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Abstract 

The aim of this paper is to describe a method for 
transforming an image’s 3D colour histogram so as to 
accurately match a predetermined target state. The 
method proposed here consists of a colour indexing stage 
followed by the determination of a histogram 
transformation matrix on the basis of the Earth Mover’s 
Distance histogram difference metric.1 In addition to 
describing this method, the paper also analyses the results 
of transforming an image’s 3D colour histogram in terms 
of its effect on the image’s spatial characteristics. Finally, 
examples of using the technique to transform an image’s 
histogram to match that of another image are shown. The 
purpose of having developed this approach is to be able to 
perturb this image characteristic in an accurate, direct and 
controlled way as this can be of use in studies that aim to 
study the impact of image characteristics on various 
imaging contexts, like colour reproduction or database 
indexing and searching. Being able to modify the 3D 
colour histograms of an image then allows for the 
generation of image test sets in which images have this 
characteristic in arbitrary states. 

Introduction 

Being able to transform image characteristics in an 
arbitrary but accurate and direct way can be a powerful 
tool in the study of their impact on various imaging 
contexts.2 For example, to understand the impact of an 
image’s mean colour on some application that is behaving 
in an image–dependent way it is useful to have a set of 
images whose mean colours have various values but 
whose other unrelated characteristics are identical or at 
least very similar. What is meant here by unrelated image 
characteristics are those whose states do not necessarily 
change when then given image characteristic is changed. 
In the case of the mean image colour characteristic 
unrelated characteristics would, for example, be image 
content, image gamut, spatial properties, etc., as the mean 
colour can be changed without resulting in a change of 
these unrelated characteristics. 

Clearly it is very difficult to find a set of natural 
images that differ only by their average colours, whereby 
what is meant here by natural images are images that are 
directly the result of some image capture or generation 
process and that would look unperturbed to an observer 
(iDE. they include not only images captured from nature 
but also computer graphics that look ‘normal’ to 

observers). A first step then in understanding this question 
can be to chose a single natural image and to generate a 
set of artificial images from it by perturbing it in a way 
that changes the mean colour but keeps other unrelated 
image characteristics as constant as possible. 

Methods for perturbing some image characteristics in 
this way have already been introduced in some previous 
work3–5 and the aim of this paper is to describe an 
approach that can be used for changing an image’s 3D 
colour histogram so as to make it match a predetermined 
target state accurately. 

Using this method, it is then possible to transform 
natural images and generate sets of test images that have 
predetermined 3D colour histogram properties. Such sets 
of test images can then be used in studying the impact of 
this image characteristic on any imaging application that 
exhibits image dependent behaviour and to see what role 
the 3D colour histogram plays in this. 

Overview Of 3D Histogram Matching 

 

Figure 1. 3D histogram transformation flow–chart. 

 
The method of 3D histogram matching proposed here 

is shown as a flow chart in Figure 1. The kernel of the 
method is the Earth Mover's Distance (EMD) metric1 
which provides an optimised relationship between two 
histograms by minimising the sum of cross-bin distances 
between original and target histograms. Furthermore, the 
∆E formula can be used to evaluate cross-bin distances for 
any colour pair between a pair of 3D image histograms. 
Ideally, the 3D image histogram should have as many 
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bins as there are possible colour combinations, iDE. 224 
for three–channel 8 bits/channel images. However, the 
computational cost would be extremely high as a matrix 
with 224 x 224 (iDE. 248 = 2.8 x 1014) members in float 
format would be used by EMD. In order to make 
computation more manageable, images can first be 
converted to an indexed colour format, which reduces the 
number of colours in an image using a quantisation 
technique, and only this smaller set of colours is then used 
for building the histograms. 

The following are then the steps of this method that 
can be used for transforming an image displayed on a 
CRT to have a predetermined 3D colour histogram in 
terms of the CAM97s2 Jab colour space6: 
1. Transform a 24-bit original image from RGB to a 

uniform colour space (e.g. CAM97s2 Jab) using a 
forward CRT characterisation model (CM), e.g. 
GOG,7 in conjunction with a forward colour 
appearance model (CAM) transform. 

2. Transform the Jab image from 24-bits (8-bits per 
channel) to 18-bits (6-bits per channel) by performing 
Floyd–Steinberg error diffusion.8 The reason for 
using this algorithm is to reduce sample size for the 
next step while preserving most of the colour 
information from the original. Since the (J,a,b) 
intervals of the resulting 18-bit image were only 
(1.57,4,4) CAM97s2 units, the image colour 
differences between the original and the image 
obtained after this step were almost imperceptible. 

