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Abstract 

In this paper, the performance of chromatic adaptation 
transforms based on stable color ratios is investigated. It 
was found that for three different sets of reflectance data, 
their performance was not statistically different from 
CMCCAT2000, when applying the chromatic adaptation 
transforms to Lam’s corresponding color data set and 
using a perceptual error metric of CIE ∆E94. The sensors 
with the best color ratio stability are much sharper and 
more de-correlated than the CMCCAT2000 sensors, 
corresponding better to sensor responses found in other 
psychovisual studies. The new sensors also closely 
match those used by the sharp adaptation transform. 

Introduction 

For almost a century, photoreceptor or first-stage 
adaptation has been proposed as a mechanism for color 
constancy.1 Color constancy refers to the invariance of 
the perceived color of a surface despite changes in the 
intensity and spectral composition of the light source. 
The human visual system is able to discriminate very 
reliably2 and quickly3 colored scenes where the spectral 
composition of the illuminant is changed from colored 
scenes where surface reflectance is changed. This ability 
might be based on a visual coding of spatial color 
relations within a scene. Specifically, the ratio of color 
excitations produced by light from different surfaces is 
retained and kept constant, rather than absolute 
excitation values. As a result, due to the multiplicative 
effect of the spectral power distribution of the light 
source on the color response of a surface reflectance, the 
illuminant cancels out. 

These ratios are determined within rather than 
between color classes. That such a model can explain at 
least partially the phenomenon of color constancy has 
been investigated and is illustrated in the literature. 
Dannemiller4 studied the rank ordering of photon catches 
from natural objects illuminated with daylight and 
tungsten light for a model human fovea. He found that 
the observed rank orderings remained nearly stable 
across illuminant changes for all three cone classes. 
Foster and Nascimento5 have shown that for a large class 
of pigmented surfaces and for surfaces with random 
spectral reflectances, color excitation ratios are 
statistically almost invariant under changes in 
illumination. The Retinex image processing model6,7 uses 
sequential products relating each surface color to one or 
more bright surfaces, keeping the ratios constant, to 

produce preferred image reproductions. Brill and West8 
have used color ratios in theoretical studies to set 
constraints on illuminant and surface reflectance spectra 
for color constancy. 

Image capturing systems, such as scanners and 
digital cameras, do not have the ability to adapt to an 
illumination source like the human visual system. To 
faithfully reproduce the appearance of image colors, it 
follows that all image processing systems need to apply a 
transform that converts the input colors captured under 
the input illuminant to the corresponding output colors 
under the output illuminant. This can be achieved by 
using a chromatic adaptation transform (CAT). 
Basically, applying a chromatic adaptation transform to 
the tristimulus values of a color under one adapting light 
source predicts the corresponding color’s tristimulus 
values under another adapting light source. 

In this paper, we investigate if a chromatic 
adaptation transform based on stable color ratios 
performs as well as the newly published chromatic 
adaptation transform, CMCCAT2000,9 which was 
derived by optimizing perceptual error (CIE ∆E) over 
sets of corresponding color data. The intuition that we 
apply is as follows: if a CAT is used, then sensor 
responses are (independently) scaled in some RGB space 
to account for illuminant change. It follows then that 
color ratios, computed within a single response channel 
(R, G or B) must cancel this scaling factor. That is, by 
looking for a sensor basis that has good ratio stability, 
we must also be finding a reasonable candidate on which 
to base a chromatic adaptation transform: stable ratios 
implies a von Kries CAT and vice versa. 

We found that there is no statistical difference at the 
95 percent confidence level between CMCCAT2000 and 
the chromatic adaptation transforms resulting from the 
sensors that have best color ratio stability for Lam’s 
corresponding color data. 

This result is interesting when viewed in the context 
of theories of human color vision. It is often proposed 
(e.g. in the Retinex theory) that ratios play a key role in 
perception. The result here delivers sensor channels that 
optimize ratio stability. Moreover, our new result helps 
to explain why previous “physics based” adaptation 
transforms are quite different from those that are used in 
color science. Physics based transforms were designed to 
minimize absolute error of colors “observed” across 
illumination. As such, these sensors are insensitive to 
large relative error impinging on small sensor responses 
(these responses will have small absolute error). The 
results are sensors that are significantly more peaked 
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than the CMCCAT sensors,10 which themselves are more 
peaked than the cones. However, the spectral sharpened 
sensors also have significant negative lobes, which 
CMCAT2000 sensors do not. These lobes turn out to be 
significant in the context of relative error (or ratio error). 
Indeed, to have stable color ratios across illuminants one 
should have no lobes or very shallow negative lobes. 

