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Abstract 
The total appearance of a painting is defined by its spatially 

varying spectral reflectance factor, surface macrostructure (depth 
or surface normal), and surface microstructure (bi-directional 
reflectance distribution function, BRDF). For paintings with 
uniform BRDF (e.g., varnished), their total appearance can be 
measured using equipment commonly found in a photographic 
studio. Such a system was built and tested for several acrylic-
dispersion paintings. The system consisted of three strobes affixed 
with triacetate film linear polarizers and a Dual-RGB camera also 
affixed with a linear polarizer in order to achieve cross 
polarization. Using the principles of photometric stereo, images of 
each light source taken sequentially from 30° from the normal and 
120° apart annularly were used to measure surface normal. A 
learning-based algorithm was used to measure colorimetry and 
spectral reflectance factor. Software, Artviewer, was written to 
render images for specific geometries and for studio lighting. The 
system produced images that approximated, but not equaled, 
conventional studio photography. Because diffuse data were 
collected, these images are useful for the long-term evaluation of 
color changes. Evaluation of the surface normal provide new 
information for the technical examination of artwork.  

Introduction 
Imaging artwork for documentation and reproduction has a 

long and rich history. The vast majority of such imaging reduces 
an illuminated three-dimensional object onto a two-dimensional 
plane, rendering a specific observing experience. For this reason, 
successful museum photographers have backgrounds in art history 
and aesthetics enabling them to produce images that convey 
important appearance phenomena about the object [1]. The 
drawback to this practice is a need for reshooting when the 
appearance criteria change. It would be ideal if we can separate the 
image capture and rendering. In this manner, the object can be re-
rendered for various criteria. In other words, we first image the 
artwork to define its physical characteristics, or total appearance. 
Then computer graphics techniques are used to produce an image 
for specific lighting, observing or publishing criteria. 

For artwork such as paintings and drawings, a complete 
physical description would include spatially varying spectral 
reflectance factor, surface macrostructure (depth), and surface 
microstructure (bi-directional reflectance distribution function, 
BRDF) [2]. Spectral reflectance factor and BRDF can be measured 
with a spectral camera and a single light source positioned about 
the object (or multiple light sources). Depth can be measured with 
a variety of techniques including laser scanning, confocal 
microscopy, and structured light. An alternative to measuring 
depth is to measure surface normal, which is a vector direction 
perpendicular to the surface. Measurements of spectral reflectance 
factor, BRDF, and surface normal can be accomplished with a 
single imaging system. However, if the object surface has 

appreciable impasto and is not matte, hundreds of images may be 
required to assure that both diffuse and specular reflections have 
been captured for every point on the object. Furthermore, these 
many images need to be captured at every wavelength within the 
visible spectrum. Obviously, such a system would remain within a 
research domain.  

Beginning in 2006 a research program was initiated to 
develop an abridged approach to measuring the total appearance of 
paintings. One goal was developing an artist material database [3] 
where 600 samples were produced [4] and their BRDF’s estimated 
using the Ward model [5]. If an object is assumed to have uniform 
BRDF characteristics, the database can be used to define the 
object’s BRDF, reducing the imaging system complexity 
significantly. The data capture methodology developed in this 
research used three strobe lights affixed with linear polarizers and 
a cross-polarized Dual-RGB camera to measure surface normal 
and spectral reflectance factor. This approach will be referred to as 
“3LI”: three light imaging. 

Basic Assumptions 
Several assumptions are made to achieve practicality. First, 

the object is flat. For most paintings and drawings, any lack of 
planarity is small relative to both the size of the object and the 
distance between the object and camera. Second, all the object’s 
reflections can be described using a dichromatic reflection model 
where the color information is contained in the body reflection and 
the gloss information is contained in the surface reflection [6]. As 
described below, the system only measures body reflection. For 
paintings with colored surface reflections, such as gold leaf or 
coatings containing metallic particles and interference pigments, 
the rendered images will not be color accurate in these passages.  

Measuring Surface Normal 
One of the most straightforward techniques to measure 

surface normal is known as photometric stereo where an object is 
imaged using lights positioned in different locations [7]. For 
objects that are completely matte (Lambertian) and for lighting that 
is a point source at infinite distance, the surface normal is 
calculated using Eq. 1 for a three-light system: 

 (1) 
 
where 

.  Vector n is the surface normal defined by orthogonal 
directions x, y, and z where x and y are within the plane of the 
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normalized light directions for lights 1, 2, and 3, and I defines the 
object’s intensities (reflected light) as a function of position 
(pixels). Since n consists of three unknowns, we need at least three 
different lighting directions. Quite often, dozens of light directions 
are used so that specular reflections can be avoided and to provide 
an over-determined approach to estimating n. In this research, 
specular reflections were eliminated using cross-polarization and 
the three directions selected that balanced accuracy and 
dimensional limitations (e.g., room size). 

