 this simple normalization will remove 
illuminant colour. Neither the chromaticity nor the grey-
world normalization suffices to remove both illuminant 
colour and geometry dependencies. 

Both dependencies are, however, removed in the 
comprehensive normalisation scheme.10 Here the 
chromaticity and grey-world normalizations are applied 
successively and iteratively. It was shown10 that this 
procedure converges to a unique fixed point. Compre-
hensive normalization for the same scene viewed under 
most reasonable lighting conditions delivers the same 
intrinsic image which depends only on surface reflec-
tance. But, is this iteration necessary? In some sense this 
question has been answered by research which followed 
the comprehensive normalization result. The methods of 
Gevers and Smeulders15 and Berens et al3 remove the 
illumination geometry and color in a single step. Yet to do 
this, these normalizations take the 3-component RGB 
image into a new coordinate frame: the idea of redness, 
greenness and blueness is removed and one is left with 
lighting independent scalars which do not have their usual 
colour meaning. Thus, while the comprehensive normali-
sation is iterative, the iterative cost of the computation 
delivers an RGB colour image as output (and in this 
image the RGBs have similar ‘meanings’ to the input 
colours). 

In this paper we ask whether we can normalize an 
RGB image, and keep the semantic meaning of the RGBs 
the same but without the cost of iteration? The answer is 
yes! We begin with the simple observation that the 
lighting geometry and lighting colour processes which are 
multiplicative in RGB space become additive in log RGB 
space. In a second stage we show that these additive 
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effects can be removed using projection operators. For 
example, we show that shading in log RGB space is an 
additive component in the direction (1,1,1). Projecting 
RGBs orthogonal to this direction removes shading. A 
second, simple projector is used to remove light colour. 
That is, we remove lighting geometry and light colour in 
log-space in a manner that is analogous to the compre-
hensive normalisation. However, and this is the important 
result, we show that the process is non-iterative. This is 
so, because of the nature of projector operators in linear 
algebra. A projector multiplied by itself returns the same 
projector: projectors are idempotent. It follows that if we 
remove lighting geometry and lighting colour once we 
remove it for all time. 

The new log-normalisation is tested in the context of 
colour object recognition experiments. Here objects are 
imaged under different lighting conditions. The images 
are normalised and then we ask whether the remaining 
colour content suffices for recognizing the object. We 
found that the new log-comprehensive normalisation 
delivered almost perfect recognition on a moderate sized 
image data set. Moreover, the performance was similar to 
that delivered by the iterative comprehensive normalisa-
tion procedure which in turn has been shown to improve 
over antecedent methods. 

The rest of the paper is organised as follows: the 
basis of colour image formation is introduced and colour 
image normalisation methods are reviewed in Section 2. 
The new log-space comprehensive normalisation is 
presented in Section 3. In section 4 the object recognition 
experiments are described and results shown. The paper 
finishes with conclusions in section 5. 

2. Background 

In order to develop the theory we will adopt some widely 
used simplifying assumptions. First, we assume that the 
response of a colour camera is linear. That is, if we view a 
surface under a given light and then double the intensity 
of the light we expect a doubling in the recorded RGB 
values. If we denote the ith pixel in an image (Ri,Gi,Bi) 
then as the power of the incident illumination changes 
then 

),,(),,( iiiiiiiii BGRBGR ρρρ→  

(1 Lighting geometry) 

where ρi is a simple scalar. Note that this scalar has a 
subscript i indicating that all pixels can have their own 
individual brightness factors. Brightness changes, or 
lighting geometry, is a local phenomenon. 

Changing the relative position of the light source with 
the surface introduces shading. Assuming matte 
Lambertian reflectance and letting n denote surface 
normal and e the lighting direction then the power of the 
light striking a surface is proportional to the scalar n.e 
dot-product). It follows then that a change in shading can 
also be described according to Equation (1). It is 
important to note that the Lambertian assumption is 
important here. Equation (1) cannot account for lighting 
geometry changes for highly specular surfaces. 

Let us now consider a change in lighting colour 
(assuming lighting geometry is held fixed). In almost all 

circumstances, Equation (2) approximately holds25 (or can 
be made to hold9). 
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(2) Lighting colour_ 

where α, β and γ are scalars. Note these scalars do not 
depend on the pixel (there is no subscript i). That is colour 
change is a global phenomenon affecting the whole 
image. 

