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Abstract 

Skin colour segmentation is important for human face 
tracking. An often used approach is to approximate the 
skin chromaticity distribution with a statistical model, e.g. 
with the distribution’s covariance matrix. The advantage 
of this approach is that it is invariant to size and 
orientation and fast to compute. A disadvantage is that it 
is sensitive to changes of the illumination colour. 

This paper investigates how accurately the 
covariance matrix of facial skin chromaticity distribu-
tions might be modelled for different illumination colours 
using a physics-based approach. Results are presented 
using real image data taken under different illumination 
colours and from subjects with different shades of skin. 
The eigenvectors of the modelled and measured 
covariances deviate in orientation about 4o. This seems to 
be within a useful range for skin colour segmentation, 
and hence allow the statistical model to adapt to 
illumination changes. 

Introduction 

Robust human face tracking has many applications, e.g. 
in new human computer interfaces and surveillance 
systems. Computer vision based face tracking systems are 
becoming more robust by fusing several cues such as 
motion and shape.3,14,10 An often used cue is skin colour 
segmentation. Several approaches have been proposed, 
some statistically based, e.g., Refs. 6 and 15, and some 
physics based, e.g., Refs. 9 and 12. 

A problem when using skin colour as a feature arises 
under varying lighting conditions. In particular changes 
in the spectral composition of the scene illumination may 
result in failures of colour segmentation methods.5 

Yang et.al.15 showed that the facial skin chromaticity 
distribution of an individual under a single light source 
may be approximated by a multivariate normal 
distribution in the red-green chromaticity plane. They 
proposed an adaptive statistical skin colour model 
updating the mean vector and the covariance matrix of 
the red-green chromaticities as the lighting conditions 
change. The model is used in a real-time face tracker and 
works under slightly changing indoor illumination 
conditions. 

McKenna et.al.6 use Gaussian mixtures to model the 
skin colour distribution in Hue-Saturation space. The 

model parameters are updated over time in order to adapt 
to changes in illumination and viewing direction. 

A problem with adapting the parameters of a 
statistical colour model during tracking is the lack of 
ground-truth of the region of interest,6 i.e. the colour 
model might adapt to image regions which do not belong 
to the skin coloured object and, hence, result in false 
positives and/or false negatives. 

In Storring et.al.12 skin chromaticities for different 
illuminations are modelled with a good approximation by 
a physics-based approach. The model uses knowledge 
about the camera parameters and assumes that commonly 
used in- and outdoor light sources can be modeled by 
blackbody radiators.4 The skin chromaticities for a variety 
of illuminations with different correlated colour 
temperatures (CCT) form a ’skin locus’ which follows the 
curvature of the Planckian locus of blackbody radiators. 
This might be used to constrain the search area for skin 
colour in the chromaticity plane. 

Soriano et.al.9 presented a face tracking system 
working outdoors under changing illumination condi-
tions. They constrained the search area by the skin locus. 
Inside the skin locus a non-parametric skin colour model 
is learned and updated by histogram back-projection. 
Histogram backprojection has the same drawback as 
adapting the statistical model, i.e. the histogram might 
adapt to non-skin coloured objects in the background. 

However, this effect might be avoided if the skin 
colour model would be constrained by physics-based 
knowledge about possible skin distributions. In this paper 
a statistical model is constrained using a physics-based 
approach. In particular, it is investigated 
1. How well may a two dimensional skin chromaticity 

distribution be approximated by a normal distribu-
tion, i.e. by mean values and covariance matrices. 

2. How accurately may the eigenspace of a skin 
chromaticity covariance matrix be modelled for 
illuminations with arbitrary CCTs by linking it with a 
physics-based approach. 
Modelling of the covariance matrix has application 

in adaptive statistical models as used in Refs. 6, 9, and 
15. It might give an indication on the current confidence 
about that the segmented skin area is the same as the one, 
e.g., in the previous frames or before an illumination 
change. The confidence measure might be obtained by 
matching the measured and modelled eigenspaces against 
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each other. Confidence measures are especially of interest 
in systems where several tracking cues are fused.3 

Theory and Background 

This section provides a brief overview of the reflection 
properties of human skin and how they might be approx-
imated with a statistical and a physics-based model. 

