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Abstract 

This paper proposes a chromatic adaptation model based 
on spectral property estimation. In this model, the 
concept of color constancy in human vision is introduced 
into color matching. We performed detailed subjective 
experiments to evaluate the color matching performance 
of the model for natural color images between softcopy 
and hardcopy by comparing it with that of six other 
models. The results not only show the color matching 
performance of each model, but also demonstrate that our 
model enables better color matching than the six other 
models, as seen in a darkroom experiment involving 
color matching between two CRT monitors whose whites 
are quite different. 

Introduction 

Color matching between color imaging devices has 
become an increasingly important issue in practical 
applications. For example, if it were possible to confirm 
the exact color appearance which would be reproduced 
with a printer on a CRT monitor, it would help graphic 
designers etc to work more efficiently. 

Various chromatic adaptation models and color 
appearance models have been proposed, and color 
matching methods based on these models would be able 
to solve the color matching problems in cross-media 
communications.1-5 

In addition to the above-mentioned models, we also 
proposed a chromatic adaptation model, which is based 
on spectral property estimation.6 In this model, hypo-
thetical spectral properties of objects and the illumination 
in an image are recovered by introducing some 
assumptions on human color vision. The model applied to 
both incomplete and complete chromatic adaptation. We 
showed that our model produces good color matching for 
natural images between two CRT monitors whose whites 
are quite different (i.e. 9300K and D50) in a darkroom.  

Since these models are very complicated, however, it 
is difficult to know which model produces good color 
matching performance in practical situations. Especially, 
good color matching performance between softcopy and 
hardcopy for color appearance models and chromatic 
adaptation models would be of great interest to those who 
want to use them.  

We therefore performed detailed subjective experi-
ments to fairly evaluate the color matching performance 
of our model for natural color images between softcopy, 
i.e. the white is 9300K, and hardcopy, i.e. the white is a 
white paper illuminated with D50 by comparing with it to 
that of six other models.  

In this paper, we describe the subjective experiments 
we performed and show that our model will be useful for 
color matching between softcopy and hardcopy.  

Color Matching Algorithm 

The concept of color constancy in human vision is 
introduced into our model. We describe the background. 

Various computational theories of color constancy 
have been proposed.7-9 The methods to which these 
theories are applied are designed so that robots, not 
human beings, can identify an object under different 
illuminations by estimating spectral properties of the 
object and the illumination in a scene. That is, the goal of 
the methods is to realize a mechanism of complete color 
constancy in a computer system. 

In psychophysical experiments on human color 
constancy, it is confirmed that there are two circum-
stances under which color constancy failed.10 The first 
case is when the stimulus appeared not as a reflecting 
object surface but as a self-luminous object. No surround-
ing conditions cause this phenomenon. The second one is 
when the illumination is nearly monochromatic. On the 
other hand, a good degree of color constancy is achieved 
for 3400, 6000, and 30000K illuminants in the 
experiments. 

In practical use of color management, however, the 
surrounding conditions and the illumination do not apply 
to these cases in which color constancy fails. That is, it 
can be considered that color constancy might be one of 
the ways to solve the color matching issue in cross-media 
communication.  

We attempt to apply the basic concept of the color 
constancy in human vision to color matching by intro-
ducing the following assumptions. 

Assumption 1 
In human vision, surface reflectance of an object 

color in a scene is inferred under the recognition that 
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white in a scene is perceived as its nearest CIE daylight 
illuminant. 

Assumption 2 
Most spectral properties of objects and illuminations 

show comparatively smooth curves. We can model them 
as the weighted sum of a small number of vectors. 

Assumption 3 
White in the image is equal to the illumination in the 

scene. 
 
As to assumption 1, unfortunately the exact 

physiological mechanism of human color recognition has 
not been elucidated yet since it is extremely complex. 
We, however, feel that this assumption might be 
appropriate when we consider that human brains learn 
from experience that objects’ colors look similar under 
different colors of daylight by recovering the 
fundamental surface reflectance of an object. That is, 
since it has only been one hundred years at most since 
artificial illumination methods such as fluorescent lamps 
were developed, daylight color is very important for us to 
recognize an object’s color. In fact, the results obtained 
under a 6000K daylight color illuminant showed almost 
perfect color constancy in Kuriki’s experiments.10 

Assumption 2 and Assumption 3 are needed to make 
the color constancy problem solvable. It is well known 
that spectral properties of daylight and objects can be 
represented by the weighted sum of a small number of 
basis vectors.11,12 

Since the detailed algorithm we propose is described 
in Ref. 6 it is mentioned only briefly here. The chromatic 
adaptation transform from an input color under an 
original condition to a corresponding color under a 
reference condition is described below. 

 
1. The hypothetical spectral power distribution (HSPD) 

of the illumination in a scene is calculated by using 
the prediction equation for the spectral power 
distribution of a daylight illuminant and the 
correlated color temperature or chromaticity of the 
white of a color device reproducing the scene.13 
HSPD under an original condition and that under a 
reference condition are, respectively, I(�) and I(�)’. 

