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Abstract
In this paper we present a new discrete implementation of
ridgelet transforms based on Reveillès discrete 2D lines.
Ridgelet transforms are particular invertible wavelet trans-
forms. Our approach uses the arithmetical thickness pa-
rameter of Reveillès lines to adapt the Ridgelet transform
to specific applications. We illustrate this with a color de-
noising algorithm. The broader aim of this paper is to show
how results of discrete analytical geometry can be sucess-
fully used in color image analysis.

1. Introduction

Image analysis is traditionally aimed at understanding dig-
ital signals obtained by sensors (in our case cameras). Dig-
ital information is considered as sampled continuous in-
formation and the theoretical background for it is signal
theory. This is sometimes referred to as “digital geom-
etry” in opposition to “discrete geometry” for computer
graphics. These last ten years, since J-P. Reveillès has in-
troduced it [6], discrete analytical geometry has made an
important progress in defining and studying classes of dis-
crete objects and transformations. This greatly enhanced
our understanding of the links between the discrete world
Z
n and the continuous world Rn. In the same time, a

new discrete signal decomposition has been developed in
image analysis: the wavelet representation. This new rep-
resentation has many applications such as denoising, com-
pression, analysis, etc. One of the aims of this paper is to
apply this new insight in discrete geometry to image analy-
sis and more specifically to a particular wavelet transform:
the ridgelet transform.

Wavelets are very good at representing point singular-
ities ; however they are significantly less efficient when
it comes to linear singularities. Because edges are a ex-
tremely common phenomena in natural images, an effi-
cient multiresolution representation of images with edges
would be quite advantageous in a number of applications.
A team of Stanford has recently developed an alternative
system of multiresolution analysis specifically designed to
efficiently represent edges in images [2]. Their attempt

was to design a new system, called ridgelet transform, in
the continuous domain so that an image could be approxi-
mated within a certain margin error with significantly fewer
coefficients than would be required after a wavelet decom-
position. However, most of the work done with ridgelets
has been theorical in nature and discussed in the context
of continuous functions. The important bridge to digital
implementation is tenuous at best. To our knowledge, we
can find in the literature only two solutions for the digital
ridgelet decomposition [4], [7] (notice that the study pro-
posed by Guédon et al is similar [5]).This paper presents
a new approach that aims at representing linear singular-
ities with a discrete ridgelet transform based on Reveillès
discrete lines.

In this article, we propose a new approach of the ridgelet
transform based on several types of Reveillès discrete lines
definitions in the Fourier domain. Our decomposition has
an exact inverse reconstruction process and the redundancy
of our Ridgelet representation can be adjusted with the
arithmetical thickness of the Reveilles discrete lines. To
illustrate this new decomposition, we propose a method of
restoration of noised images which uses a wavelet undeci-
mated method defined in [3].

2. The wavelet transform

The discrete wavelet transform (DWT) stems from the mul-
tiresolution analysis and filter bank theory. The wavelet
analysis is defined as:

cl�k� �
�p
�

X
n

h�n� �k�cl���k�� dl�k�

�
�p
�

X
n

g�n� �k�cl���k� (1)

with cl the coarse approximation and dl the decimated wavelet
coefficients at scale l and c� the original signal. The se-
quence fh �k� � k � Zg is the impulse response of a low-
pass filter. The sequence fg �k� � k � Zg is the impulse
response of a high-pass filter. Notice that with conditions
required on the filters, we get an exact restoration.

Because of decimation, the Mallat’s decomposition is
completely time variant. A way to obtain a time-invariant
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system is to compute all the integer shifts of the signal.
Since the decomposition is not decimated, filters are di-
lated between each projection. This algorithm presents
many advantages, particulary a knowledge of all wavelets’
coefficients: coefficients removed during the downsam-
pling are not necessary for a perfect reconstruction, but
they may contain information useful for the denoising.

