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Abstract 

It is well established that in order to obtain the best colour 
performance of a colour input device such as a scanner or 
a camera, that one needs to know the device spectral 
sensitivities. Unfortunately measuring sensitivities outside 
the laboratory is hard and moreover, manufacturers are 
reluctant to give the user specifications. Thus, there has 
been considerable interest in developing numerical 
techniques for estimating the spectral sensitivities. 

These methods are based on taking images of known 
spectral targets and then, using knowledge of the image 
formation process, solving for the sensitivities using 
numerical methods. It is important to state that while these 
methods perform reasonably well, the problem is 
inherently ill-posed. There is simply not enough degrees 
of freedom in the spectral profile of a reflectance target to 
recover device sensitivities. 

In this paper we tackle this uncertainty head on and 
develop a method to recover device sensitivities with 
uncertainty error bars. Experiments with a Megavision 
camera return a sensor estimate together with error bars. 
The error bars are sufficient to explain the discrepancy in 
the recoveries delivered by single-answer estimation 
algorithms and the actual sensitivities. 

1. Introduction 

It is accepted that in order to attain the best performance 
in a colour reproduction pipeline that input colour 
devices, such as scanners and cameras, should be 
spectrally calibrated. Unfortunately, determining the 
spectral response of scanners (or cameras) is not an easy 
task. In the laboratory camera sensitivities can be 
accurately measured using a monochromator. The 
monochromator is used to generate narrow spectral bands 
of light with known power. The device spectral response 
is estimated by noting the RGB response for different 
spectral bands across the visible spectrum. Unfortunately, 
a monochromator is a very expensive piece of test 
equipment (it is at least an order of magnitude more 
expensive than a camera) and so cannot be used outside 
the lab. An alternate approach would be to use a sequence 
of filters which transmit only in narrow wavelength 
bands.1 Unfortunately, these filters are themselves 
expensive. 

As a consequence researchers have sought other 
simpler methods for arriving at a spectral calibrations. 

The basic approach followed is to cast the sensor 
estimation problem as an equation solving exercise. 
Indeed, assuming linear device response, it is well known 
that the sensor response to spectral stimuli can be 
modelled as a linear equation of the form: 

Ax = b      (1) 

Where the matrix _ encapsulates the spectral stimuli, b the 
sensor responses (red, green or blue responses) and x the 
spectral sensitivity of the sensor. Standard numerical 
methods can be used to solve equations of this form to 
arrive at an estimate of the sensor spectral response. 
Unfortunately the degrees of freedom in the spectral 
sensitivity function are usually greater than those 
available in the spectral stimuli. As such A is ‘ill-
conditioned’ and so solving for _ using naive methods 
returns a sensor which is highly tuned to the spectral 
stimuli in _ but which is far from the true spectral shape of 
the sensor.2 

To get around this problem we might usefully 
incorporate domain knowledge in to the solution strategy 
thereby regularizing the solution making it more stable. 
For example, we know that spectral sensitivities are all 
positive functions3 of wavelength. Moreover, they will 
tend to be somewhat smooth and also have a single 
dominant peak sensitivity.2 Various methods have been 
proposed for solving (1) with these additional 
constraints2,1,3,4 and good results are often attained. 

Unfortunately, regularised solutions are only as good 
as the regularizing assumptions are appropriate. If for 
example, smoothness is assumed and the sensor has 
significant high frequency components then these must be 
missed in the sensor recovery. Moreover, the competing 
techniques for sensor estimation do not return consistent 
answers and, as a consequence, the user is left in an 
unsatisfactory position. They can, in good faith, 
implement the suite of calibration methods and ’solve’ for 
the ‘best’ sensor according to each method. But, the user 
is given no guidance on which sensor is best overall? 

