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Abstract

Moiré patterns are undesirable artifacts in printing applica-
tions. Sampling moiré is caused by aliasing due to image
resampling from one lattice to another. In color printing
each color separation uses its own halftone lattice. There-
fore, moiré patterns display an unexpected new frequency
and orientation, but also influence the color appearance it-
self. These artifacts are frequently encountered in com-
mercial (even high quality) printing since the interpolation
algorithms used in RIPs are fairly simple (e.g., bilinear
interpolation). Additionally, high-resolution images be-
come everyday fare which increases the chance of high-
frequency components and so moiré patterns. Approaches
such as simple low-pass filtering unacceptably blurs the
edges, while manual smoothing by an operator is very
time-consuming.

This paper proposes an optimal prefilter which is based
on a least-squares resampling technique. Such an approach
requires a suitable discrete/continuous model and com-
putes the reconstruction function which minimizes the er-
ror between the continuous representations of the images
on the source and target lattice. The reconstruction func-
tion jointly takes into account the Nyquist areas of the
color separations and can be used as an optimal prefilter
before halftoning. Experimental results show that after
prefiltering, the images are much less prone to moiré and
look as sharp as without prefiltering.

Introduction

Printing techniques are based upon a common principle.
Since they can only put ink or not (i.e., a binary process),
they need to rely on the limited spatial resolution of the
human visual system (HVS) to create the perception of
an intermediate shade of the ink’s color [1, 2]. Halftoning
techniques distribute small bi-level features on the paper.
We focus on classical halftoning or AM (amplitude modu-
lation), which places dots of varying sizes upon a regular

lattice. This technique is still frequently used and very ro-
bust against ink-spreading problems.

Also color printing technology is using an important
property of the HVS which allows to synthesize (almost)
any color using a combination of three primary ink col-
ors: cyan (C), magenta (M), and yellow (Y). Black ink is
also added for technical and economical reasons [3]. Ev-
ery color separation uses its own halftone lattice, but they
are mutually rotated. Interaction of these periodic struc-
tures could easily give rise to moiré-patterns (intersepara-
tion moiré). A common approach to minimize intersepa-
ration moiré is by maximizing the angles of rotation. Typ-
ically, the black separation is at 45°, cyan at 105°, ma-
genta at 75°, and yellow (which is the least visible) at 90°.
If the separations are correctly aligned, a rosette structure
becomes visible which is acceptable. Good techniques to
obtain moiré-free separations are found in literature [3, 4].

Unfortunately, interseparation moiré is not the only
way moiré patterns arise in color printing [5]. Since the
original image is resampled for each color separation to
the corresponding lattice, aliasing due to resampling can
give rise to sampling moiré. Current resampling algo-
rithms used in RIPs are fairly simple, e.g., nearest neigh-
bour interpolation, bilineair interpolation or cubic convo-
lution [6], and therefore they do not prevent high frequency
components to be turned into moiré patterns. The advent of
advanced scanners and digital cameras increases the avail-
ability of high-resolution images and even so the chance of
high frequency components. Typical “dangerous” image
content are fine textures, fabrics in clothes, and grills. One
approach to prevent sampling moiré is to apply low-pass
filtering in order to suppress these high-frequency compo-
nents. However, such a method unacceptably blurs edges.
Another way is to let the operator manually blur “danger-
ous” regions in the image, but such areas are difficult to
predict and the job is time-consuming [7].

In this paper we propose a new linear prefilter based on
a least-squares approximation between two signal models,
one for the source and one for the target lattice. The next
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section briefly introduces the generalized spline model
needed to derive the prefilter. Next, the least-squares ap-
proximation is presented. Finally, some experimental re-
sults show the feasibility of the proposed method.

Generalized spline signal model

A continuous/discrete model allows us to construct a
“smooth” signal based on the samples. Splines are a fam-
ily of basis functions, which have a limited size of sup-
port, and expands as the order of the spline model in-
creases. One of the most important spline families are
the B-splines: piecewise polynomial functions which are
symmetric [8]. They are not orthogonal, but they form
a Riesz basis and satisfy the partition of unity condition.
It is also interesting to mention the convolution property,
which enables us to construct splines of the next order by
convolving the spline with the first-order spline. Note that
first-order spline interpolation is better known as “near-
est neighbour” interpolation; second-order spline interpo-
lation as bilinear interpolation.

These models are appropriate for one-dimensional sig-
nals and can be extended to two-dimensional rectangular
lattices by means of the tensor-product. We propose to
construct a spline basis suitable for general periodic lat-
tices. The first-order spline function on a lattice R =
[r1|r2], defined by the lattice vectors r1 and r2, is given
by the indicator function of the Voronoi cell of the lattice:

χR(x) =



1, x ∈ Voronoi cell
1/m, x edgeVoronoi cell
0, x /∈ Voronoi cell,

(1)

where m is the number of lattice points to which x is
equidistant. Note that χR(x) tiles the plane. We denote the
first-order spline as β0(x) = χR(x). Spline functions of
higher order are constructed by subsequent convolutions:

βn(x) = β0 ⊗ βn−1(x)

|det(R)| , n ≥ 1, (2)

where each spline function is normalized by the surface
area of the Voronoi cell |det(R)|. The model s(x) for a
function g(x) is given by

s(x) =
∑

k∈Z2×1

c(k)βn(x − Rk), (3)

where the spline coefficients c(k) must make s(Rk) =
g(Rk). For the first and second order this condition is
easy to satisfy by choosing c(k) = g(Rk), while higher
orders need an inverse filter operation to obtain the right
values for c(k). For this paper we only consider first and
second order spline models.
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Figure 1: The generalized spline functions for a hexagonal lat-
tice. (a) First-order. (b) Second-order.