3. The ridgelet transform

3.1. Continuous theory

A substantial foundation for Ridgelet analysis is documented
in the Ph.D. thesis of Candès [2]. We briefly review the rid-
glet transform and illustrate its connections with the radon
and wavelet transforms in the continuous domain. The
continuous ridgelet transform of s � L�

���
�

is defined
by :

r�a� b� �� �

Z
R�

�a�b���x�s�x�dx

with �a�b���x� the ridglet 2-D function defined from a
wavelet 1-D function � as:

�a�b���x� � a
�����

�
x� cos � � x� sin � � b

a

�
b is the translation parameter, a is the dilatation param-

eter and � is the direction parameter.
The function is oriented at the angle � and is constant

along lines x� cos � � x� sin � � cst. Transverse to these
ridges it is a wavelet. In comparison, the analysis con-
tinuous 2-D wavelet function are tensor products of 1-D
wavelet �a�b:

�a�b�x� � �a��b��x���a��b��x��

The Radon transform seems to be similar to the 2-D
wavelet transform but the translation parameters �b�� b��
are replaced by the line parameters �b� ��. Then, the wavelets
are adapted to analyse isolated point discontinuities, while
the ridgelets are adapted to analyse discontinuities along
lines.

A basic tool for calculating ridgelet coefficients is to
view ridgelet analysis as a form of wavelet analysis in the
Radon domain: in 2-D, points and lines are related via the
radon transform, thus the wavelet and ridgelet transforms
are linked via the Radon transform.

The Radon transform of s is defined as:

Rs��� t� �

Z
R�

s�x���x� cos � � x� sin � � t�dx�dx�

where � is the Dirac distribution. The ridgelet coefficients
r�a� b� �� of s are given by the 1-D wavelet transform to

the projections of the Radon transform where the direction
� is constant and x is varying:

r�a� b� �� �

Z
R

�a�b�x�Rs��� x�dx

Notice that the Radon transform can be obtained by ap-
plying the 1-D inverse Fourier transform to the 2-D Fourier
transform restricted to radial lines going through the ori-
gin (this is exactly what we are going to do in the discrete
Fourier domain with help of discrete Reveillès lines):

bs�� cos �� � sin �� �

Z
R

e�j�xRs��� x�dx

with bs��� the 2-D Fourier transform of s.
This is the projection-slice formula which is used in

image reconstruction from projection methods. We deduce
that the Radon transform can be obtained by appying the
1-D inverse Fourier transform to the 2-D Fourier transform
restricted to radial lines going through the origin.

3.2. Digital Ridgelet Transform

As we have seen, a basic strategy for calculating the con-
tinuous ridgelet transform is first to compute the Radon
transform Rs��� t� and secondly, to apply a 1-D wavelet
transform to the slices Rs��� ��. The discrete procedure
uses the same principle.

As presented in the first section, the discrete wavelet
decomposition is easy to implement, is stable and invert-
ible, and can be associated to a discrete orthogonal repre-
sentation.

The discretization of the Radon transform is more dif-
ficult to achieve. The majority of methods proposed in the
literature have been devised to approximate the continuous
formula. But, none of them were specifically designed to
be invertible transforms for discrete images and can not be
used for the discrete Ridgelet transform. Recently, some
articles studied the implementation of the digital Ridgelet
transform. Two approaches have been developed:

� Spatial strategy for digital Radon transform: the Radon
transform is defined as summations of image pixels
over a certain set of lines. Those lines are defined in
a finite geometry in a similar way as the line for the
continuous Radon transform in the Euclidean geom-
etry.