A similar thought process has been followed in the 
colour constancy literature. Forsyth5 formally 
demonstrated that the colour constancy problem is ill-
posed: given a scene captured under unknown 
illumination there is a set of possible light colours that can 
account for the data. Forsyth presented an elegant 
algorithm for recovering the whole set of possible lights. 
It is only at the second stage that a single light is chosen 
from the set of possibilities. The best single illuminant can 
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be chosen according to well founded statistical principles. 
For example, the mean illuminant colour6 or the median7 
have been proposed as reasonable estimates. Additionally 
with prior information about the likelihood of different 
reflectances we might make a maximum likelihood 
selection.8,9 Moreover, it is a simple matter to return to the 
user the uncertainty in the illuminant estimate.10 

In this paper we apply the same sort of reasoning to 
the problem of sensor recovery. We begin by adopting 
only the weakest constraints: sensors should be positive, 
somewhat smooth and that the recovered sensors should 
predict RGB data within certain very liberal error bounds. 
Subject to these constraints we show how the set of all 
plausible sensor estimates can be created. We then set 
forth methods to calculate the mean and covariance of this 
set. In this framework our calibration returns a mean 
estimate together with error bars. 

Experiments show that the recovered solution set 
contains, as we would expect, solutions delivered by 
regularization methods. Moreover, we have found that 
often the error bars are rather small indicating to the user 
that they can be confident of the appropriateness of their 
calibration. 

In section 2 we give an overview of the estimation. 
Section 3 discusses how to recover the feasible set of 
solutions and thereafter how to calculate the mean 
estimate and the error bars. Experiments on a Megavision 
camera are reported in section 4. The paper finishes with a 
short conclusion in section 5. 

2. Background 

The response of a linear sensor to a spectral stimulus can 
be modelled as: 

),,()()()( BGRkdRSEp =λλλλ= ∫ω     (2) 

where λ is wavelength, p is the sensor response, E is the 
illumination and   is the surface reflectance and R is a 
camera sensitivity function. Integration is performed over 
the visible spectrum ω. 

Assuming that spectral functions can be represented 
by sampling at 10 Nanometer intervals across the visible 
spectrum (they can11), Equation (2) is rewritten as: 

λ∆= ∑
=

iii
i

k RSEp
31

1

     (3) 

where E, S, and R are 31 component vectors for light, 
reflectance and spectral sensitivity. The subscript ( indexes 
wavelength and the scalar ∆λ  accounts for the 10 
Nanometre sampling distance. Henceforth we will assume 
∆λ is accounted for in R. 

Let us now consider the sensor response to set of 
spectral stimuli. Let ith row of an N x 31 matrix , denote 
the i reflectance multiplied by the scene illumination 
(either the scanner light or the prevailing light for 
cameras). The N  device repsonses by the vector p can be 
written as: 

CRp =       (4) 

where the sum of multiplicands in (3) has been rewritten, 
in the usual way, as a matrix multiplication. We see that 

(4) is exactly in the same ’regression’ form as Eq. (1). 
Let us assume that the number of spectral stimuli N is 

much more than 31. Assuming that each column of C is 
linearly independent from each other column, the sensor 
R can be calculated by applying the pseudo inverse12 to 
both sides of (4): 

[ ] RpCCC tt ≈
−1

     (5) 

Notice that in solving for _ we have replaced the equality 
symbol in (4) with the approximation symbol in (5). We 
do this, because although the linear model formulation in 
(3) is reasonably accurate it is not perfect. Moreover, both 
the quantities , and _ are measurements and are subject to 
measurement noise. Hubel et al1 populated the rows of , 

with narrow-band colour signals (constructed by placing a 
series of narrow-band interference filters in front of a 
camera). Thus, linear independence of , was assured and 
the pseudo inverse solution returned adequate results. 

Unfortunately, if the rows of , are populated with 
colour signal spectra generated from a reflective target 
(e.g. the Macbeth colour checker or an IT8 chart) then the 
linear independence condition is not met and the pseudo 
inverse solution cannot be applied. Rather, it is well 
known that reflectances have at most 6 to 8 degrees of 
freedom13,14 (since reflectances tend to vary smoothly with 
wavelength). As a consequence the inversion in (5) which 
assumes 31 degrees of freedom cannot be performed 
reliably. This is unfortunate since the reflectance target 
approach to calibration is by far the easiest and cheapest 
(interference filters are expensive) for a user to carry out. 

