
Error resilient lossless compression based on binary RLE
Charles Guyon, Bernard Besserer
Laboratoire MIA (Mathématiques, Image et Applications) - Université La Rochelle
Av. Michel Crépeau, 17042 LA ROCHELLE cedex - FRANCE
bernard.besserer@univ-lr.fr

Abstract
The billion pictures shot on consumer cameras or computer

generated are mostly stored in compressed data format, often vul-
nerable even to a single bit change. Obviously, the file format
used for storage is an issue, especially at the end-of-life of the
storage medium, when hardware become fragile and migration is
necessary, increasing the probability of being exposed to bit er-
rors while reading, transmitting and re-writing data.

Error resiliency was a guideline for the JPEG2000 stan-
dard [9] and [5], besides this, some formats have already been
designed for lossless compression (PNG, JPEG-LS, JPEG2000,
BMF, TMW, LOCO-I, CALIC, ...). However only few academic
works target efficient lossless compression combined with error
resiliency. This early approach points only luminance image, and
aim to reduce local redundancies to approaching Shannon’s en-
tropy. First, an adaptative predictor based on a causal neigh-
borhood is used to estimate the value of the current pixel, and
the error signal is subsequently processed, up to run-length en-
coding of bitplanes using bit-patterns to store the length of the
runs. At many stages of the processing, the impact of a possible
bit error is minimized and after run-length encoding, the data is
protected with an EDC/ECC (Error Detection Code / Error Cor-
rection Code) using log2(N) metadata for that usage. Last, a bit
shuffle (exactly a Bit-Reversal Permutation[6]) is applied for pro-
tection against burst errors. Results will be shown and compared
to JPEG2000 images.

Introduction
Indeed, as concerned by image files, dealing with uncom-

pressed data guarantees high resilience to errors. But we estimate
that combining lossless compression at high ratio with EDC and
ECC will allow us to behave like CD-DA (Compact Disc - Digital
Audio) strategy against error: correct as much as you can but if
error still remains, minimize the audio/visual impact (ie. in image
case, perform data interpolation or inpainting).

Data preservation has been identified as a looming crisis of
upcoming dramatic proportion. As research libraries and archives
are discovering, ”born-digital” materials those initially created in
electronic form are much more complicated and costly to preserve
than anticipated. Especially, due to the incredibly fast growing
market for digital camera and camera-phones, the preservation
of digital photography has become a major challenge for soci-
ety. Today, of the world’s digital data, approximately 90% reside
on mass storage (well designed for access, but not for long-term
preservation) or removable media technology such as magnetic
tape and optical disks, facing physical deterioration of medium
and hardware obsolescence. Only continuous migration to newest
storage medium and multiple copies can help to preserve the data.

While professional photographers kept their images as uncom-
pressed ”raw” data files, highly resilient to errors, the billion pic-
tures shot on consumer cameras are unfortunately stored as JPEG
files, a file format that use high compression rates and which is
very vulnerable even to a single bit change.

In fact, reliability of high density storage medium has al-
ways been the weak link in data storage. Clever EDC & ECC
software algorithms and hardware redundancy (RAID) has been
developed from the 80’s, and are used at low-level in nearby any
storage solution. Look back to the introduction of the CD-DA
(Compact Disc - Digital Audio) in 1984, Philips contributed the
Eight-to-Fourteen Modulation (EFM) which offers both a long
playing time and a high resilience against disc handling dam-
age such as scratches and fingerprints, while Sony contributed the
error-correction method, Cross-Interleaved Reed-Solomon Code
(CIRC). While robust even against long error burst, an audio sam-
ple can be corrupted, but since the data is store uncompressed,
well designed CD-Players are able to discard outliers and interpo-
late the missing or corrupted sample from the neighborhood.