3. Transform the 18-bit image to N indexed colours (N 
values of 256, 512, 1024 and 3072 were investigated 
in this study) using a modified Foray clustering 
algorithm9 whereby the resulting N colours are 
chosen differently for each image. In the clustering 
process, colours are added to the cluster having the 
smallest Euclidean distance in Jab colour space. 

4. Compute image histograms (IDHs) in terms of the N 
indexed colours. The data structure of the IDH consists 
of index number, corresponding Jab values and 
colour frequency as a percentage of total number of 
pixels. 

5. Use EMD to calculate optimal cross–bin distances 
between the histogram of an original image’s (IDHO) 
and the target histogram (IDHT). The output of EMD is 
then a LUT indicating the net–like relationship of all 
bins between the two histograms. 

6. Compute the final 3D-histogram matched image by 
reading the Jab value of each pixel from the original 
image, checking the index value of the pixel by 
referring to IDHO, calculating the corresponding index 
value in IDHT based on the EMD–generated LUT and 
finally assigning the corresponding Jab value to the 
resulting pixel in the output image. A random colour 
assignment technique was performed in this step by 
randomly accessing the LUT.4 

7. Both the indexed original and resulting target images 
are finally converted to RGB using the inverse 
CAM97s2 and the inverse CRT characterization 
model. When displayed on the CRT, these RGB 
images then have the same 3D colour histograms in 
terms of CAM97s2 Jab. 
 

Using the above process, the output image has 
exactly the same 3D colour histogram as IDHT. However, 
when the original and target histograms are very different, 
the output image can show strong artefacts and has a more 
ample power spectrum in the high spatial frequency 
range. In order to minimise such artefacts and to reduce 
the power of high spatial frequencies, an attempt can be 
made to optimise the steps of the above procedure. The 
success of the attempts to optimise some parts of the 
process was assessed in terms of a local colour spatial 
frequency metric and this will be introduced next. 

Local Colour Spatial Frequency 

After performing 3D-histogram matching, the high spatial 
frequencies in the power spectrum of the histogram–
perturbed image normally have higher amplitudes than 
corresponding ones in the original. It would be ideal if the 
histogram–perturbed image could maintain not only the 
image content of the original image but also the power 
spectrum distribution of local colour spatial frequencies 
(LCSFs) in it. As the original image changes its colours 
totally after histogram matching, no colour difference 
metric can estimate the variation of its power spectrum 
and a separate metric for measuring these errors has 
therefore been developed. 

To evaluate the variation of the power spectrum, both 
the original and histogram–perturbed Jab images are first 
subdivided into blocks of 16 x 16 pixels and 50 units are 
subtracted from all the J values. Each block is then 
transformed to a 16 x 16 spatial frequency matrix F(u,v) 
using a 2D fast Fourier transform (FFT) for J, a and b 
respectively. The logarithmic power spectrum logP(u,v) 
of F(u,v) is computed and averaged across all orientations 
(ψ) and neighbouring spatial frequencies (w±1) to yield a 
discrete 1-D function logP(w) of radial spatial frequency 
w. The differences between each logP(w) pair of original 
and perturbed images are then averaged for the whole 
image and the resulting difference function ∆logP(w) can 
further be reduced to a single value ∆logPJab by averaging 
the discrete values of ∆logP(w) (where w = 1,2...11) and 
finally averaging the results of the three colour channels 
(J, a, and b). Since the spatial frequency of the DC 
component of the Fourier spectrum is zero (w=0), the 
corresponding error values (∆logP(0)) should not be used 
for evaluating LCSF. 

∆logPJab can be regarded as a metric for evaluating the 
difference between images in terms of LCSF. The reason 
for using a logarithmic scale is because it gives the values 
for each spatial frequency a similar weight and is 
therefore more suitable for calculating overall errors. This 
way of calculating LCSF is partly based on Thomson and 
Foster’s application of higher-order image statistics.10 
Note that zero ∆logPJab means that both images have the 
same distribution of spatial frequency variation. 

The LCSF of an image also can be illustrated by 
plotting spatial frequency w against the logarithmic power 
spectrum (logPJab(w)). Figure 2 shows a series of images 
with different spatial treatment (blurring, sharpening and 
adding noise to the original) and their corresponding 
LCSFs. 
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Optimising 3D Histogram Matching 

As could be seen from its description, this method first 
obtains an indexed–colour version of a given 24 bit 
image. Here the four elements that determine the 
performance of the transformation are the colour space, 
the dithering and clustering methods and the number of 
indexed colours used. As the first three of these are well 
understood and as the impact of the number of indices 
used on the level of artefacts is simple, this section will 
focus on the optimisation of the subsequent 3D histogram 
transformation itself. 

 

Figure 2. Images with different spatial treatment and their 
LCSFs. 