The solution to this problem is to incorporate 
additional domain knowledge, or constraints, into the 
problem formulation. Constraints reported in the literature 
include: 
(1) Sensor positivity: 

Ri > = 0  (i = 1,2,…,31) 

(2) Sensor smoothness: 
 |Ri – Ri-1| < T (i = 2,…,31) 

(3) Unimodality 

Ri > Ri-1 (i = 1,2,…,k) and Ri <  Ri-1 (i = k + 1, k + 2,…,31)  

(4) Bounded prediction error: 

),...,2,1( NjRCp j
t
jj =ε<−  

where  is a 1 x 31 row vector (for the _ th color stimuli). 
In a general (and informal way) we might write the 

constrained, or regularised recovery problem as: 

pRCR
imize

−
min

     (6) 

subject to (1) AND/OR (2) AND/OR (3) AND/OR (4) 
These constraints might be applied strongly in the 

sense that the solution has to meet them exactly. This is 
the approach followed in the methods.2,3 Or they can be 
applied weakly. This is the ’penalty’ approach used in 
Tikhonov regularization.15,4 Moreover, there exists a range 
of optimization strategies that might be usefully applied 
including Linear programming,16 Quadratic Programming2 
and Projection onto convex sets.3 
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Of course if different constraints are applied and 
different optimization strategies followed then the result is 
different sensor estimates. Since the recovery process is 
inherently ill posed the user cannot easily distinguish 
between different answers. Indeed, our own experiments 
(carried out where we know the spectral sensitivities) 
indicate that the ’best’ methods depends on the device and 
data used in the analysis. 

3. Solving for the Set of Sensors 

Looking at (6) we notice that the sensor we are trying to 
recover must satisfy the sets of constraints. We might 
wonder therefore if the constraints themselves are 
sufficiently stringent that they themselves can lead to a 
sensor estimate. To see how we might proceed, remember 
that in the sensor estimation framework which we have 
developed, a sensor is a vector in 31-dimensional space. 
The positivity constraint simply restricts the sensor to lie 
in a particular part of the sensor space. Thus, just by 
applying positivity we have reduced the set of all possible 
sensor estimates. Similarly, the constraints on smooth-
ness, unimodality and bounded prediction error, all 
demarcate regions of sensor space in which the recovered 
sensor must lie. The intersection of all these regions is 
exactly the set of feasible solutions. Any sensor that lies 
within the set is a perfectly reasonable answer to the 
sensor estimation problem. 

Of course, we cannot usefully deal with a whole set 
of answers. Rather, to proceed we need to choose a single 
estimate from the feasible set. We propose that the 
centroid (or mean) of the set as a reasonable estimate. 
Moreover, we also calculate the standard deviation around 
the mean. In this way we arrive at an uncertainty estimate 
together with error bars. If the error bars are small then 
this indicates that we are quite certain that the mean 
estimate is correct. In contrast, large errors indicate higher 
uncertainty. In the limiting case if the errors are 
significant, this might necessitate the user to carrying out 
a second more stringent calibration (perhaps one 
involving a more expensive target). 

3.1. Computational Methods 
To compute the feasible set we first note that 

constraints (1) through (4) are defined by sets of linear 
inequalities. A single inequality in the 31-dimensional 
sensor space effectively splits the space into two parts: 
one half (which satisfies the inequality) in which the 
sensor might lie and the other which is infeasible. Given n 
inequalities, the sensor must simultaneously lie in each of 
the n half-spaces. That is it must lie in the intersection of 
halfspaces. This intersection region is a closed and convex 
subset of the 31-dimensional space. We might represent 
this convex set by a set of extreme vertices: 

{ }Mvvvsetfeasible ,...,, 21=     (7) 

All the interior points of the feasible set can be 
written as a convex combination of the vertices: 


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The feasible set can be found using geometric 
algorithms. However, it should be pointed out that these 
algorithms have a large complexity. For the 31-
dimensional case the worst case complexity is O(n15) 
where n is the number of constraints. However, in practice 
the smoothness constraint diminishes the degrees of 
freedom in the sensor recovery. If for example 
smoothness is implemented by implementing the sensor 
band limit2 to say 4 cycles across the visible spectrum 
then sensors actually belong to a 9-dimensional subspace 
of 31-dimensions and in this case the worst case 
complexity is O(n4) (which though large is tractable). 