This paper targets image storage principles combining loss-
less compression and error resilience. It is clear that remov-
ing redundancies through compression increases the impact of
corruption. Important point : the file must stay readable (and
error-free openable) even under high error rates. The proposed
scheme is well designed for any kind of multidimensional data
(Zn → Z), provided that causal neighborhood and scan path is
defined. Since we suggest a straighforward framework for com-
pressing data from Zn → Zm, by performing independently on
each dimension of the codomain Zm (involving those channels
are decorrelated first).

Overview and basic principle
Almost any lossless compression algorithms uses two stages

[3], [4] and [7] : The first one removes as much as possible re-
dundancies applying a reversible transforms to the original data,
minimizing the variance of the statistic distribution of the new
data set (eg. M+S for audio, luma+chroma for color signals, ...).
The data size is not yet reduced, but this transform increases the
imbalance of the binary symbols: usually, the amount of zeros be-
come predominant over ones.
The second compression stage then performs a statistic coding
taking advantage of this kind of distribution.

In practice, the image is divided into data blocks. Each data
block is compressed independently (thus allowing multithreading
or parallel processing), and each data block is scanned by a given
path (e.g. scanline). Local redundancy is removed by computing
a error signal which is the difference between a predicted value
(from the neighborhood) and the actual data. A RLE (Run-Lenght

Archiving 2012 Final Program and Proceedings 41

Encoding) in bitplane order is then applied on this error data. This
workflow sounds familiar, but:

• We really focused to reach the limit at each step: optimal
calculation of the predictor weights, using variances classes,
data shuffling and adaptive word length for encoding the
runs for the RLE, ...

• At each step, we check the behaviour of our algorithm to
minimize the impact of possible bit corruption. For ex-
ample, data encoding was chosen / adapted to create small
shifts by corruption.

After RLE encoding, we compute and store EDC/ECC data
before applying a Bit-Reversal on-place Permutation on the com-
pressed data, ensuring protection against error bursts.

Data blocks 2n

n = [8 ... 16]

A

B

C

S F

T

Variance index 1...8

Diff = Original - Prediction
(spatiale decorellation)

Optimal coefficient
prediction L2

Eigen decomposition
(dimension reduction)

Cn

Variance order Interleaving

...v5 V2 V7

V0 V1 V2 V3 V4 V5V6

Signed to
Unsigned coding

Bit plane separation

LSBMSB

2021222324252627

Size blocks & probilities

Row order
vectorization

Multiresolution parity check
Binary RLE (block)

Output stream

Transformed Data (32 bits)
1-bit processing

Metadata

Input data

V7

+ Order Rearrangement
+ Gray Code

Output storage

During decompression, if errors occur,
correction with parity bits then an iterative
scheme for find the most probable data.

Causal
neighborhood

Input image

Scanline prediction

Figure 1. Complete compression data flow. Each step will be discussed

below.

Causal prediction and redundancy reduction
Three types of redundancies are commonly assumed given

digital images:

• Local redundancies: The central pixel is correlated to his
neighborhood.

• Frequential redundancies: These more global approaches
often estimate a small number of periodic basis function; the
weighted sum of them provide a good approximation of the
signal (Fourier, DCT, Wavelets, ...).

• Pattern redundancies: Similar patches can be found at
distant location within the signal, may be at a different
scale. Fractal compression and dictionary based compres-
sion take advantage of such redundancy, and such compres-
sion schemes work well on data with periodic patterns (text)
ou textures.

A physical signal like a natural image can show up all three
types of redundancies. For the lossless image compression treated

in this paper, only the reduction of local redundancies is relevant.
Reducing data by processing the other types of redundancy leads
to approximations and therefore fit well for lossy compression
methods (Lifting scheme SGWT[8] or frequency-domain quan-
tification (JPEG) or Fractal compression[2]). Using principles
designed for lossy compression and doing lossless is mistaken :
JPEG2000 in lossless mode performs worse than PNG !