2. The hypothetical surface reflectances (HSR) O(�) of 
all objects under an original condition are obtained 
by solving Equation (1) for O(�). 
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 where X, Y and Z are tristimulus values of an input 
color under an original condition and, )(λx , )(λy  
and )(λz  are color matching functions. To solve 
Equation (1), HSR O(�) can be modeled as Equation 
(2) by introducing a finite dimensional linear model. 

O(λ) = o0(λ) + a1o1(λ) + a2o2(λ) + a3o3(λ),  (2) 

 where o0(�) is the mean vector and oi(�) s (i=1,2,3) 
are basis vectors. They are derived from a number of 

surface reflectances of objects and known 
parameters. The weighted coefficients ai  (i=1,2,3) 
are unknown parameters representing the color of an 
object.  
 
An observation equation for HSR can be made by 

substituting Equation (2) for O(�) in Equation (1). 
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 where ),( ioxM  (i=0~3) represents an integral term 

∫ λλλλ dxoI i )()()( . We can recover HSRs of all 
objects in the scene by calculating characteristic 
parameters ai for all pixels in the image. 

 
3. Two HSRs of the complete white are obtained, Ow(�) 

under an original condition and Ow’(�) under a 
reference condition. In order to obtain the HSR of the 
white Owm(�) under a reference condition, which 
matches the color appearance of the white under an 
original condition, the mixture of an object’s surface 
reflectances recovered under difference illuminations 
is introduced. We think that this would be a 
reasonable mechanism to describe incomplete 
chromatic adaptation in human color recognition. 
Owm(�) can be calculated by using the equation 
below.  

Owm(λ) = MC x Ow(λ) + (1 – MC) x Ow’(λ).  (4) 

 where MC is the mixing coefficient (0.0≤MC≤ 1.0). 
 
4. In order to calculate the HSR for a color that is not 

white, we define an adjusting function for surface 
reflectance on wavelength in visible light. Let rfad(�) 
denote an adjusting function for surface reflectance. 
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5. An HSR O’(�) under a reference condition 
corresponding to an HSR O(�) of an arbitrary input 
color under an original condition can be calculated 
by multiplying O(�) by rfad (�). 

O’(λ) = O(λ) x rfad(λ)     (6) 

6. The tristimulus values of a color under a reference 
condition corresponding to an arbitrary input color 
under an original condition are obtained by Equation 
(7). 
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Experiments 

We performed subjective evaluation experiments to 
investigate the validity of our model. Hereafter, we call 
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our model the “SPEM (Spectral Property Estimation 
Model)” for convenience.  

Referring to CIE guidelines14 we set a printed image 
and a CRT monitor in the viewing booth in a dark room 
as illustrated in Figure 1. The printed image, which was 
printed by a dye sublimation printer (Victor TruePrint 
3500PS) and illuminated with D50, was set in the left 
booth as a test stimulus. The reproduced image that was a 
reference stimulus was displayed on the right CRT 
monitor (NEC Multisync FE70), whose white was about 
9300K, with no illumination. 

To increase the reliability of the experiments, the 
original images were created carefully so that physical 
factors other than color appearance were discarded. To 
get color data based on measurement and avoid unnatural 
contours in the images as much as possible, half a million 
colors were created by using the linear interpolation 
based on the measured data of 2951 colors printed by the 
printer. To remove the problem of the gamut of the 
printer output being different from that of the CRT 
monitor, most colors in the original and reproduced 
images were determined so that they existed in both 
gamuts.  

The comparison of the printer’s gamut and the CRT 
monitor’s one in CIELAB in Figure 2 demonstrates that 
these gamuts are different. From the figure, it can be said 
that the CRT monitor’s gamut is generally bigger than 
that of the printer. The printer’s gamut, however, 
protrudes from the monitor’s one in the area from cyan to 
green. That is, colors reproduced by the printer include 
colors that the monitor cannot physically reproduce.  

Four kinds of natural images were prepared as 
original images in the experiments because subjects could 
be influenced by the contents of the image. N1 (Portrait), 
N2 (Cafeteria), N3 (Fruit Basket), and N7 (Musician) in 
ISO/JIS-SCID were used for this evaluation.15 These 
images were hemmed with a reference white. 

 

  

Reproduced Image Original Image   

Viewing Booth   

in a dark 

 
Printed image 
illuminated with 
D50 

 

  

CRT monitor 
(about 9300K) 

 

Figure 1. Viewing booth to evaluate color appearance 
matching. 
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Figure 2. Comparison of the difference between printer’s and 
CRT monitor’s gamuts in CIELAB. 

 
Though SCID images are supplied with CMYK data, 

the CMYK data cannot be used in the original images as 
it is, since physical factors other than color appearance 
should be removed from the original images. Original 
images and the reproduced images were created via the 
following steps. 
 
(1) An appropriate color transformation from CMYK of 

SCID image to RGB in the device dependent color of 
the CRT monitor whose white was set to D50 was 
carried out. And the RGB values were converted to 
tristimulus values X0Y0Z0 by linear transformation.  