Relative to (1) and (2) we can now consider how the 
scalars ρi, α, β and γ can be removed from images. 

The chromaticity normalization defined in Ref. 3 
cancels lighting geometry: 
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(clearly the ρi term cancels). We will denote the 
chromaticity normalisation carried out on the image I as 
C(I). 

Let µ(R) denote the mean red pixel value for an 
image. Assuming N pixels in an image: 

N
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Under a change in illuminant colour (see equation (4)): 
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It is now easy to see that the grey normalization 
defined in Ref. 6 cancels light colour: 
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It is clear the scalars α, β and γ cancel. We will 
denote the image I post grey normalization as G(I). 

Neither (3) nor (6) by itself suffices to remove both 
lighting geometry and lighting colour change. Compre-
hensive normalisation, which can remove both depen-
dencies, is defined as: 

 
1. I0 = I   Initialization 
2. Ii+1 = G(C(Ii))  Iteration step     (7) 
3. Ii+1 = Ii  Termination condition 

 
The comprehensively normalised counterpart of the 

image I is denoted CN(I). 
Finlayson et al10 proved that this iterative process 

converged to a unique fixed point. Thus if I and I’ denote 
images of the same scene where only the lighting 
conditions have changed then CN(I) = CN(I’). Moreover, 
this method was shown to outperform the individual 
normalization functions C() or G() in object recognition 
experiments. 

The problem with (7) (unlike (3) or (6)) is that it is 
iterative. Can we carry out a comprehensive normalisa-
tion without iteration? 
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3. Comprehensive Normalisation 
in Log-space 

It is clear in RGB space that as the lighting conditions 
change, the effect on a pixel is multiplicative. 
Comprehensive normlisation removes multiplicative 
dependencies using division. Here we propose to work in 
log RGB space since multiplication in log space is turned 
into addition. As we shall see this simple conceptual step 
eventually leads us to an idempotent (non-iterative) 
normalization. Let r = ln R, g = ln G and b = ln B. Then 
we can rewrite (1) and (2) as: 

),,(),,( iiiiiiiii bgrbgr +ρ+ρ+ρ→  

(8 Lighting geometry in log space) 
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 (9 Lighting colour in log space) 
 

Let us now consider how we might remove lighting 
dependencies. From equation (9), we have: 

iiiiiiii bgrbgr ρ+=+ρ+ρ+ρ )1,1,1(),,(),,(   (10) 

Equation (10) tells us in log RGB space, lighting 
geometry changing only affects the length of the log rgb 
vector in the direction of U = (1,1,1). That is, the 
directions orthogonal to (1,1,1) are unaffected by 
brightness change. It follows that we can normalize a log 
rgb to remove brightness by projecting it onto the 2-
dimensional space which is orthogonal to the line that 
spanned by U. We can do this by applying some simple 
results from linear algebra. We define a 3 x 3 projection 
matrix Pr for the space spanned by U, and a 
complementary projection matrix [I – Pr]  for the space 
which is orthogonal to the space spanned by U (where I 
denotes the 3 x 3 identity matrix). By definition these 
matrices have the property that Pr*(1,1,1,)t = (1,1,1)t and 
[I – Pr]*(1,1,1)=(0,0,0)t. Pr is defined as16,6: 
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and so 
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If we write an rgb log-vector as v = x * (1,1,1) + y * 
(-1,1,0) + z * (1,1,-2), it is straightforward to show that 
Prv = x * (1,1,1) and [I – Pr]v = y * (-1,1,0) + z * (1,1,-2). 
Looking at the structure of matrix [I – Pr], we can see that 
the meaning of the matrix multiplication is that we 
subtract the mean log rgb from the r, g, and b values: 
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That is, we can remove dependency on lighting 
geometry by subtracting the mean log response (a 
‘brightness’ correlate) from each pixel. 

The effect of illuminant colour can be removed in a 
similar way. However, rather than dealing with log rgb 
vectors we must operate on the vector of all log red 
responses (or log green responses or log blue responses). 
From (9) we can write 
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It follows that the following projection matrices 
(which are n x n for an n pixel image) will respectively 
project a colour channel in the direction of all ones 
(1,1,…,1) or the space orthogonal to this direction. 
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Again, by inspecting the structure of the projection 
matrix, we can see that to implement this normalisation 
we only need to subtract the mean red log value from all 
log red pixel values and subtract the mean log green and 
log blue values from the log green and log blue pixel 
values. 

