

Using GPUs to Improve Image Processing Throughput at
FamilySearch
Ben Baker; FamilySearch; Orem, Utah, USA

Abstract
Graphics Processing Units (GPUs) have been traditionally

used to accelerate computation of computer graphics in
applications such as video gaming and high-end 3D rendering.
However, recent research has examined using GPUs “in reverse”
[1] for computer vision types of image processing. This paper
examines leveraging the parallel processing capabilities of GPUs
to lower costs and increase the throughput of the millions of
original record images being processed by FamilySearch.

Digitization of original records is a large focus of archives
and family history service providers such as FamilySearch. This
digitization enables researchers to more easily access images of
records without requiring physical access to archives or
microfilm. After digital images of records have been captured,
FamilySearch applies several treatments to the raw images to
produce both preservation and distribution quality images.

Examples of these treatments include decoding from and
encoding into different image formats, automatic skew correction,
automatic document cropping, image sharpening and image
scaling to produce thumbnail images. The intent of these
treatments is to enhance the presentation of the records in the
images to the end user and to reduce file size for storage.

FamilySearch currently processes millions of images
annually in this manner through a collection of CPU based servers
called the Digital Processing Center (DPC). While the DPC
consists of many CPU cores running in parallel across multiple
servers, recent GPUs include comparable numbers of less
powerful cores in a single card.

If servers are constructed with both CPUs and GPUs and
code is written to utilize the multitude of cores on the GPUs in a
parallel manner, comparable throughput may be achieved in a
smaller form factor with less overall cost and decreased
processing time per image. The result is increased scalability as
FamilySearch continues to increase the number of images
processed to make more records available more quickly to more
people.

Background on GPU Computing
As the graphical capabilities of personal computers have

increased, hardware manufacturers discovered that there were
advantages to creating specialized hardware to perform
mathematical operations commonly used in graphics rendering.
This eventually resulted in the advent of modern video cards with
Graphics Processing Units (GPUs) as their core processing units.

In contrast, Central Processing Units (CPUs) are general-
purpose processors capable of running many different applications.
The architectures of CPUs and GPUs have evolved over time, but
have always had fundamental differences. CPUs have been
optimized to provide a high degree of instruction level parallelism
to maximize performance. In addition, recent CPUs have provided

multiple processing cores further allowing data to be processed in
parallel.

On the other hand, GPUs utilize a highly parallel architecture
composed of many more but smaller processing elements capable
of a high degree of data level parallelism. GPUs are very much
designed to be single instruction, multiple data (SIMD) machines.
This was originally for the purpose of accessing multiple pixels
simultaneously to improve computer graphics performance.

Modern GPU hardware is already fast and getting faster more
quickly than CPU hardware as shown by the growth curves in
Figure 1 [2]. Despite higher processing capabilities, GPU
computation is not well suited for certain types of tasks, however.
In order to realize performance gains from GPU computing,
algorithms must be written in a matter that takes advantage of and
executes on the GPU instead of the CPU.

Despite the original intention of GPUs being used as graphics
processors, advances in GPU architectures, programming tools and
languages have given rise to the General Purpose GPU field [3].
In the past, specialized knowledge and skills were required to
effectively write code designed for GPUs and applications were
somewhat limited to the graphics domain. However, programming
tools have now been developed to use GPUs as general purpose
parallel processors by writing code in high level programming
languages in a way familiar to the majority of software developers
[4].

As an example, one of the leading GPU hardware
manufacturers, NVIDIA, has developed a programming language
similar to the C programming language based on their Compute
Unified Device Architecture (CUDA) [5]. Language bindings for
CUDA have also been developed for many other popular
programming languages, making writing code to utilize the
computational power of GPUs much easier. As evidence of the
growing popularity of parallel programming on GPUs, parallel

Figure 1. GPU processing capabilities over time compared to Intel CPUs [2].

Archiving 2011 Final Program and Proceedings 121

programming courses using CUDA are being taught at 381
universities throughout the world [6].

Improved programming languages and tools gave given rise
to the emerging domain of High Performance Computing (HPC)
with GPUs separate from the more traditional markets of high-end
computer gaming and 3D rendering . New products such as the
NVIDIA Tesla [7] are specifically designed solely for computation
as evidenced by the complete lack of video output like a traditional
video card. These GPU computing processors are being used in
large clusters for weather simulations, medical imaging,
computational finance and many more computationally intensive
industries. NVIDIA also promotes using these cards to create
“personal supercomputers”, capable of computation far exceeding
normal workstations. NVIDIA claims that the latest Tesla 20-
series GPU computing processors can deliver equivalent
performance to the latest quad-core CPUs at 1/20th the power
consumption and 1/10th the cost [7] in smaller form factors. These
aspects make using GPUs for image processing at FamilySearch
an attractive option to improve throughput and reduce ongoing
costs.

Background on FamilySearch Digital Image
Processing

FamilySearch is an organization that obtains a large amount
of digital images of genealogical records from microfilm and
digital capture of original records. These images are given various
processing treatments to enhance the presentation of the records in
the images and reduce file size for storage.

This image processing takes place in a collection of several
CPU based servers called the Digital Processing Center (DPC).
FamilySearch currently processes millions of images annually
with projections of at least a two-fold increase year over year for
the next two years. Future projections also include more color
image processing (the vast majority is currently 8-bit grayscale)
and larger images from digital cameras, further increasing
processing requirements.

FamilySearch currently accelerates image processing by
leveraging two widely used libraries for a large portion of the
image processing performed in the DPC. These libraries are
Intel’s Integrated Performance Primitives (IPP) [8] [9] and
OpenCV [10] libraries. In addition to these image processing
libraries, several well used image decoder/encoder libraries are
used to convert images from one format to another for various
purposes.