Summarizing this argument, if we assume that ratio 
stability is the rationale for adaptation transforms and 
that the human visual system optimizes for ratio stability, 
then we would expect an adaptation transform that is 
more peaked than the cones but that has minimal 
negative lobes. 

Chromatic Adaptation Transforms 

There are several chromatic adaptation transforms 
described in the literature, most based on the von Kries 
model.1 CIE tristimulus values are linearly transformed 
by a 3x3 matrix MCAT to derive R’G’B’ responses under 
the first illuminant. The resulting R’G’B’ values are 
independently scaled to get R”G”B” responses under the 
second illuminant. The scaling coefficients are most 
often based on the illuminants’ white-point R’G’B’ and 
R”G”B” sensor values. If there are no non-linear 
coefficients, this transform can be expressed as a 
diagonal matrix. To obtain CIE tristimulus values 
(X”Y”Z”) under the second illuminant, the R”G”B” are 
then multiplied by (MCAT)

-1, the inverse of matrix MCAT. 
Equation (1) describes a matrix formulation of this 
concept: 
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Quantities ''' ,, www BGR  and """ ,, www BGR  are 
computed from the tristimulus values of the first and 
second illuminants, respectively, by multiplying the 
corresponding XYZ vectors by MCAT.  

The currently most popular chromatic adaptation 
transforms are the von Kries CAT operating on cone 
responses, derived by the Hunt-Pointer-Estevez (HPE) 
linear transform from XYZ color matching functions to 
relative LMS11; the linearized Bradford CAT12,13; the 
Sharp CAT14; and the CMCCAT2000 transform.9 All are 
based on the von Kries model as described in equation 
(1), but they apply the white-point scaling to different 
RGB sensors (see Figure 1), i.e. they use different 
transformation matrices MCAT. 

CMCCAT2000 has been developed to supersede 
CMCCAT97. CMCCAT97 is a chromatic adaptation 
transform included in the CIECAM97s color appearance 
model. It is based on the Bradford transform,12 but 
includes a step to model partial adaptation.15 
CMCCAT2000 was developed by optimizing the 

transformation matrix MCAT so that the perceptual error 
of predicted and actual corresponding colors for a 
number of corresponding color data sets16 is minimized. 
The non-linear correction in the blue of the original 
Bradford CAT has been omitted to facilitate a reverse 
transform. It also calculates the degree of adaptation D 
differently than the previous version. In this paper, the 
transformation matrix of CMCCAT2000 is used with the 
chromatic adaptation model described in equation (1), 
and the degree of adaptation is not considered.  
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Figure 1. von Kries, Bradford, Sharp and CMCCAT2000 
sensors. 

Experiment 

The experiment consisted of finding the best RGB 
sensors that result in minimal ratio error between sensor 
responses of a given set of reflectance data over a range 
of illuminants.  The experiment was done individually 
for each of the three sensors, under the assumption that 
ratio stability within one photoreceptor response is 
independent from the other two.  

The “color” or sensor response X for any given 
reflectance under any illuminant with any sensor can be 
calculated as follows:  

λλλλ
λ

dSERX )()()(∫=      (2) 

where R is the reflectance factor at a given wavelength, 
E is the spectral power distribution of the illuminant, and 
S is the sensor’s sensitivity at that wavelength. Using 
matrix notation, the color xi for a reflectance vector ri  
(31x1) is given by the inner product of the reflectance 
times illuminant SPD and the sensor sensitivity: 

ser T
iix )( ×=     (3) 

where e (31x1) and s (31x1) are the illuminant’s spectral 
power distribution and the sensor sensitivity vector, 
respectively, and (× ) denotes an element by element 
multiplication. The length of the vectors (31) refers to 
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the sampling of the visual spectrum, in our case from 
400 to 700 nm at 10 nm intervals. 

Let x be a (mx1) vector containing the colors for a 
set of m reflectances under the main illuminant with a 
given sensor. The vector of color ratios a is calculated as 
follows: 
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a is a component vector of (m/2)x(m–1) entries. If ae is a 
ratio vector of the same set of reflectances under a 
different illuminant, then the total ratio error ε is given 
by: 
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where n is the number of illuminants tested other than 
the main illuminant. By minimizing ε, we find the 
optimal sensor sopt that keeps color ratios most stable: 

)(minarg
opt

opt ε
Ss

s
∈

=      (6) 