To remove lighting geometry and illuminant colour 
both at the same time we just apply the projectors (12) 
and (14) to the log image. This operation is easy to write 
down mathematically if we think of an n pixel image as 
an n x 3 matrix of log rgbs. Denoting this image Y, we can 
write down an explicit equation for the application of the 
lighting geometry and light colour normalizations: 

)()( PrIYPcIYnormalised −−=     (15) 

here Ynormalised represents the normalised image. Though, it 
is important to remember that to implement (16) we 

CGIV'2002: First European Conference on Colour Graphics, Imaging, and Vision

162

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

161



 

 

simply subtract row means from rows and then column 
means from columns. 

From projection theory, we know that matrix [I – Pr] 
and [I – Pc] are both idempotent. That is to say that [I – 
Pr]  [I – Pr] = [I – Pr] and [I – Pc]  [I – Pc] = [I – Pc]. It 
follows then that removing shading or light colour once, 
removes it for all time: 

)()(

)()()()(

PrIYPcI

PrIPrIYPcIPcIYnormalised

−−=
−−−−=

 (16) 

In summary, the projection of image matrix in log space 
onto two spaces which are orthogonal to either the 
lighting geometry change or the illuminant colour change 
are invariant to lighting geometry or illumination colour 
change. In practice, post multiplying the log image matrix 
by [I – Pr] is equivalent to subtracting the mean of the 
row from each element of log image matrix. Similarly, 
premultiplying the log image matrix by projection matrix 
[I – Pc] is equivalent to subtracting the mean of the 
column from each element of log image matrix. 

4. Object Recognition Experiments 

We now wished to test the new non iterative 
comprehensive normalisation procedure for colour object 
recognition. To do this take an image, normalize it and 
then build its colour histogram. This histogram is 
compared with normalized histograms stored in a 
database and the closest overall is found. Because, the 
database contains images (and their histograms) of the 
same objects for which we have query images, the closet 
histogram match can be used to identify the query. 

We applied this work flow for the composite dataset 
that was used to test the original comprehensive normali-

zation procedure.10 This dataset is composed of Swain and 
Ballard21 image set (66 database images 32 queries), the 
legacy Simon Fraser image set12 (11 database images, 22 
queries) and the Berwick and Lee image set4 (10 database 
images and 10 queries). A second larger Simon Fraser 
image dataset (www.cs.sfu.ca/ colour/data) with 20 
objects imaged under 11 illuminations is also used as a 
test set. 

Tables 1 and 2 summarize the indexing performance 
for the two normalisation operations and operation on 
composite and the new larger Simon Fraser dataset. We 
show the average percentile match and the % of objects in 
the 1st, 2nd and worse than 2nd ranks. If the closet 
database histogram to the query is the correct answer 
(both corresponding images are of the same object) then 
the correct answer is found in rank 1. If the correct answer 
is the kth closest then the correct answer has rank k. 

We see that the comprehensive normalization 
delivers excellent recognition and this confirms previous 
reported results. The log-normalization performs if 
anything slightly better. It is particularly pleasing to see 
that the worst case for the large Simon Fraser data set has 
diminished from 16th for comprehensive normalization to 
just 5th for the log normalization method. 

5. Conclusion 

We have developed a new closed form log space 
comprehensive normalisation method which can cancel 
out the colour dependencies due to lighting geometry and 
illuminant colour both. Experimental results on image 
datasets showed that this new normalisation method 
performed at least as well as the iterative (non closed 
form) comprehensive normalisation method. 

 
 

Table 1. Indexing Performance of Composite Dataset (ranks are % of the dataset) 
Methods Av.Percentile(%) Rank 1 Rank 2 Rank > 2 Worst Rank 
log comprehensive 99.71 95.38 1.15 3.47 4th out of 87 
comprehensive 99.71 92.31 2.3 5.39 3th out of 87 
 

 

Table 2. Indexing Performance on Large Simon Fraser Dataset (ranks are % of the dataset) 
Methods Av.Percentile(%) Rank 1 Rank 2 Rank > 2 Worst Rank 
log comprehensive 99.13 91.00 3.5 5.5 5th out of 20 
comprehensive 98.84 91.00 3.5 5.5 16th out of 20 
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