As an illustration, consider the regular hexagonal lat-
tice. We first define the first-order hexagonal spline as the
indicator function of the Voronoi cell of the lattice. Fig-
ure 1 (a) shows the first-order hexagonal spline. Note that
it fills up the two-dimensional space if it is copied upon
each lattice site (i.e., the partition of unity condition is
fulfilled). A convolution of this spline with itself (and a
proper normalization) results into the second-order spline,
shown in Fig. 1 (b). We have proven that this spline fam-
ily fulfills the necessary conditions to be a sensible con-
tinuous/discrete model. Additionally, the order of approx-
imation corresponds to the nomenclature we introduced.
An analytical expression was derived up to and including
the third-order hexagonal spline. For more in-depth treat-
ment of these generalized splines, we refer to upcoming
papers [9].

Least-squares based prefiltering

Artifacts in color printing caused by sampling moiré are
very undesirable because they introduce new frequency
components (a new frequency and a new orientation) and
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also new color tints. Since the Nyquist areas of the lat-
tices of each color separation are different (i.e., mutually
rotated), moiré patterns are different in each color sepa-
ration and might interfere with each other. We illustrate
this idea by using a coarse halftone lattice (available in
Adobe PhotoShop). Figure 4 shows the result of the test
image “zoneplate” (a two-dimensional frequency sweep)
after regular halftoning. Severe moiré patterns appear dif-
ferently for each color separation; the combination also
shows new colors.

The first step of the derivation of a sensible prefilter is
to choose a discrete/continuous signal model to represent
the sampled images on their source and target lattice [10].
An interesting approach to resampling is the least-squares
approximation: the reconstruction function minimizes the
least-squares error between the continuous model for the
image on the source lattice and the model for the image
on the target lattice [11]. Based on the generalized splines,
we derived an expression for the reconstruction function
which performs the least-squares approximation between
both models. If the spline function on the source lattice is
given by βn(x) and the spline function on the target lattice
by β̃n(x), the reconstruction function which minimizes the
error between

s(x) =
∑
k

c(k)βn(x − Rk),

s̃(x) =
∑
k

c̃(k)β̃n(x − Rk),

is given by

(
βn
R

)−1 ⊗ βn ⊗ β̃n ⊗
(
β̃2n+1
R̃

)−1 ⊗ β̃n
R̃

(x)

| det(R)| , (4)

where the subscript R refers to a sampled version on the
lattice R:

βn
R(x) = βn(x)

∑
k

δ(x − Rk). (5)

For more details on the derivation and the computation of
Eq. (4) we refer to [9]. Figures 2 (a) and (b) show an exam-
ple of first-order spline signal representations on the source
and target lattice. The corresponding least-squares recon-
struction function is given in Fig. 2 (c).

Instead of proposing a different reconstruction func-
tion based on each lattice for a color separation (in a least-
squares sense), we propose a joint criterion. Figure 3
shows the frequency domain and each of the Nyquist areas
of the color separations and their largest enclosed circle.
The lattice which covers most efficiently the surface area
of the circle has an hexagonal primitive cell (and so is its
reciprocal cell in the frequency domain) [2, 12, 13]. We
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Figure 2: The least-squares method minimizes the squared er-
ror between the signal representations for a given signal model.
For example, by using first-order splines on the (a) source and
(b) target lattice. (c) The first-order least-squares reconstruction
function.
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Figure 3: The outer square is the Nyquist area of the original im-
age, while the small rotated square are the Nyquist areas of the
color separations. A hexagonal cell is able to cover the largest
enclosed circle most efficiently. The gray square corresponds
with the frequency region of the “zoneplate”.

computed the least-squares reconstruction function for re-
sampling from the source square lattice to this hexagonal
target lattice, and used it as a prefilter before halftoning.
The order of the filter is related to the order of each model.

Experimental results

Figure 5 shows the test image “zoneplate” after prefilter-
ing and halftoning. The moiré patterns are very well sup-
pressed in both color separations. The influence of the or-
der of the models used for original and resampled image is
almost unnoticeable. In fact, high orders are undesirable:
(1) the size of the support of the prefilter increases, (2) the
frequency response gets sharper and ringing artifacts might
appear. Of course, it’s important to examine that the filter
does not deteriorate normal images by blurring the edges.
Figure 6 shows no apparent difference between a “normal”
image after halftoning with and without prefiltering.

Conclusions

Moiré patterns in color printing are dreaded artifacts. The
advent of advanced scanners and digital cameras increases
the availability of high-resolution images and even so the
chance of high frequency components. Resampling tech-
niques such as nearest neighbour and bilinear interpola-
tion are common practice, but they do not incorporate the
properties of the target lattice and are prone to introducing
moiré patterns due to aliasing. In the case of color printing,
these moiré patterns display new frequencies, orientations
and colors. Based on a generalized two-dimensional spline

model, we propose a least-squares reconstruction function.
Experimental results show moiré patterns are well sup-
pressed while there is no visual loss of edge sharpness.

References
[1] Brian A. Wandell, Foundations of Vision, Sinauer Asso-

ciates, 1995.

[2] Robert A. Ulichney, Digital Halftoning, MIT Press, 1987.

[3] Henry R. Kang, Digital Color Halftoning, SPIE Optical
Engineering Press, 1999.

[4] Isaac Amidror, The Theory of the Moiré Phenomenon,
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