As shown in fig.1, the image is split into blocks, and the data
within a block is scanned by a given path (say scanline) twice:

• The first scan computes, for each pixel, the variance of the
neighborhood. The shape and size of the causal neighbor-
hood (which is used by subsequent predictor) is fixed (ca.
12 pixels) and therefore is much larger than the neighbor-
hood used by the PNG predictor. Based on these neighbor-
ing pixels, and using linear regression, the optimal values of
the weights for a linear predictor which minimize the mean
squared error can be computed:

A : Image block, vector of size n
p : Number of neighbor, scalar
V : Causal neighborhood, matrix n× p
t : Weighting coefficient, vector of size p

argmin
t

||A−Vt||2 → t = (V tV)−1V t A

A different criterion like minimization over L1 (minimize
the absolute deviation) should be more relevant for max-
imize amount of zeros, but the computation stage of the
weights is definitely much longer. A single average over the
whole data block can be determined, but better prediction is
reached if we consider neighborhood classes (for example,
8 classes based on the variance for each data block) and then
optimum weights are computed for a predictor assigned to
each class.

T : Weight coefficients by variance ranges, matrix of size p×8
i = [0..7] : Variance index
u−1 = 0, u7 =+∞ : Bound of variance’s intervals
Ωi = [ui−1 ≤ σ(V)≤ ui] : Data set with same range of variance

Ai = A(Ωi), Vi =V (Ωi), T = ti = (V t
i Vi)

−1V t
i Ai

Therefore, a on-the-fly process clusters the scrutinized
neighborhoods in 8 variance classes, computes optimum
weights and remember the amount of neighborhoods be-
longing to each individual class (this information is used for
data sorting).

• The second scan applies the choose the predictor accord-
ing to the variance of the neighborhood, computes the error
between the predicted value and the actual one, and store
the error to an allocated storage for that class. Therefore,
after this step, data is sorted according the variance of it’s
initial neighborhood (this sorting groups for example small
valued error signals together). For reversal data reconstruc-
tion at decompression, only the histogram (amount of neigh-
borhood belonging to each class) is needed.

As disclosed previously, each data block requires for the
present compression scheme a certain amount of crucial metadata

42 ©2012 Society for Imaging Science and Technology

(ie. optimum weights for that block used by the predictor, ...).
These metadata needs to be stored in a very safe way, for example
using EDC/ECC and replication, or a different storage channel,
and we assume this in our study.

We define a ratio expressing the amount of metadata to
the amount of raw (to be compressed) data in a block : Qm =

Metadata
Metadata+Raw . For a fixed neighborhood, the Qm ratio increases
if data block shrinks (ie: raw = 1024 Bytes, p = 12, Coe f s =
12×8× 3

2 = 144 Bytes, Qm> 12.3%). For best compression rate,
it appears that this ratio should be adaptive to the complexity of
the data. Compression of the metadata itself was also examined.
Our experimentation shows us that a lossy compression scheme
can be used here: PCA (Principal Component Analysis) and pre-
cision loss of the weights is absolutely not critical for the image
reconstruction, which stays near to optimum if the block show a
low variance. If the block is textured or noisy (weak spatial re-
dundancy), the prediction itself is indeed inaccurate and weight
precision pointless. This lossy compression scheme for this kind
of metadata (predictor weights) is not described in this paper.

Binary RLE
If we leave the robusness topic out, premium choice for com-

pression would be an arithmetic coder which, according to littera-
ture and recent advances in compression, can achieve a compres-
sion rate close to Shannon’s limit. However, a single bit error in
a compressed (by an arithmetic coder) data stream leads to strong
corruption and spatial shifting of reconstructed data (often com-
plete bunches of 32 or 64 bits are corrupted).

We propose an alternative scheme based on binary RLE (Run
Length Encoding) which has the following advantage with regard
to error resilience: even without the subsequent EDC/ECC, a sin-
gle bit swapping introduces only a small shift, and this shift can
be minimized in some extents. Furthermore, binary RLE is faster
than a-coder, since it does not require any multiplication/division
operations and is well-suited for sparse signal representation.