Skin Chromaticities 
Reflections of human skin may be modelled with the 

Dichromatic Reflection Model8 as surface and body/matte 
reflections. Most of the facial skin area shows ’pure’ 
body reflections.2,12 Even under direct illumination 
highlights occur usually not on the entire face but only on 
some areas, e.g. the nose, forehead, or cheeks, and might 
be removed by filtering.13 In the following only body 
reflections are considered. Furthermore, it is assumed that 
the investigated skin areas are illuminated by a ’single’ 
light source. This single light source may be a mixture of 
several sources having different spectral compositions. 
The constraint is that the mixture is uniform for the 
investigated skin area. For spatially non-uniform 
illumination see e.g. Ref. 1. 

In colour machine vision usually each pixel is 
represented by a 3D vector CRGB containing the red, green, 
and blue camera responses. For analysing colours 
independent of the scale of intensity, it is convenient to 
transform a colour vector CRGB to its corresponding 
ch roma ticity C rgb. This is done by normalising the 
colour vector elements (R, G, B) with their first norm (N 
= R + G + B) 

N

B
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G
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Statistical Modelling of Skin Chromaticities 
The rg-chromaticities crg,i of a skin area with i = 1...n 

pixels may simply be modelled by their mean value µrg 
and covariance matrix Srg. 

In figure 1 skin chromaticities of one subject are 
shown which were taken under four different CCTs. The 
asterisks (*) are the mean values of the respective 
distributions. The dashed lines are 85% confidence 
ellipses calculated by the Mahalanobis-distance (Eq. 2) 
with a χ2 for two degrees of freedom. 
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Figure 1. Skin chromaticity distributions of an Asian subject 
under four different CCTs.  

Physics-based Modelling of Skin Chromaticities 
The chromaticities of the body reflections of human 

skin can be modelled using reflectance curves of skin, the 
spectral sensitivities of the camera, and the spectral 
composition of the light source.7,12 The RGB values C’RGB 
are obtained by spectral integration and the correspond-
ing chromaticities crgb by Eq. 1. 

The reflectance curves of human skin may be 
modeled as a function of the melanin concentration in the 
epidermis and the blood content in the dermis.7,12 Negro 
skin has a high melanin concentration whereas Caucasian 
skin has a low melanin concentration. The melanin 
concentration for one subject is not constant but has a 
certain spatial variation range. The lower and upper limits 
of the blood content bmin and bmax are rather constant for all 
ethnic groups. The skin chromaticity distribution for an 
individual is approximated by a minimum and a maxi-
mum melanin concentration mmin and mmax. In other words 
it is approximated by the area between the four chroma-
ticities modelled with the reflectance curves using: (bmin, 
mmin), (bmin, mmax), (bmax, mmin), and (bmax, mmax). 

The chromaticities of general purpose light sources, 
e.g. daylight and fluorescent light, have only a small 
deviation from the Blackbody radiator with the corre-
sponding CCT. Finlayson and Schaefer4 measured 172 
light sources, including daylights and fluorescent. They 
report that the illuminant chromaticities fall on a long thin 
band in the chromaticity plane which is very close to the 
Planckian locus of Blackbody radiators. Light sources 
will in the following be approximated by Blackbody 
radiators of the same CCT as the light source, which was 
successfully done in Ref. 12. 

 

 

Figure 2. Illuminant- and body reflection-chromaticities of skin 
modelled for a number of Blackbody illuminants (Planckian 
locus), from Ref. 12. 

 
Figure 2 shows the red and green chromaticities of a 

number of Blackbody illuminants ranging from 1500 to 
25000K (Planckian locus), plotted as triangles (∆). The 
figure is modelled for a Blackbody radiator with a 
CCT=3700K as canonical light source (white balance 
source). Two body reflection chromaticities, plotted as 

CGIV'2002: First European Conference on Colour in Graphics, Imaging, and Vision

17

CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision

17



 

 

squares (�), are modelled for each illuminant using the 
Caucasian reflectance curves for low and for high blood 
content, called cCN and cCE, respectively. The solid lines 
indicate the corresponding illuminant and body chroma-
ticities. The asterisk (*) shows the body reflec-tance 
chromaticity for Negro skin CN, i.e. with high melanin 
concentration. 

Adapting Statistical Models to Changing Illumination 
The method proposed in this paper uses physics-

based knowledge to estimate how the statistical model 
will change as the illumination changes. A necessary 
condition for this is to find how these types of models can 
be related. 

Firstly, we consider how the distributions of the skin 
chromaticities change as illustrated in figure 1. They 
change position along the skin locus and the major and 
minor axes (eigenspace of the covariance matrix) change 
in orientation and aspect ratio. 

