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Abstract 

A class of linear/nonlinear filters with varying adaptive 
window size is studied. After some (optional) color 
transformation, for each of three color channels the 
window size of the applied mask-filters is considered as a 
parameter. The intersection of confidence intervals (ICI) 
rule is used for selection of the adaptive window size 
based on the filter’s outputs obtained for different window 
sizes. In parallel five filters with symmetric and four 
quadrants masks are used. The ICI rule gives the adaptive 
window sizes for each of these filters and in a point-wise 
manner for each pixel of the image. This adaptive window 
size filters are able to suppress the noise efficiently 
provided that color edges are well preserved. The final 
filtering output is obtained by combining outputs of the 
mentioned five partial filters, each with the varying 
adaptive window sizes. This operation is produced for 
each color channel. Finally, we convert the estimates of 
the color image components back to RGB image. 

Originally, the ICI rule has been proved by 
theoretical and empirical studies to be efficient for linear 
and median filters. We show how this ICI rule can be 
modified and applied for color image filtering. 

Simulation experiments confirm that the ICI rule 
used for window size selection of the mean and median 
filters of the multichannel combined filters is able to 
significantly improve quality of color image filtering. The 
performance of the filters is characterized both by the 
accuracy and human visual perception criteria. 

1. Introduction 

Linear filters have long been used in many signal and 
image processing applications. They can be easily 
analyzed and implemented. While linear filters can be 
optimal when a signal or image is corrupted by Gaussian 
additive noise, other noise contamination situations, such 
as impulsive, speckle, or signal dependent noise, demand 
the use of nonlinear filters.1,3 Several important nonlinear 
filter classes that have gained much popularity are classes 
based on monotone (positive) Boolean functions. This 

class includes median and related filters, weighted order 
statistic filters, and morphological filters with .at 
structuring elements.3 

It is well known that filters with fixed parameters are 
not as effective as adaptive filters, whose parameters 
depend on the local behavior of the signal, which is 
assumed to be nonstationary, as is the case for images.1 
One important parameter is the window size of the filter. 
For example, for the mean filter smaller window sizes 
lead to better detail preservation, but worse noise 
attenuation capability than larger window sizes. Thus, 
window size selection is one of the key questions in a 
filter design. This trade-off between detail preservation 
and noise suppression takes place in many situations. In 
statistical terms, it is a trade-off between the bias and 
variance of estimation. 

In this paper we present an algorithm of spacevarying 
filtering based on a recently developed method, called the 
Intersection of Confidence Intervals (ICI) rule.4 
Originally, this rule was proposed and justified for local 
polynomial approximation (LPA) scalar linear filters. A 
generali-zation to two dimensional signals is proved to be 
efficient for gray-level image de-noising. In particular, in 
Ref. 5 and Ref. 7, the image de-noising problem is 
considered for quite a general observation model 
including image dependent noise. The de-noising and 
window size selection are combined into one algorithm 
where the adaptive windows and signal de-noising are 
produced on the basis of the same observation model. A 
development of the ICI rule for the median filters is given 
in Ref. 6. 

The main original results of this paper are concerned 
with the development of the following algorithm. First, an 
RGB image is transformed in the other color space (e.g., 
Opponent, CIELAB, Munsell, etc.). Then, for each of 
three channels of the new model the window size of the 
applied mask-filters is considered as a parameter. Lets us 
call this mask-filters by elementary ones. The ICI rule is 
used for selection of the adaptive window size based on 
the filter’s outputs obtained for different window sizes. In 
parallel five filters with symmetric and four quadrants 
masks are used. The ICI rule gives the adaptive window 
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sizes for each of these filters and in a point-wise manner 
for each pixel of the image. This adaptive window size 
filters are able to suppress the noise efficiently provided 
that color edges are well preserved. The final filtering 
output is obtained by combining outputs of the mentioned 
five partial filters, each with the varying adaptive window 
sizes. This operation is produced for each of the color 
channels. Finally, we convert the estimates of the color 
image components back to RGB image. 