Simple Binary RLE
S : Binaryinput
m : nbbitcoding
ω ← 2m−1

j←−1
for i in 0 . . .n−1

if S[i] then
∆← i−j

j← i

while ∆> ω

∆← ∆−ω

send(0)
end while
send(∆)

endfor

0 +1 +3 +4+2 +5-1-2-3-4-5

0 +1 +3 +4+2 +5-1 -2 -3 -4 -5
0 2 6 84 101 3 5 7 9

Figure 2. Left: the basic RLE algorithm. Right: the data remapping improv-

ing the imbalance in favor of zeroes, suited to handle error data (distribution

centered at 0). The remapping algorithm is if (x< 0x80) then y← SHL1(x)

else y← NEG(SHL1(x)+1) where SHL is a binary Left SHift.

The RLE encoding is rather classical. Since we work on
a binary data stream, we store the length of the run to the next
”1”. The algorithm in pseudo-code is given in fig.2, and fig.3
illustrates RLE by example. The binary data stream to encode

is a error stream (prediction minus actual value), and therefore
contains signed values (the statistical distribution is centered at
zero and shows a high peak at zero). So we improve the RLE by
applying a bijection from signed to unsigned integers, remapping
the coding of signed integer : the sequence -1,+1 usually coded
as 11111111b,00000001b will become 00000001b,000000010b.
The purpose of this mapping is to significantly reduce the amount
of 1 before RLE.

After this remapping, data is split in subblocks, according to
binary bit rank and belonging to a variance class. For example,
a subblock is the bit stream formed by all MSB bits of all values
belonging to variance class V0. Since data is encoded onto 8 bits
and clustered in 8 variance class, our process handles 8×8 = 64
subblocks (all subblocks can be processed in parallel). We assume
that each one of these subblock is now spatially decorrelated, and
we focus on statistic encoding.

0
0
1
0
0
0
0
0

1

0
0

0
0

1

0
0

1

1
0

3

8

5

1

2

3
8
5
1
2

What is the optimal
 bit encoding ?

1 bit

0
0
1
0
0
0
0
0

1

0
0

0
0

1

0
0

1

1
0

2 bits 3 bits 4 bits

3

1
2

0
0
2
0
2

3

5
1
2

1
0

3
8
5
1
2

19 x 1 bit

8 x 2 bits

6 x 3 bits

5 x 4 bits

1

0 1

0 0 1

0 00

1

2

3

0

Input binary signal

Interval between each "1"

Exemple: RLE binary
coding scheme on 2 bits

Rules

19 bits

3

1
2

0
0
2
0
2

8 x 2 bits

Output 2-bits signal

Optimal bit
encoding is choose only

with knowledge of data size
and account of "1" symbols.

Figure 3. RLE by example : Given a binary stream (left), choosing the

correct word size to encode the length of a run is critical. The figure shows

encoding using 2 bits words, then shows, at the right side, the encoding using

several options (1 bit words - no compression, 2bits, 3 bits and 4 bits words)

Major issue is now to choose the right number of bits for
coding a run, as illustrated fig.3. If 8 bits are used (sequences up
to 255 consecutive zeroes) and ”one” symbols appear very often
in this sequence, says every tenth ”zero”, the compression rate
will be very low since 4 bits have been enough. On the other hand,
choosing shorts words to encode a long run would rise the amount
of [00...0] codewords, tagging a sequence of zeroes that exceeds
coding capacity. Optimal length (m = word length to encode a
run) given a given probability p of ”ones” in a subblock can be
precisely computed, and lead to a compression ratio Rm(p):