The physics-based model describes an expected area 
for the chromaticities given the CCT and some biological 
parameters of the human skin. This area can also be 
described by a major and minor axes, hence an 
eigenspace, such that if the biological parameters for a 
given individual are known, the eigenspace can be 
estimated for any CCT. 

The question is if the physics-based and the statistical 
model can be adequately related via their eigenspaces 
described above. If so, an initial ’calibration’ of the two 
models can be established from a reference image, and 
parameters of the statistical model can then be estimated 
for any CCT. 

To demonstrate and test if the eigenspace description 
may have practical use, we present a procedure including 
two steps, initialisation for calibration, and then 
estimation of eigenspaces for arbitrary CCTs. 

Initialisation 
Given is a reference image with a pre-segmented 

area of facial skin, and with known CCT of the illumina-
tion. The corresponding skin chromaticities form a distri-
bution Mrg. The eigenvectors νM and - values λM of Mrg are 
calculated. 

The next step is to find the physics-based model, 
which through maximum and minimum melanin and 
blood parameters defines an area with an eigenspace νE, 
λE that matches νM, λM. 

An iterative procedure scans through relevant 
combinations of these parameters testing for the orienta-
tion deviation between _ and νM and νE. Among those 
configurations with a deviation below some threshold, 
here 0.8o, we chose the best fitting aspect ratio defined as 
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From the selected configurationwe get themelanin 
parameters as the major result of the initialisation. To 
compensate for coarseness of our model (e.g. blood 
content independent of individuals/ethnic groups) we also 
introduce a diagonal matrix k relating the modelled and 
measured eigenvalues, 
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Estimating Eigenspaces for Arbitrary CCTs 
Using the parameters estimated from the reference 

image we get four skin reflectance curves. Together with 
the camera sensitivities, and the Blackbody spectrum of 
the CCT in question an expected area for the skin 
chromaticities can be computed. Hence, an eigenspace 
(νE, λE) can be estimated for any CCT. This eigenspace 
can be used to estimate the expected covariance matrix SE 
of the measurements for the CCT in question, 

.1−υ⋅⋅λ⋅υ= EEEE kS     (5) 

Test Results 

The method is tested using one reference CCT and 3 test 
CCTs. Images of 8 subjects having different ethnic 
backgrounds (China, Iran, Cameroun, Latvia, Greece, 
Spain, Denmark, and India) were captured, so that 
altogether 32 images were used. For each reference there 
are 3 test images used to compare the estimated statistical 
model with the measurements. 

Image Acquisition 
The images were captured with a JAI CV-M90 

3CCD camera. Automatic gain control and automatic 
white balancing are switched off and gamma correction is 
set to one. The lens aperture and the shutter speed are 
manually adjusted to make optimal use of the dynamic 
range of the camera. The light sources are fluorescent 
lamps (Philips TLD 927, 940, 950, 965) with CCTs of 
2600, 3680, 4700, and 6200K, respectively. The spectra 
of these lamps are provided from Philips and were 
additionally measured with a J&M TIDAS spectrometer. 
The measured spectra were used to calculate their CCTs. 
The illuminance on the faces is approximately 2000 lux 
as it is recommended by JAI. There are no pronounced 
highlights on the faces. The number of pixels of a face is 
between 5000 and 15000. The camera is white balanced 
to the 3680K lamp. An example image is shown in figure 
3. All images were hand segmented into facial skin areas, 
which are used in the following for evaluating the 
method. 

 

 

Figure 3. Example Image of a face. Examples of colour images 
are available at http://www.cvmt.dk/˜mst/ras.html 
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Modelling Skin by Mean and Covariance 
The measured skin distributions were tested for 

normality in the r and g chromaticity dimensions using a 
modified Kolmogorov-Smirnov test, which rejected the 
null hypothesis at a significance level of α = 0.2. 
Furthermore, empirical quantile-quantile plots were 
made. Figure 4 is an example. It can be seen that the 
distribution is not perfectly normal distributed. 

However, the distributions might be approximated by 
their covariance matrices. The 85% confidence ellipses 
are calculated using Eq. 2 (shown in figure 1) and the true 
positives inside are counted. Their percentage is shown in 
figure 5. The average is 88%. 

 
 

 

Figure 4. Example of a quantile-quantile plot of measured data 
(chromaticities) versus standard normal. The upper curve is 
along the red and the lower along the green chromaticity 
dimension. 