In this paper we restrict a class of the applied 
elementary filters to simple mean and median, which 
results in an efficient implementation in a general quite 
complex multichannel filters. Simulation experiments 
confirm that the ICI rule used for window size selection 
of the mean and median filters of the multichannel 
combined filters is able to significantly improve quality of 
color image filtering. The performance of the filters is 
characterized both by the accuracy and human visual 
perception criteria. 

2. Combined Weighted Mean/Median Filters 

Let Z(j)(k,l), with (k,l) integers, j = 1, 2, 3, be noisy 
observations of a color (M × N × 3) image in any given 
color space (linearly or nonlinearly related to the RGB 2 ) 
obtained as a contamination of a true image A(j)(k,l) by an 
additive noise n(j)(k,l) as follows: 

Z(j)(k,l) = A(j)(k,l) + n(j)(k,l),     (1) 

0 < k < M - 1, 0 < l < N - 1, j = 1, 2, 3, 

where the n(j)(k,l) are i.i.d. random errors with E(n(j)(k,l)) = 
0 and E(n(j)(k,l))2 = σ2. 

Let Wh,q denote five masks - local neighborhoods of 
the pixel (k,l) in Z(j)(k,l), where h is a size of the mask, and 
q is a parameter defining a position of these windows 
respective to the pixel (k,l) (see Figure 1 for graphical 
interpretation). 

We define a 3-channel combined weighted 
mean/median filter for each of the color plans in the 
following manner. First, independently, for each color 
plans, and for each of five windows Wh,q, 0 < q < 4 we 
aim to obtain the “best” estimate of the current pixel 

),(ˆ )(
, lkA j
qh . Next, we like to obtain the “best” point-wise 

combination of the five obtained estimates ),(ˆ )(
, lkA j
qh  for 

each pixel to get a final estimate ),(ˆ )( lkA j
h  for the (k,l)th 

pixel in the jth color plan. 
This filtering procedure has the following sequential 

steps: 
(1) The estimates for each of five masks are found for 

window sizes h∈ H, where H is a given set of 
windows: 
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(2) The ICI rule is used in order to find the optimal 
window sizes h+∈ H for these estimates, 

(3) The estimates with the optimal window sizes are 
combined and this combined estimate is a solution of 
the optimization problem 
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The weights in (2) and (3) are nonnegative and 
normalized: ∑ = =ρ≥ρ 4

0 1,0
q qq  and ρh(s,t) > 0, 

∑ ∈ qhWts ,),( ρh(s,t) = 1, ρh(0,0) = maxs,t ρh(s,t). The weight 
ρh(s,t) is of the form: ρh(s, t) = ρ(s/h, t/h)/h2, where the 
parameter h defines the window size (or filter’s 
bandwidth) and controls the scale of the estimation 
residuals with respect to both variables s and t. The 2D 
mask ρh(s,t), with (s,t) ∈  Wh,q gives the weights applied to 
every observation inside the local neighborhood of 
Z(j)(k,l). In the simple constant weight case: ρq = 1/5 for all 
q, and ρ(s,t) = 1, (s, t)∈ Wh,q, for five 2D square central (q 
= 0) and quadrant masks 1 < q < 4 (see Figure 1). 

 
 

 

Figure 1. Graphical interpretation of the masks: X corresponds 
to the pixel (k,l), I, II, III, IV show the quadrant masks (q = 1, 2, 
3, 4), q = 0corresp onds to the mask centered with respect to X. 

 
The loss functions F1(x), F2(x) used in this paper are 

particularized to |x| or x2. Then, all of the the estimates in 
(2) and (3) are the weighted means and medians. Due to 
the constant weights in the used masks, the weighted 
mean/median filter in (2)-(3) are eventually simplified to 
the following four combined mean/median filters: 

mean - mean filter: F1(x) = F2(x) = x2, 

mean - median filter : F1(x) = x2, F1(x) = |x|, 

median - mean filter : F1(x) = |x|, F2(x) = x2, 

median - median filter : F1(x) = F2(x) = |x|. 