The initial sensor set S was determined individually 
for each color response (R, G, and B) using a spherical 
sampling technique as described in Ref. 17, with the 
constraint that the sensors are within 30 degrees of either 
the red, green, or blue Bradford, CMCCAT, and Sharp 
sensors. Using no constraint, the solution (or optimal 
sensor) for all three color responses would converge to 
the blue optimal sensor. The color responses x were 
calculated for seven different illuminants, the main 
illuminant D65, and six other illuminants: A, D45, D55, 
D75, D85, and D100. Three different reflectance data 
sets were used, the Macbeth Color Checker patches (24 
reflectances), the Munsell chips (462 reflectances), and 
Dupont pigments (120 reflectances). The best sensors 
were derived for each color response and reflectance 
data set individually. Additionally, an unconstrained 
non-linear least-squares regression was applied to find a 
local minimum around the best sensors found through 
spherical sampling. The resulting sensors sopt that keep 
color ratios over changes in illuminants most constant 
are illustrated in Figure 2. 

Now that we have derived sensors that optimize 
ratio stability, we wish to evaluate their appropriateness 
for accounting for corresponding color data. A priori, we 
might expect them to be somewhat appropriate since if 
ratios, with respect to the derived sensors, were perfectly 
stable, then this would provide evidence that theore-
tically a chromatic adaptation transform might perfectly 
discount illumination.5 In order to evaluate the optimally 
stable ratio sensors in the context of chromatic adapta-
tion, we calculated the linear transform mapping XYZs 
to the ratio stable color responses. We can think of this 
transform as a chromatic adaptation transform and 
simply insert it into equation 1. 

We now applied this new “chromatic adaptation 
transform” to Lam's corresponding color data set. Lam 
had observers predict the appearance of 58 wool samples 

under illuminants A and D65. The resulting correspond-
ing color data set has been used extensively to test 
chromatic adaptation transforms and has been found to 
be quite stable.9 
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Figure 2. The sensors sopt
  found by minimizing color ratio 

errors for the Macbeth, Munsell and Dupont reflectance data 
sets. For comparison, the CMCCAT2000 sensors are also 
plotted. 

Table 1. Mean CIE ∆E94 values for Lam’s data set, 
and probability (p) values resulting from the t-test 
evaluation. 

 Mean CIE ∆E94 p -value 
CMCCAT2000 3.03  
Macbeth 3.29 0.06 
Munsell 3.20 0.13 
Dupont 3.23 0.09 

 
 
The predicted and actual X”Y”Z” values were 

converted to CIE Lab, so that the perceptual prediction 
error (CIE ∆E94) could be considered. One-tail student t-
tests for matched pairs14,18 were calculated to evaluate if 
the CATs are statistically different from the 
CMCCAT2000 transform. The results are summarized in 
Table 1. 

At the 95 % confidence level, the ratio optimal 
sensors deliver the same chromatic adaptation perfor-
mance as the CMCCAT 2000 sensors. However, the 
ratio optimal sensors are significantly more peaked than 
CMCAT 2000 and this better reflects sensors found in 
other psychophysical experiments. Indeed, so-called 
sharp sensors derived in14 were shown to deliver as good 
of a performance as CMCCAT2000 over many corre-
sponding color data sets.19 The new ratio optimal sensors 
are close to sharp sensors. 

Perhaps more importantly, we now have a match 
between minimizing a physical variable and sensors 
derived through psychophysical means. If we wish to 
have ratio stability, then we would expect to derive a 
sharp adaptation transform. 
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Conclusions 

There is no statistical difference at the 95 percent 
confidence level between CMCCAT2000 and the chro-
matic adaptation transforms resulting from the sensors 
that have best color ratio stability. In effect, the different 
chromatic adaptation transforms will perform equally 
well. However, as can be seen from Figure 2, the sensors 
with stable color-ratios are much “sharper,” i.e. more de-
correlated, than the CMCCAT2000 sensors, which were 
obtained by optimizing MCAT over sets of corresponding 
color data. 

The von Kries adaptation model alone cannot totally 
predict color constancy.4,20 Therefore, any chromatic 
adaptation transform based on such a model will result in 
some error. Additionally, the corresponding color data 
sets all have some inherent experimental error. Lam 
calculated that his corresponding colors have a standard 
error of approximately 2 ∆E.1 It is therefore possible that 
there are a number of sensors that will perform equally 
well using the von Kries adaptation model and tested on 
corresponding color data sets, as was shown in Ref. 17.  

However, the appearance of the CMCCAT2000 
sensors is, to our knowledge, unique, while sharp sensors 
have been found in psychophysical experiments.21-24 It is 
therefore plausible that the sensors found by keeping 
color ratios stable are closer to the “real” sensors used by 
the human visual system to perform adaptation than the 
CMCCAT2000 sensors. 
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