 
In the process of transforming the 3D histogram of an 

image there are a number of parameters that can be 
adjusted and it is therefore important to try and set them 
so as to reduce artefacts in the resulting images. The most 
important of these parameters are: (a) the power to which 
∆E values are raised in EMD (i.e. whether EMD 
minimises ∆E or ∆En), (b) the weights of ∆J, ∆C and ∆H 
in the ∆E formula, (c) the number of indices used for 
colour quantisation. 

To evaluate the effect of varying the power of ∆E in 
the EMD calculation, ∆E, ∆E2 and ∆E3 were used for 
generating all the histogram matching images by using 
images with 512 indexed colours and overall results in 
terms of ∆logPJab were 0.69, 0.64 and 0.68 respectively. 
This means that in general the LCSF difference between 
original and histogram-perturbed image pairs was reduced 

by using the ∆E2 function. As some studies suggest that 
weighted ∆E formulæ are preferred for gamut clipping11 
a ∆E2

wt(1:2:1) function was also evaluated with EMD 
where the weights dividing [∆J,∆C,∆H] were [1,2,1]. The 
testing process was the same as used above and the 
resulting ∆logPJab for ∆E2

wt(1:2:1) was 0.65, however, as 
this metric was lower for the unweighted ∆E2 the latter 
should be used. 

Different numbers of indices were also tested (256, 
512, 1024 and 3072) and this showed that using 1024 bins 
gives the best result (Table 1). As can be seen, using 3072 
indexed colours didn’t improve the quality of resulting 
images. A possible reason for this is that colours of 
uniform areas in the original were transformed to have a 
larger number of target colours when increasing the index 
numbers. Hence, the uniformity of some areas in the 
original can be reduced more dramatically if there is a 
greater number of target indexed colours assigned to them 
and if these indexed colours are from different parts of 
colour space. 
 

Table 1. Effect of changing number of indexed colour 
used in terms of ∆logPJab. Refer to Figure 3, CG-to-
MUS here, for instance, means the LCSF difference 
between CG(org.) and CG-to-MUS images. 
No. of 
indices 

CG SKI STR CG MUS STR Overall 

 to-MUS to-SKI  
256 0.40 0.12 0.64 0.63 0.95 1.05 0.633 
512 0.43 0.11 0.62 0.67 0.95 1.09 0.645 

1024 0.41 0.12 0.66 0.66 0.95 0.99 0.632 
3072 0.40 0.33 0.85 0.75 1.12 1.16 0.766 

 

Applying 3D Histogram Matching 

One way of using the 3D histogram matching technique 
described above is to take a set of natural images and 
transform each of them so as to give it the histogram of 
the other images in the set. This will result in a matrix of 
images as shown in Figure 3, where all the images in a 
given row have the same image content (i.e. they show 
the same scene) and all the images in the same column 
have the same 3D colour histogram. In other words, all 
images in the same column are made up of the same 
pixels – the only difference between them is the spatial 
arrangement of the pixels. A set like this could, for 
example, be used for understanding what the relative 
importance of the 3D colour histogram is compared to 
image content and this could be seen by looking at the 
variation of some imaging application’s performance for 
the images in the columns versus the rows of the matrix.  

Figure 4 then shows the logPJab(w) characteristics of 
the images in column three of Figure 3. Comparing this 
figure with Figure 2 shows that the difference of spatial 
characteristics introduces to the images due to histogram 
transformation is similar in magnitude to the difference 
between the original image and the image that has been 
sharpened and had noise add to it in Figure 2. 
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CG (org.) CG-to-MUS CG-to-SKI CG-to-STR

 MUS-to-CG MUS (org.) MUS-to-SKI MUS-to-STR

SKI-to-CG SKI-to-MUS SKI (org.) SKI-to-STR

STR-to-CG STR-to-MUS STR-to-SKI STR (org.)

Figure 3: Image matrix showing 3D-histogram matching.

Conclusions

Overall this paper describes a method for
transforming the 3D colour histogram of an image so as
to exactly match any predetermined target state. The
method is based around the EMD histogram difference
metric and has a number of parameters that can be
optimised so that it results in images with fewer
artefacts. This paper also showed how to attempt such an
optimisation and how to quantify changes to the spatial
characteristics of the transformed images.

The ability to perturb the 3D colour histograms of
images in a controlled and accurate way can then be used
in any context where one needs to modify the colour
histograms of images. For example, it can be used for
generating sets of test images for studying the influence
of various statistical image characteristics on different
imaging applications. Furthermore, this method could
also be used for enhancing the appearance of images (if

one knew what statistical image characteristics are
preferred) or for removing variation from sequences of
images depicting the same scene.
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