(2) For X0Y0Z0 of (1), CMYK data and its tristimulus 
values XYZ under D50 were searched from an LUT 
that consists of half a million colors so that the color 
difference Eab is minimum. CMYK data was saved 
as the original image that was printed. 

(3) For XYZ under D50 of (2), the corresponding colors 
X’Y’Z’ under 9300K were calculated by using all 
color appearance models and chromatic adaptation 
models that we evaluated. 

(4) For the corresponding colors X’Y’Z’ of (3), R’G’B’ 
values that were device dependent colors were 
calculated by using linear transformation. 

(5) Gamut checking was carried out by judging whether 
R’G’B’ values existed within the CRT monitor’s 
gamut. When the number of pixels that were out of 
the gamut exceeded the threshold, saturation 
compression was performed to X0Y0Z0 of (1) in 
CIELAB space. 

 (6) (2), (3), (4) and (5) were repeated until the 
reproduced image was obtained. 

 
The procedures to create an original image and the 

reproduced image are summarized in Figure 3. When 
saturation compression of (5) was performed, the original 
image was updated. 
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Figure 3. Procedures for the creation of an original image and 
a reproduced image 
 
 

The white of a printed image had the same 
chromaticity as that of the white paper illuminated with 
D50, and that of a reproduced image was set to bluish 
white that was originally set to the CRT monitor. The 
chromaticity of the monitor’s white was x= 0.2841 and y 
= 0.2944. Backgrounds of the original image and the 
reproduced image on the monitor were set to gray with a 
luminance factor of 0.2. Luminance level of the white of 
the original image was 94.59 cd/m2 and that of CRT 
monitor’s white was 94.06 cd/m2.  

In the left booth, a black wall with a hole was set 
between the original image and a subject so that light 
from the illumination did not directly reach the subject’s 
left eye. The original image appeared not as a self-
luminous object but as a reflecting object surface, since 
the subject could see a gray background around the 
original image. Viewing angles of the images are 9.54º 
(vertical) × 11.42º (horizontal) for Musician and Fruit 
Basket and the inverse for Portrait and Cafeteria.  

The SPEM needs basis vectors for the HSPD of the 
illumination, the HSR of objects and the mixing 
coefficient MC. We used the same parameters as those 
used in Ref. 6. 

Gamma correction for the CRT monitor was 
conducted by using an ICC profile16 and an imaging 
software with a color management function that we 
developed. We confirmed that the average color 
difference (Eab) between an ideal image and an image 
displayed was less than 1. 

 
 
 
 
 

We examined the following seven models: 
1) von Kries    
2) CIELAB    
3) LLAB1 
4) RLAB2 
5) Nayatani974  
6) CIECAM97s5 
7) SPEM (our model) 
 
Ten subjects, who had normal color vision, evaluated 

the superiority or inferiority in the color matching of 
images reproduced by these models. The viewing 
condition was nearly successive-haploscopic viewing 
because subjects could not simultaneously see two 
images from the parallax.17 

We followed the paired comparison method to 
determine the order of the models’ performance for color 
appearance matching. We made reproduced images by 
using the above-referenced seven models and displayed 
two images randomly selected from these seven images 
on the right monitor. These two images were not 
simultaneously but alternately displayed on the monitor 
when subjects clicked their PC mouse.  

From the two images displayed on the right monitor, 
subjects were instructed to select the one which was 
closer in color appearance to the original image set in the 
left booth. They were also requested to evaluate whole 
regions and colors in images and not to concentrate on 
specific regions or colors. The experiments were repeated 
twice to improve the accuracy of the data obtained.  

Interval scales (Z-scales) were calculated from the 
evaluation results for the ten subjects by using 
Thurstone’s law.18 Figure 4 shows the results of the 
evaluation experiments.  

From the figure, it can be seen that SPEM, RLAB, 
and CIECAM97s, which take account of incomplete 
chromatic adaptation, produce good results between 
softcopy (i.e. the white is about 9300K) and hardcopy 
(i.e. the white is a white paper illuminated with D50). The 
color appearance matching performance, ranked in order 
from high to low, is SPEM, RLAB, CIECAM97s, 
Nayatani, von Kries, CIELAB and LLAB. 
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Figure 4. Result for color matching between printed images and 
images displayed on a CRT-monitor. 
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Conclusion 

This paper has described our SPEM, which not only 
recovers the hypothetical surface reflectance of an object 
and the hypothetical spectral power distribution of 
illumination in a scene, but also adjusts the hypothetical 
surface reflectance according to changes in illumination.  

Subjective experiments have been performed to 
evaluate the SPEM color matching performance between 
softcopy and hardcopy by comparing it with that of six 
other models. To increase the reliability of the 
experiments, the evaluation images we used were created 
carefully so that physical factors other than color 
appearance, such as the difference in device gamuts, 
color errors etc, were discarded.  

The experimental results obtained demonstrated that 
our model produced better color matching than the six 
other models, as seen in color matching between two 
CRT monitors whose whites are quite different.  

Since our model requires no complicated calculations 
and provides good color matching, we believe that it will 
prove to be especially useful for color management 
systems.  
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