R1(p) = 1, Rm(p) = mp2
∑
+∞

x=0(1− p)x ⌈ x+1
2m−1

⌉
= mp

1−(1−p)2m−1

One can easily computes the probabilities of transitions (see
fig.4) p12, p23, p34, p45, p56 . . . They are the roots of a polyno-
mial with three monomials given by:

pm,m+1 = p = 1−q, (m+1)q2m−1−mq2m+1−1 = 1

Remark, only p12 can only be solved analytically, p12 =
3−
√

5
2 =

2−φ , where φ is the golden ratio. The others are calculated iter-
atively by the following scheme:

q0 = qapprox, qi+1 = qi−
(m+1)q2m−1

i −mq2m+1−1
i −1

(2m−1)(m+1)q2m−2
i −(2m+1−1)mq2m+1−2

i

Two reasons lead us to improve our model:

Archiving 2012 Final Program and Proceedings 43

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

1 bits
2 bits
3 bits
4 bits
5 bits
6 bits
7 bits
8 bits

p12p23p34p45p56

(p)log(p) + (1-p)log(1-p)
-log(2)

Binary entropy function

Figure 4. Plot of compression rates Rm(p) as a function of the probabil-

ity p of ”ones” in a binary stream. Bold curve: Binary entropy limit. Each

straight ligne give Rm(p) according to choosen word size m used for encod-

ing the length of the runs. Best compression rate for a given p is achieved by

picking the line segment close to the Shannon limit. The intersections of the

straight lines have been calculated off-line and stored in a table () that the

compression algorithm uses to find the best word size.

• For computational efficiency, it is preferable to handle with
usual machine word, (ie packets of 32-bits, rather than send-
ing for example 3-bit one after the others).

• It is tempting to encode on fractional values of encoding bit.
For example, an optimal compression ratio can be obtained
using 2.5-bit rather 2 or 3-bit.

For these reasons, it is interesting to use bit patterns. As
32 is small, we can exhaustively enumerate all integer values
a,b,c,d such that a× c + b× d = 32, a = b + 1. The pat-
tern num23 (see next tab) corresponds for instance to 4× 5 +
3× 4 = 32. We can order it in different ways, for instance:
[4 4 4 4 4 3 3 3 3] (splited) or [4 3 4 3 4 3 4 3 4] (enter-
leaved). An useful property is that the order of the bits does not
affect the compression ratio, since the only the knowledge of their
probability is need to estimate the ratio. This shows that the order
does not matter. We exhaust all possibilities,

num a c b d
0 1 32 0 0
1 2 1 1 30
2 2 2 1 28
3 2 3 1 26
4 2 4 1 24
5 2 5 1 22
6 2 6 1 20
7 2 7 1 18
8 2 8 1 16
9 2 9 1 14
10 2 10 1 12
11 2 11 1 10
12 2 12 1 8
13 2 13 1 6
14 2 14 1 4
15 2 15 1 2
16 2 16 1 0
17 3 2 2 13
18 3 4 2 10
19 3 6 2 7
20 3 8 2 4
21 3 10 2 1
22 4 2 3 8
23 4 5 3 4
24 4 8 3 0
25 5 4 4 3
26 6 2 5 4
27 7 2 6 3
28 8 4 7 0
29 11 2 10 1
30 16 2 15 0
31 32 1 31 0

=⇒

Only useful patterns
Combos Intervals

num a c b d divide by 232 decimal expansion

0 1 32 0 0
————————————> 1640531526 0.381966011133
16 2 16 1 0

————————————> 1071497016 0.249477339908
21 3 10 2 1

————————————> 722660323 0.168257468147
22 4 2 3 8

————————————> 658891454 0.153410121333
24 4 8 3 0

————————————> 386576822 0.090006930288
25 5 4 4 3

————————————> 297609193 0.069292539963
26 6 2 5 4

————————————> 177737969 0.041382845724
27 7 2 6 3

————————————> 84073371 0.019574857084
28 8 4 7 0

————————————> 23220235 0.005406382261
29 11 2 10 1

————————————> 2908179 0.000677113188
30 16 2 15 0

————————————> 45426 0.000010576565
31 32 1 31 0

Figure 5. Show only useful patterns, that means they are the closest to the

binary entropy function. For a given probability of ”1”, for example p = 0.08,

we must encode runs on 5 bits (4 times) and 4 bits (3 times).