The outputs of these filters are defined as solutions of 
the following special case of (2)-(3): 
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3. The ICI Rule For Weighted 
Mean/Median Filters 

Let us introduce a finite set of window sizes H = {hr : h1 < 
h2 < .... < hJ}, starting with a small h1 and the correspond-
ing estimates ),(ˆ )(

, lkA j
qh  of the true signal A(j)(k,l) obtained 

with the window h* Let ωh(k,l) and σh(k,l) be the bias and 
the standard deviation of this estimate. Denote by h*(k,l) 
the ideal window size corresponding to the minimum 
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value of the mean squared error ( )
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For quite general classes of the filters and signals the 
asymptotic estimation error has the following properties: 
(1) For the ideal window size the ratio 

|ωh*(k,l)(k,l)|/σh*(kl)(k,l) = γ > 0 is constant independent 
of the signal; 

(2) The bias is smaller than the standard deviation, 
|ωh(k,l)| < γσh(k,l), for h < h*(k,l) and the bias is 
larger than the standard deviation, |ωh(k,l)| > γσh(k,l), 
for h > h*(k,l). 
 
Then the h*(k,l) gives the optimal bias-variance 

balance and the estimate of this h*(k,l) can be obtained as 
follows. We determine a sequence of confidence intervals 
D(r) of the biased estimate ),(ˆ )(

, lkA j
qh , where h = hr, as 

follows 
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where Γ is a threshold parameter of the confidence 
interval depending on γ and the probability that the signal 
A(j)(k,l) belongs to D(r). In this paper we treat Γ as a 
design parameter of the algorithm. 

The following describes the ICI rule that is used in 
order to obtain the adaptive window size4: 

Consider the intersection of the intervals D(r), 1 < r < 
i, with increasing i, and let i+ be the largest of those i for 
which the intervals D(r), 1 < r < i, have a point in 
common. This i+ defines the adaptive window size h*(k,l) 
and the adaptive estimate as follows  

).,(ˆ),(ˆ )(
),,(*

)( lkAlkA j
qlkh

j
q =     (5) 

Thus, the ICI rule gives both the optimal estimate and 
the corresponding adaptive window size. 

This algorithm can be justified, at least in the 
asymptotic sense with quite general assumptions and for a 
rather general class of estimates. It is emphasized that for 
the implementation of the ICI rule we need the estimates 

),(ˆ )(
, lkA j
qh  of the signal and the corresponding standard 

deviations σh(k,l) obtained for different window sizes. For 
the mask-filters with the constant weights σ2

h(k,l) = V 
σ2/#, where # is a number of pixels in the window, V = 1 
or π/2 for the mean and median estimates respectively. 
The estimate of the standard deviation of the noise σ is 
obtained as a median of finite differences of the noisy 
image for each of the color channels independently 
according to the formula σ̂  = {median(|Z(j)(k,l) – Z(j) (k + 
p,l + q)| : (p,q) = (0,1), (1,0); ∀ k,l}/( ⋅2 0.6745). 

4. Simulations 

Four RGB color images: “Lenna” and “Peppers” of size 
(480 × 512 × 3), “Fruits” (512 × 512 × 3) and “House” 
(256 × 256 × 3), shown in Figure 2, are test images in our 
experiments. 

Optimal window sizes for a first color plane for the 
image “Peppers” in the case when no noise is added are 
shown in Figure 3 for all 5 assigned neighborhood masks 
in order to demonstrate window size selection using ICI 
rule. 

The set of window sizes in these experiments was 

h = {1, 2, 3, 5}. 

One can clearly see that ICI algorithm detects edges 
accurately by assigning smaller window size to edge 
points and larger window sizes to non-edge pixels. 
Optimal window sizes applying ICI rule to noisy 
“Peppers” image (additive zero mean Gaussian noise with 
variance 400 in all channels) shown in Figure 4, 
demonstrate robustness of the ICI algorithm. Note that 
here we see edges much thinner than in the previous 
image, thus providing better filtering ability in the case of 
noise present. 

Several noisy observations of all 4 test images from 
Figure 2 are obtained by adding to each color channel of 
these images Gaussian noise with zero mean and 
variances varying from 0 to 900. 