Rs�p� q� b� �
X
x

X
y

s�x� y�� �b� px� qy�

with �p� q� direction of projection

In [5] an inverse transform based on erosion and di-
latation operations is proposed. Vetterli et al. pro-
posed in [4] an orthonormal ridgelet transform.
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� Fourier strategy for digital Radon transform: the pro-
jection slice formula suggests that approximate Radon
transforms for digital data can be based on discrete
Fast Fourier transforms (FFT). This is a widely used
approach in the literature of medical imaging and
synthetic aperture radar imaging. The Fourier-domain
computation of an approximate digital radon trans-
form is defined as:

1. Compute the 2-D FFT of f

2. Extract Fourier coefficients which fall lines L�
going through the origin.

3. Compute the 1-D FFT on each lineL� (defined
for each value of the angular parameter).

In this strategy too, discrete lines must be defined.
In [7], Starck et Al proposed to use an interpolation
scheme which substitutes the sampled value of the
Fourier transform obtained on the square lattice with
sampled value of bs on a polar lattice. In this paper,
we propose to define the lines L� with the discrete
geometry in the Fourier domain. This solution al-
lows us to have different Ridgelet decompositions
according to the arithmetical thickness of the dis-
crete Reveillès lines. Our transformation is redun-
dant but the repetition of information depends on the
type of the discrete lines used and can be adapted
with the application. Moreover we obtain an exact
reconstruction.

4. Digital Radon transform based on
Reveillès discrete 2D lines

4.1. Definition of discrete lines

The discrete lines that are used in our application are not
classical discrete lines such as, for instance, Bresenham
lines nor the classical Reveillès lines. These lines are not
suitable for our purpose because they do not provide a cen-
tral symmetry in the Fourier domain. Without central sym-
metry, the inverse Fourier transform would produce imag-
inery values during the Radon transform. Central sym-
metry is obtained easily by using closed Reveillès discrete
lines defined as follows:

L��p�q� �
�
�x� y� � Z� jjpx� qyj � ���

�
with �p� q� � Z� the direction of the line (direction of
Radon projection) and � the arithmetical thickness.

The parameter � defines the connectivity of the dis-
crete lines. The closed discrete lines have many interest-
ing properties. One of the most important ones is that each

type of closed discrete line is directly linked to a distance:
for instance

L

p
p��q�

�p�q� �

�
�x� y� � Z�

�����jpx� qyj �
p
p� � q�

�

	

is equal to
�
M � Z�

��d� �M�L�p�q�

� � �
�

�
where L�p�q� �

px � qy � � is the Euclidean line of direction �p� q� and
d� the Euclidean distance [1].

4.2. Closed Reveillès discrete lines for digital Radon

transform

Our Digital Radon transform is defined by:

R�s�p� q� b� �
KX
k��

bs�fk�e��j kKb

with fk �

�
fk�
fk�

�
such that

��pfk� � qfk�
�� � ���

and K length of a line segment of L�p�q

We must define the set of discrete directions �p� q� in
order to provide a complete representation. The set of line
segments must cover all the square lattice in Fourier do-
main. For this, we define the direction �p� q� according to
pairs of symmetric points from the boundary of the 2-D
Discrete Fourier Spectra.

Proposition 1 Let a square lattice be defined as 	�
N �


�N�N � � 
�N�N �. Let us consider the set of directions
�pm� qm� with, for � � m � �N� �pm� qm� � �N�m� N �
and for �N�� � m � �N��, �pm� qm� � �m � 
N � �� N �.
The set of all the closed lines defined by jpmf� � qmf�j �
�m�� with �m � sup �jpmj � jqmj� provides a complete
cover of the lattice 	�

N .

The proof of this proposition is obvious because of
a well known result in discrete analytical geometry that
states that a closed discrete line of direction �p� q� is con-
nected if and only if � � sup �jpj � jqj� [6]� For thinner
(non connected) discrete lines, with values of � � sup �jpj � jqj� �
it is possible but not certain that we also achieve a com-
plete cover of the lattice 	�

N depending on the value of �
compared toN . however, for our applications, we prefered
working with connected discrete lines.