By expanding, we obtain the general formula for any pattern
consists of n values different encoding. In the pattern, there are
c1 times a1 , c2 times a2 , etc . . . Rgen(p) = p∑

n
i=1 aici

∑
n
i=1 ci(1−(1−p)2ai−1)

For this we are interested (32-bits and only 2 encoding values in
the pattern), we have: Rabcd(p) = 32p

c(1−(1−p)2a−1)+d(1−(1−p)2b−1)

If we take the 32 possible combinations, we look for the subset
∀p ∈ [0 : 1

2] , Pabcd(p) = min (12 patterns, i.e. previous tab).
We must determine the 11 transitional probabilities between 2 pat-
tern. As before, they are not analytically computable. However,
we can calculate recursively (Newton method) and give the opti-
mal rational approximate on a finite numerical 32-bits precision,
which are given in descending order fig.5 and achieved by:

qi+1 = qi−
c̄(1−q2ā−1

i)+ d̄(1−q2b̄−1
i)− c(1−q2a−1

i)−d(1−q2b−1
i)

−c̄(2ā−1)q2ā−2
i − d̄(2b̄−1)q2b̄−2

i + c(2a−1)q2a−2
i +d(2b−1)q2b−2

i

Where a,b,c,d, ā, b̄, c̄ and d̄ are parameters of two adjacent patterns

Robusteness and Parity check
Before storing the compressed data, the binary coding is

again remapped, this time to be more robust to data corruption.
For example, if binary data 0011b means 3 and encode the length
of a run, a single bit change to 0111b means 7, and introduce a
significant shift in the data. Using rearrangement procedure and
gray code (which is widely used to facilitate error correction) for
coding the length of a run ensures that the effect of error is mini-
mizes in case of a single bit corruption.

circ() procedure : if AND(x,1) then y← ROR1(x)
else y← SHR1(NEG(x))

gray() procedure : z← XOR(y,SHR1(y))

Figure 6. Robustification using gray code for encoding the run lengths. A

single bit change only alters the lenght by +1 or -1. In the pseudo-code, ROR

means ROTate the binary word to the Right, and SHR SHift binary word to

the Right.

After remapping as gray code, all data is protected by
EDC/ECC. The Error Correction Code is quite similar to a Ex-
tended Hamming Code [11], [1] and [10], except that the parity
check is labelled as metadata and is assumed to be stored in a
completely reliable way (replication, different storage channel, ...)
as stated before. Like explained in subsection , the amount of
metadata should be kept as low as possible to preserve the overall
targeted compression rate of the method.

Ideally, the size of data should be 2K bits (K ∈ N), K has to
be lowerer if probability of bit corruption is high. The EDC/ECC
process should be able to recovering data up to a certain degree of
data corruption. In case of error bursts or if corruption rate is high,
the ECC is overwhelmed but EDC is still signaling the errors.

44 ©2012 Society for Imaging Science and Technology

Binary input (n length)0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 10 1 0 10 1 0 10 1 0 10 1 0 10 1 0 10 1 0 10 1 0 10 10 10 10 10 1 0 10 10 10 1 0 10 10 10 1 0 10 10 10 10 10 10 10 10 10 10 10 1 0 10 10 10 10 10 10 10 111111111 11111111 11111111 11111111 XORXORXOR ?. . .??? Multi-resolutionparity valuelog2(n)+1 bits
Figure 7. Parity check computation reach in single pass.

for i in 0 . . .n−1 do if T[i] 6= 0 then u← u ̂ (i&0x8000000) endfor

Checking data against EDC/ECC parity data is fast (linear
complexity) and can be done directly on 32-bits words using a
16-bits lookup table.