Three Broncolor PulsoG 1600 J strobes with P70 reflectors, 
barn doors, and affixed triacetate film linear polarizers were used 
in this research. Exploratory experiments were carried out where 
the three strobes were positioned in several different 
configurations. Measurements of n were compared with those 
obtained for a small painting using a rotating system designed for 
measuring both BRDF and n and with measurements of depth 
using a laser scanner. At first, two of the strobes were positioned 
45° from the normal on either side of the object plane, typical of 
many museum imaging setups, and the third strobe was above the 
object, also at 45° from the normal. In this manner, such a lighting 
system could be used for both conventional imaging and for 
measuring n. However, this configuration produced poor results 
because the lighting was over-weighted about the object plane’s 
annulus. By positioning the lights symmetrically 120° apart within 
an annulus (azimuth) and 30° from the object plane normal, 
accuracy improved dramatically.  

The camera used in this experiment was a Canon Mark II, 
modified by replacing its blue-green cover glass with BK7 glass.  
It was affixed with a Canon 100mm 1:2.8 macro lens. Attached to 
the front of the lens was a filter wheel that rotated two filters in the 
beam path, sequentially. A B&W 77mm linear polarizer with 
multi-resistant coating was screwed onto the front of the filter 
wheel assembly. The imaging system was positioned along the 
normal to the object plane. Each filter was a glass absorption filter 
with an AR coating on the camera side and a hot-mirror coating on 
the opposite side resulting in a visible bandpass filter.  

The first step in the calibration process was to achieve cross 
polarization. A pair of square linear polarizers were mounted in a 
frame as reference vertical and horizontal polarizers. An ancillary 
tungsten source was aimed through the square polarizer and the 
camera polarizer was rotated to define vertical and horizontal 
positions. These were marked on the filter edge. The camera was 
set to vertical polarization.  

A glossy black ball (cue ball) was mounted on a tripod with a 
boom extension and positioned at the center of the object plane. 
Images were taken at various rotations of the light source polarizer 
using the strobes. Cross polarization was achieved when the 
specular reflection from the ball was minimized, evaluated visually 
when the images were displayed. An image of the ball and its three 
barely visible specular highlights is retained. (Note that the 
modeling incandescent lights should not be used: They will melt 
the polarizers.) 

A diffuse white board, made by mounting Color-aid White 10 
paper on a flat metal substrate, was placed at the object plane. The 
energy of each light was optimized for dynamic range and images 
were captured of the white board using each strobe and each filter, 
sequentially, resulting in six images. These images were low-pass 
Gaussian filtered to reduce any local non-uniformities and the 

board’s surface normal was assumed to be perpendicular to the 
object plane, formally n = (0 0 1)T.  

A set of color targets were mounted on the flat metal substrate 
and imaged using each strobe and each filter with the identical 
camera and strobe settings as the diffuse white board. 

The artwork was positioned at the object plane and imaged 
using each strobe and each filter. 

A highlight position is defined as ࡴ ൌ ሾܪԢ௫, ,Ԣ௬ܪ ᇱܪ :ᇱ is normalized highlight positionܪ Ԣ௭ሿ் whereܪ ൌ  ԡଶ. The userܪԡ/ܪ
interactively selected three positions on the edge of the cue ball, 
used to calculate the ball’s radius and center, and the center of each 
specular reflection, was used to define Hx and Hy. Direction Hz was 
calculated by ඥܴଶ െ ௫ଶܪ െ  ௬ଶ. Since the distance between theܪ
camera and the ball is much larger than the size of the ball, we 
approximated the viewing direction as ࢂ ൌ ሾ0, 0, 1ሿ். According to 
the law of reflection, the direction of the light, ܮ was computed as: ࡸ ൌ ૛ሺࡴࢀࢂሻࡴ െ  (2) ࢂ

 
Because the strobes were not point sources at infinite 

distance, flat fielding was performed including cosine falloff 
compensation by multiplying the dot product of each ith light 
direction and the surface normal of the white board for each jth 
filter:  

 (3) 
 

where I is the light intensity of the object after flat-fielding and 
cosine compensation, ݖ, I’ is the raw maximum camera signal, and 
W is the white board camera signal.  

A single process was written to convert CR2 to TIFF using 
dcraw, flatfield using Eq. 3, align the images from the two filters 
using correlation-based translation, and write a single six-channel 
16-bit linear photometric TIFF file. 

Depending on the spectral reflectance of the artwork at a 
given pixel, one of the six channels had a maximum value. This 
channel’s signal defined the image intensity. 

Using Eq. 1, the surface normal was calculated for each pixel 
of the artwork and stored as a floating-point image file.  

Measuring Diffuse Spectral Reflectance 
Factor and Colorimetry 

There are a number of approaches to building an imaging 
spectrophotometer for artwork [8]. In this research, an RGB color-
filter array camera was used where replacing its blue-green cover 
glass with clear glass was first performed. A filter wheel 
positioned two custom filters in front of the camera system, 
sequentially.  The filters were designed to optimize spectral 
accuracy, colorimetric accuracy, and spatial image quality (by 
maximizing light throughput). The final filters were selected such 
that one of the filters resulted in spectral sensitivities nearly 
identical with the camera before cover-glass replacement, enabling 
the camera to be used in its standard RGB configuration and as a 
spectral camera. This approach has been named the Dual-RGB 
approach [9, 10]. 

A learning-based calibration was used where images were 
collected of the X-rite ColorChecker Classic using each strobe, 
sequentially. The images were flatfielded by dividing by the low-

Ii, j = zi , j I 'i , j / Wi, j i = {1,2,3}; j = {1,2}
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