Physics Based Modelling of Eigenspaces 
The images taken at a CCT=3680K were used to 

estimate the parameters of the method as it was described 
in section 3.1. Then the covariance matrices for the 
CCT=2600, 4700, and 6200K, respectively, were 
modelled as described in section 3.2. 

 

 

Figure 5. Percentage of true positives using 85% confidence 
ellipses with the measured covariance. 

 
Figures 6 and 7 show example results with measured 

and modelled confidence ellipses. To allow comparison 
of the measured and the modelled covariances, their 
eigenvectors and eigenvalues are given in table 1. The 
average of the absolute angular deviation between 
measured and modelled orientation is about 4o and 

maximal 9.8o. The average deviation between the lengths 
of the vectors is 6 %. 
 

 

Figure 6. Skin chromaticities for a Caucasian subject under 
four different CCTs. The solid lines are the measured ellipses 
and the dashed lines are the modelled ellipses. 

 

Figure 7. Skin chromaticities for a Negro subject under four 
different CCTs. The solid lines are the measured ellipses and 
the dashed lines are the modelled ellipses. 

 
Figure 8 shows the true positives inside the 85% 

modeled confidence ellipses. The average is 87%. The 
area of the modelled ellipses is on average not bigger 
than the area of the measured ones. 

 

 

Figure 8. Percentage of true positives using 85% confidence 
ellipses with the modelled covariance. 

Discussion 

The proposed method aims to estimate the eigenspaces of 
an individual’s skin chromaticity distribution for 
illuminations with arbitrary CCTs. We have tested this for 
8 very different skin types, and with 3 illuminations for 
each. The average of the absolute deviation between 
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measured and estimated orientations of the eigenspaces is 
about 4o and the maximum about 10o. The average 
deviation between the lengths of the vectors is about 6%. 

The deviations are due to measurement noise during 
the image acquisition and the approximations in 
modelling. The light spectra are approximated by 
blackbody radiators which very coarsely match spectra of 
fluorescent lamps. They may introduce a small error, 
especially in the green chromaticity.12 Furthermore, the 
assumption that the range of blood concentrations is 
constant is convenient, but may as well contribute to the 
error. 

If 85% confidence ellipses are used to approximate 
the distributions, the number of true positives of the 
measured pixels is in average 88% for the measured 
covariances and 87% for the modelled covariances. 
Hence, the skin distributions may for practical purposes 
be approximated with their covariances, which was also 
suggested in Ref. 15. 

The method requires knowledge about an 
(approximate) CCT of the current illumination. This may 
be estimated from the mean value of the measured skin 
chromaticity distribution or, more accurately, by methods 
proposed in Refs. 11 and 13. 

Figures 1, 6, and 7 show the distributions of an 
Asian, a Caucasian, and a Negro subject. A model for 
each individual is estimated. It can be seen that they 
differ from each other. If this difference is significant it 
might be useful to track and distinguish the skin of 
multiple faces in an image. 

Table 1. Deviations between measured and modelled 
data for 3 test CCTs and 8 subjects. The angle error is 
the angle between the eigenvectors. The eigenvalue 
error is the deviation between the square roots of the 
measured and modelled eigenvalues in %. The 
numbers in brackets are from the initialisation data. 

Eigenvalue errors in % Angle error in 
degree first second 

Illumination 
CCT 

Mean Max Mean Max Mean Max 
2600 2.7 7.5 4.8 8.7 6.1 15.7 

(3680) (0.3) (0.8) (0.0) (0.0) (0.0) (0.0) 
4700 3.7 5.2 3.8 8.1 6.0 16.5 
6200 4.5 9.8 6.5 12.2 8.0 16.9 

Conclusions 

In this paper the linking of a statistical with a 
physicsbased skin colour model was investigated. It was 
shown that facial skin chromaticity distribution may for 
practical purposes be approximated with their covariance 
matrices. It was demonstrated that the eigenspace of a 
two dimensional skin chromaticity distribution can be 
modeled for different illuminations using a physics-based 
approach. The average orientation error is about 4o, the 
average deviation between the lengths of the vectors is 
about 6 %. 

The performance seems to be within a useful range 
to allow significant support of a statistical based approach 
by adapting it to changing illumination. This would 
improve the robustness of colour based skin segmentation 
to illumination changes. 

In future work the skin reflection model could be 
improved by estimating also the blood concentration as a 
parameter, and by that possibly eliminate the correction 
matrix k. 
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