To calculate the centroid of a continuous convex set 
in higher dimensions is a computationally hard problem. 
Here we calculate the centroid through sampling. We 
randomly generate a sensor and then see if it lies in the 
feasible set. If it does we note it as feasible and then 
generate another random sensor. After many iterations we 
find the centroid by averaging all the feasible sensors we 
have generated. The feasible sensors can also be used for 
calculating the standard deviation around the mean for 
each wavelength across the visible spectrum. Thus, we 
can summarize the feasible set as: 

)()( λσ±λµ      (9) 

All computations were carried out in Matlab 
[www.mathworks.com] with external calls to Qhull 
[www.geom.umn.edu/software/qhull]. 

4. Experiments 

To test our method we attempted to estimate the 
sensitivities of a Megavision camera. This camera was 
calibrated using a monochromator17 and so we have a 
reasonable ground truth. Figure 1 shows the mono-
chromator calibrated Megavision sensitivities. The RGB 
response for a Macbeth colour checker18 taken under 
simulated D65 illumination and the corresponding colour 
signal spectra (measured with a PR650 spectrophoto-
meter) are also known. Thus, we have all the information 
that is required to build the feasible set. 
 
 
 

 

Figure 1. Megavision Spectral Sensitivities 
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The particular constraints used are however, 
important. First, we dropped the constraint of unimodality 
(it is a stringent constraint and one which we found to 
have little effect on the recovered estimate). Smoothness 
is implemented by forcing the recovered sensor to lie 
within the first 11 basis functions in the Sine basis 
expansion (11-dimensions were chosen as numerical tests 
indicted that this set was sufficient to account for a large 
class of sensors). We adopted a weak constraint on the 
bounded error. Estimates were forced to lie within an 
absolute error which constituted 5% of the signal range. 
Positivity of the estimate was enforced. Figure 2 is a 
visualization of the recovered feasible set. We show only 
the maximum and minimum sensitivity across the visible 
spectrum. The resulting envelope delimits a superset of 
the feasible set. All feasible sensors lie between the lower 
and upper bounds but not all sensors in this range are 
feasible. 

 

 

Figure 2. A visualisation of the recovered feasible set of sensors 

 
We now calculated the mean of the feasible set 

together with the standard deviations. This is shown in 
Figure 3. Also in Figure 3 we have shown the sensor 
estimates recovered using the quadratic programming 
method of Finlayson and Hordley[2] and a constrained 
Tikhonov regularization based on a modified algorithm of 
that suggested by Dyas[15]. In this case the QP and 
Tikhonov recoveries are similar. But, notice they are quite 
far from the mean sensor. However, though far, they are 
in general within 1 standard deviation of the mean 
estimate. For the Megavision data we found that the mean 
sensor estimate delivered comparable prediction 
performance to that delivered by either the Tikhonov or 
Quadratic programming methods. 

5. Conclusions 

It is well established that in order to obtain the best colour 
performance of a colour input device such as a scanner or 
a camera, that one needs to know the device spectral 
sensitivities. Unfortunately measuring sensitivities outside 
the laboratory is hard and moreover, manufacturers are 
reluctant to give the user specifications thus, there has 
been considerable interest in developing numerical 
techniques for estimating the spectral sensitivities. These 

methods are based on taking images of known spectral 
targets and then, using knowledge of the image formation 
process, solving for the sensitivities using numerical 
methods. Though these methods often perform well, it is 
usually impossible for the user to understand how well 
they are working. Rather, the user is simply returned an 
estimate. This estimate may or may not be close to the 
true answer and so the calibration may or may not lead to 
the best colorimetric performance. 

 

Figure 3. Solid line: mean sensor estimate. Dashed lines QP 
solution. Dotted line Tikhonov solution. QP and Tikhonov are 
almost within 1 standard deviation of the mean of the feasible 
set 

 
In this paper we tackle this problem head on. We 

develop a method for recovering the feasible set of all 
reasonable sensor estimates. We then discuss how the 
mean and standard deviation for this set is calculated. 
Thus, our new calibration method returns a sensor 
estimate together with uncertainty. Experiments for a 
Megavision camera were carried out. For this camera we 
find the error bars are significant and graphically 
illustrates the inherent uncertainty in estimating sensor 
functions from reflective targets. The calibrations returned 
by the single-answer quadratic programming and 
Tikhonov methods are, as we might expect, within the 
feasible set. 
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