Three different types of closed discrete lines have been
tested:

� closed naïve discrete lines: � � sup �jpj � jqj�. These
lines are the thinnest connected closed discrete lines.
They are �-connected. They provide therefore the
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smallest redundancy. Closed naïve discrete lines are
reated to the distance

d� � L
sup�jpj�jqj�
�p�q� �



M � Z�

����d� �M�L�p�q�

� � �

�

�
where d� �A�B� � jxA � xBj� jyA � yB j;

� supercover lines: � � jpj � jqj. These lines are
the thickest connected closed discrete lines that have
been considered in our applications. They are the
thinnest closed lines that are �-connected and that
cover the Euclidean line they approximate. They
provide of course an important redudancy. Super-
cover lines are related to the distance d�:

L
jpj�jqj
�p�q� �



M � Z�

����d� �M�L�p�q�

� � �

�

�
The supercover lines have an important theoretical
importance.

� closed pythagoricean lines: � �
p
p� � q�. These

lines are �-connected and offer a medium redundancy,
in between the naïve and supercover lines. The lines
are related to the Euclidean distance d�:

L

p
p��q�

�p�q� �



M � Z�

����d� �M�L�p�q�

� � �

�

�
These lines possess the property of having a number
of pixels per period close to its length. This means,
in practice, that if pixels of the discrete line would
hold energy, this energy would be distributed evenly
along the line in the same way independently of the
slope of the line.

4.3. Discrete Ridgelet transform

Now, to obtain the Ridgelet transform, we simply apply the
1-D wavelet transform on each discrete Radon coefficients
R�s�p� q� b� obtained on the line segment L�p�q.

This transform is easily invertible. The reconstruction
procedure works as follows:

1. Compute the inverse 1-D wavelet transform followed
by the inverse 1-D FFT transform for each set

R�s�pm� qm� ��

with m � 
�� �N � ��

2. Substitue the sampled value of bf on the lattice where
the points fall on lines L�p�q with the sampled value

of bf on the square lattice.

The precedent procedure permits one to obtain an exact
reconstruction if the set of M � �N � � lines provides a
complete cover of the square lattice.

Now with our invertible discrete Radon transform, we
can obtain an invertible discrete Ridgelet transform by tak-
ing the discrete wavelet transform on each Radon projec-
tion sequence

fR�s�pm� qm� k�gb����K��	

where the direction �pm� qm� is fixed. This wavelet
transform can be decimated or undecimated and the wavelet
base can be adapted according to the application, as for the
classical wavelet decomposition.

5. Denoising of color images by Ridgelet
transform

We can generalize to color images the discrete wavelet de-
composition presented in the first section. For this, we
apply convolutions on the three components of the color
image. With the same strategy, we can compute the Radon
transform on the three components. But we must select
an adapted color space. For the denoising application, we
choose the Y CrCb space, to treat separately the color and
intensity components.

The procedure of denoise by Ridgelet transform is sim-
ply to perform thresholding on the Ridglet coefficients and
compute the inverse Ridgelet transform. To perform thresh-
olding, we use our undecimated method developed for the
wavelet decomposition [3]. The redundance of the wavelet
decomposition, associated with this method, reduces arti-
facts which appear after thresholding.

We present in the figure two results of our denoising
method. With the first example, we can see that this method
can reconstruct very noisy image. Because of the adapta-
tion of this decomposition to linear singularities, the edges
of objects are keeping and the noise seems to be removed.
The second example illustrates the results for different def-
inition of the lines LDp�q . As for the first image, the fea-
tures are generally correctly reconstructed and the noise is
smoothed. But if we study more precisely the result on
the woman’s hat, we see that the denoising is better for
D � jpj�jqj��

� than for D � max�jpj�jqj�
� . The first choice

of D introduces more redundancy into the decomposition
and thus reduces artifacts.

This new decomposition can be adapted to others noisy
images by using others color spaces, discrete lines and
wavelet bases. More generally, many applications can use
this decomposition : for example, with a parameter D cor-
rectly chosen, we can limit the redundancy of the decom-
position and thus use the representation for a compression
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Figure 1: (a) noisy image ”object” (b) denoised by ridglet decomposition with D �
p

q��p�

� (c) noisy image woman (d) denoised by
ridglet decomposition with D � max�jpj�jqj�

� (e) denoised by ridglet decomposition withD � jpj�jqj��
�

algorithm with a selection of the largest Ridglet coeffi-
cients.
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