 

 

Figure 2. The test images 

 

Figure 3. The first color plane of the true image “Peppers” and 
5 optimum window sizes detected by ICI rule 

 
For our experiments we have chosen the opponent 

color space as one of the physiologically motivated color 
spaces, and due to the fact that three color features 
constitute an effective set of features for segmenting color 
images.2 This is one of the simplest (from computational 
point of view) linear transforms of the color RGB space, 
given by: 
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Figure 4. The first color plane of the noisy image “Peppers” 
and 5 optimum window sizes detected by ICI rule 

 
The results of experiments with varying window size 

Mean-Mean-ICI filters on noisy (Gaussian noise) test 
images are presented in Figure 5 in comparison with the 
corresponding results of fixed size Mean filters. In this 
Figure we have 4 subplots, showing average error 
measures (of all 4 images) presenting PSNR (peak signal-
to-noise ratio), MSE (mean square error), MAE (mean 
absolute error) and MaxDif (Maximum difference), 
respectively, between filtered images and noise-free 
original images. These error measures are defined as 
follows: 
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Error curves in Figure 5 correspond to the following 
cases: no filtered (dotted), filtered by mean (3 × 3) filter 
(dashdot), by mean (5 × 5) filter (dashed) and by our 
Mean-Mean-ICI varying window size filter (solid). 

For the next set of experiments we have several noisy 
observations of 4 test images from Figure 2, obtained by 
adding to each color channel of these images noise with 
Laplacian distribution of variances varying from 0 to 900. 

Again as in the previous set of experiments, we start 
by demonstrating ability of ICI rule to properly switch 
between different window sizes. Figure 6 shows optimal 
windows for a first color plane for the image “House” in 
the case when no noise is added. 

The set of window sizes in this set of experiments 
was 

h = {2, 3, 5, 7}. 

In Figure 7 we show optimal windows selected using 
ICI rule for noisy “House” image (additive zero mean 
Laplacian noise with variance 400 in all channels). 

The results of experiments with varying window size 
Median-Median-ICI filters are presented in Figure 8 in 
comparison with the corresponding results of fixed size 
Median filters applied separately to each color channel. 
Again, as in Figure 5, we show 4 subplots, with average 
error measures (of all 4 images) presenting PSNR, MSE, 
MAE and MaxDif, respectively, between filtered images 
and noise-free original images. Error curves correspond to 
the following cases: no filtered (dotted), filtered by 
median (3 × 3) filter (dashdot), by median (5×5) filter 
(dashed) and by Median-Median-ICI varying window size 
filter (solid). 
 

 

Figure 5. Average (over 4 test images) error measures (PSNR, 
MSE, MAE and MaxDif) versus noise sigma (standard deviation 
of the additive Gaussian noise) for non-filtered images, filtered 
by mean (3-by-3), (5-by-5), and Mean-Mean-ICI filters 

 

 

Figure 6. The first color plane of the true image “House” and 5 
optimum window sizes detected by ICI rule 
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Figure 7. The first color plane of the noisy image “House” and 
5 optimum window sizes detected by ICI rule 

 

Figure 8. Average (over 4 test images) error measures (PSNR, 
MSE, MAE and MaxDif) versus noise sigma (standard deviation 
of the additive Laplacian noise) for non-filtered images, filtered 
by median (3-by-3), (5-by-5), and Median-Median-ICI filters 

5. Conclusions 

This paper is introduced adaptive window size algorithms 
for filtering color image data. We consider in parallel the 
mean/median filters with square symmetric and non-
symmetric windows and determine the filter output as a 
combination of the outputs of these mean/median filters. 
The window size of the mean/median filters is varying 
and adaptive to unknown color signals. The ICI rule is 
developed for data-driven window size selection. The 
algorithm is efficient and simple to implement. It requires 
calculation of the mean/median estimates and their 
standard deviations for a set of the window size values. 
The threshold parameter Γ in (4) plays an important role 
in the performance of the algorithm. Too large or too 
small Γ results in over-smoothing or under-smoothing 
data, respectively. The parameter Γ is treated as a 
designed parameter of the algorithm, fixed or data-driven 
estimated by some statistical methods. In this paper we 
consider the fixed value Γ = 1.5 

The behavior of the adaptive filters is analysed and 
their performance is compared with that of the most 
commonly used nonadaptive mean/median filters with 
square symmetric nonvarying size masks. 
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