If only one bit swap occured within a n = 26 = 64-bit block
(this size is used for our experimentation), data is fully recovered.
If two bits are altered, the error is detected and ECC informa-
tion helps to reduce the set of possibilities for recovering from
n(n−1)

2 to a subset S containing n
2 cases. If more bits errors arise,

corruptness is often detected (much better if n is large) and the
ECC is fooled and adopts recovering strategy corresponding to
1- or 2-bits errors. In fact, errors involving a odd number of bit
changes are always detected, while even number of errors are of-
ten detected. According to below, the exact probability is given by
1− 1

2n (for example, a 1024 bits signal, the probability to detect a
corrupted signal is 99.951%),

n : Length o f signal r : Number o f errors (even)

En,r = {∀ i0, i1, i2, . . . ir−1 ∈ N |
r−1⊕
k=0

ik = 0,

0≤ i0 < i1 < · · ·< ir−1 ≤ n−1}

Pn,r =
Card(En,r)

(n
r)

n
∑

k=0
Pn,k =

Un
2n , U4 = 4,

Un =


Un−1 +1 i f n = 2K +1 (K ∈ N)
2Un−1 +1 i f n = 4K +1 and n 6= 2K +1
2(Un−1−1) i f n = 4K
2(Un−1−1)+1 otherwise

Un ≈ 2n

n and U2K = 22K

2K , thereby
n/2
∑

k=0
Pn,2k =

1
2n (n = 2K)

Underneath, we illustrate the decoding strategy using Pa
(stored parity check data) and Pb (parity check computed at the
decompression stage). XORing Pa with Pb give parity change Pc.

Pc← Pa ⊕ Pb

[Pc 6= 0]
0

(0 error)
//

1(1,2 errors)

��

Nops

[Pc ≥ 0x80000000]

1(1 error)

��

0

(2 errors)
//

for i in 0 . . .n−1
j← i ⊕ Pc

if j> i then
T[i]← !T[i], T[j]← !T[j]
S = decompress(T)
if valid(S) then break

endif
endfor

(Nearly corrected)
Valid() check size and last value

i← Pc&0x7fffffff, T[i]← !T[i]
(Corrected)

If two errors occur within the block, the decompression pro-
cess could try to rigorously recover the signal, using each pos-
sibility from subset S for decompressing the data. After decom-
pression trial, a scoring function can evaluate each recovering op-
tion. The description of this scoring function is out of the scope of

this contribution. The function (named Valid() in the previous
pseudogram) can rely on different criteria like pixel neighborhood
coherence or checking if the decompressed data fits in the data
blocks used at compression, etc...

If scoring is beneath a threshold for all cases, the decompres-
sion algorithm can switch to a lossy stragegy, filling the data that
has been corrupted using interpolation or inpainting techniques.

Results
We apply our compression to well known images used by

the image processing communauty, in order to compare the com-
pression ratio against other methods. All images 512×512, lumi-
nance only :

Image Compression Rate Image Compression Rate

lena 0.558318 baboon 0.753539

peppers 0.578509 cameraman 0.624422

elaine 0.617273 couple 0.521871

goldhill 0.621971 barbara 0.618704

References
[1] Joseph Jean Boutros, Albert Guillén i Fàbregas, Ezio Biglieri, and

Gilles Zémor. Low-density parity-check codes for nonergodic
block-fading channels. IEEE Trans. Inf. Theor., 56:4286–4300,
September 2010.

[2] G.M. Davis. A wavelet-based analysis of fractal image compression.
Image Processing, IEEE Transactions on, 7(2):141 –154, February
1998.

[3] Yuji Umezu Ichiro Matsuda, Nau Ozaki and Susumu Itoh. Loss-
less coding using variable block-size adaptive prediction optimized
for each image. Proceedings of 13th European Signal Processing
Conference (EUSIPCO 2005), 2005.

[4] Andrew Penrose Neil and Neil A. Dodgson. Error resilient lossless
image coding. In In ICIP, Kobe, 1999.

[5] Franco Liberati Paolo Buonora. A format for digital preservation of
imagesn, a study on jpeg 2000 file robustness. D-Lib Magazine, 14,
2008.

[6] J.J. Rodriguez. An improved fft digit-reversal algorithm. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 37(8):1298
–1300, aug 1989.

[7] I. Sodagar, B.-B. Chai, and J. Wus. A new error resilience tech-
nique for image compression using arithmetic coding. In Acous-
tics, Speech, and Signal Processing, 2000. ICASSP ’00. Proceed-
ings. 2000 IEEE International Conference on, volume 6, pages 2127
–2130 vol.4, 2000.

[8] Yan Tang and Yu-long Mo. Second generation wavelet applied to
lossless compression coding of image. Journal of Shanghai Univer-
sity (English Edition), 4:225–229, 2000.

[9] David S. Taubman and Michael W. Marcellin. JPEG 2000: Image
Compression Fundamentals, Standards and Practice. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2001.

[10] M. C. Valenti and J. Sun. The umts turbo code and an efficient
decoder implementation suitable for software defined radios. In-
ternational Journal of Wireless Information Networks, 8:203–216,
2001.

[11] Guosen Yue, Li Ping, and Xiaodong Wang. Generalized low-density
parity-check codes based on hadamard constraints. IEEE Transac-
tions on Information Theory, 53(3):1058–1079, 2007.

Archiving 2012 Final Program and Proceedings 45

Figure 8. JPEG2000 Files stored with 100% quality. Average compression

ratio is 0.58. Corruption of 100 random bits for each file. Results are very

unpredictable, several files cannot be opened anymore with usual tools and

image viewers (cross icons). By applying 200 random bit errors to each file,

almost all of them fail to be opened.

Figure 9. Storage using our compression scheme. Corruption of 1000

random bits per file (10x more than the JPEG2000 ones). By applying only
100 random bit errors to each file, the EDC/ECC recovers all the data.

The average compression ratio is 0.55 (better than JPEG2000).

Figure 10. Even heavier error rates including bursts are applied to this

second set of pictures. The image file stay always readable. Size is 512×768

pixel = 3145728 bits (8 bits/pixel luminance channel). From left to right, top

to bottom : 0.01% corruption (314 bits altered), 0.1% (3145 bits), 1% (31457

bits) and 10% (314572 bits - that means that 1 bit out of 10 is swapped)

Author Biography
Charles GUYON received in 2007 the B.S. and in 2009 the M.S. de-

grees in computer science applied to image processing from University of
La Rochelle, France. He is currently working toward the Ph.D degree in
MIA Laboratory (Mathematics, Image and Aplication) in La Rochelle. His
current research interests include tensor low-rank decomposition, com-
pressive sensing and background modeling for video surveillance.

Bernard BESSERER received an engineering degree (1986) and
a PhD (1993) in applied Electronics, He is working in the field of im-
age processing since his PhD, starting 1988 with computer vision for au-
tonomous vehicles. In 1993, he got a position at the University of La
Rochelle as assistant-professor and started 1995 research activities on
methods and algorithms for digital film restoration and preservation (in-
volved in the PRESTOSPACE project and the RESONANCES project, the
later concerns an optical sound track restoration platform).

46 ©2012 Society for Imaging Science and Technology

Kodak test image Compression Rate Compression Rate

(our method) PNG

image 14 (raft) 0.660096 0.65276

Figure 11. This set of pictures illustrate the behaviour of the compression

algorithm if the amount of bit errors exceed the ECC capacity. Size is 768×
512 pixel = 3145728 bits (8 bits/pixel luminance channel). From top to bottom

: Original, 0.01% corruption (314 bits altered), 0.04% (1258 bits) and 0.07%

(2202 bits)

Kodak test image Compression Rate Compression Rate

(our method) PNG

image 23 (parrots) 0.475890 0.49264

Figure 12. Size is 768× 512 pixel = 3145728 bits (8 bits/pixel luminance

channel). From top to bottom : Original, 0.01% corruption (314 bits altered),

0.1% (3145 bits) and 1% (31457 bits)Archiving 2012 Final Program and Proceedings 47