The majority of the time spent during processing each image
occurs during relatively few library calls in the aforementioned
libraries, so finding a way to replace these library calls with faster
parallel GPU based alternatives would directly translate to
improved overall image processing throughput in the DPC.

Potential Based GPU Solutions
Since the majority of time spent on image processing

computation in the DPC takes place in library function calls to the
IPP and OpenCV libraries, finding comparable GPU based
libraries for these methods would be very advantageous. This
approach further relieves developers from the optimization burden
and learning curve of programming directly on the GPU in CUDA
or similar languages.

In direct response to Intel’s IPP library, NVIDIA has
produced a NVIDIA Performance Primitives (NPP) library [11]
[12]. The latest version (3.2.7) of this library has implemented
several hundred functions that correspond to IPP library functions.
The intention for this library is to provide a GPU based solution
that could be integrated easily with existing projects utilizing IPP,
such as FamilySearch’s image processing library.

NVIDIA has also recently partnered with Willow Garage, the
maintainers of OpenCV, to include a GPU module that provides
acceleration of some library functions on GPU hardware in the
latest release of OpenCV (2.2) in December 2010. This module is
admittedly in early beta stage, but is suitable for this investigation.
Another potential candidate to accelerate OpenCV functions on the
GPU is GPUCV [13].

The current architecture of FamilySearch’s image processing
library is such that is should be possible to augment the current
CPU based DPC cluster with GPU based servers that are capable
of utilizing code that calls into libraries that execute on these
GPUs. If the GPU based cluster’s performance is favorable, it
may be possible to eventually replace the current CPU based
cluster with a GPU based one controlled by far fewer CPU based
servers. Assuming sufficient speedup is obtained, comparable
throughput would be achieved in a smaller form factor with lower
power consumption and total cost of ownership.

Performance Testing Methodology
To illustrate the viability of GPU based image processing at

FamilySearch, this paper will examine two image processing
operations currently performed by the DPC, cropping and
sharpening. Performance of the current CPU based library will be
compared against a GPU based prototype to illustrate the
performance gains as well as limitations of image processing on
the GPU.

All performance tests were executed on a system with Dual
Quad Core Intel® 2.80GHz i7 CPUs (8 cores total), 6 GB RAM
and the 64-bit Windows 7 operating system. A single Tesla C1060
Compute Processor (240 processing cores total) was connected via
a PCI-Express x16 Gen2 slot for all GPU computations.

Three representative images of increasing size were chosen as
samples for performance testing purposes. The smallest image of
1726 x 1450 (2.5 megapixels) represents one of the smaller images
processed by FamilySearch. A larger 4808 x 3940 (18.9
megapixel) image represents a relatively typical size of image and
the largest 8966 x 6132 (55.0 megapixel) image represents the
current maximum size of images processed by FamilySearch. The
processing times listed are average times across three iterations of
both the CPU based algorithm and GPU accelerated algorithm for
each image.

Cropping Operation Results
Images are cropped by FamilySearch to provide a uniform

border around records within images throughout a collection and
to save storage space by discarding pixels that do not provide
relevant information pertinent to the record. This is also important
when the images are indexed by FamilySearch Internet Indexing
[14] so that a template can be applied to images that will more
accurately place highlights on fields with data that should be
indexed. The cropping operation consists of three main steps:

122 ©2011 Society for Imaging Science and Technology

Figure 3. Comparison of time to sharpen images

Figure 2. Comparison of time to crop images

1. Compute a threshold value
2. Binarize the image based on the computed threshold
3. Compute a bounding box that encloses all pixels

determined as part of the document
The operation to binarize the image based on a threshold

value is well suited to parallelization on the GPU. The NPP
library provides the nppiThreshold and nppiCompare methods that
are capable of performing this step. Computing a threshold value
also requires creating a histogram of the image, which can also be
optimized by using NPP functions.

The rest of the steps of the cropping operation remained the
same as in the current CPU based library. Because these steps do
not take a significant amount of time compared to the entire
operation, parallelizing the binarization and histogram creation
portions of the crop operation with NPP functions provides
dramatic processing speed improvements as shown in Figure 2.

The results of comparing the crop operation run entirely on
the CPU with IPP optimizations compared to portions of the
operation parallelized on the GPU via calls to NPP functions
results in a speedup of 5x over the CPU only implementation for
the 2.5 megapixel image, increasing to nearly a 17x improvement
for the 55 megapixel image.

Sharpening Operation Results
Images are sharpened by FamilySearch to improve the

contrast of the written portion of the document against the paper it
was written on to make it more readable. The sharpen operation
used by FamilySearch utilizes the common Unsharp Mask
algorithm that can be decomposed into three steps:

1. Perform a Gaussian Blur on the source image
2. Take the difference of the blurred image from the

original and multiply it by a specified amount
3. Add the image produced from the previous step and

clamp any values back to the displayable range of
[0,255]

As with the crop operation, the NPP library provides suitable
methods to increase performance through parallelization on the
GPU. The Gaussian Blur in Step 1 was implemented using NPP’s
nppiFilter function. Steps 2 and 3 were implemented using the
image arithmetic methods in NPP. Figure 3 shows how performing
sharpening on the GPU provides a dramatic speedup of about 5x

over the CPU implementation for all image sizes tested.
Ironically, this exercise also helped discover that the current

CPU based implementation could likely be improved by utilizing
corresponding IPP functions for Steps 2 & 3. Doing so would
provide a more fair comparison and probably improve
performance on CPUs, though likely not as much as by utilizing
the GPU.

Cropping and Sharpening Combined Results
While it is instructive to examine individual image processing

operations individually, operations in the DPC are not performed
in isolation. Additional operations currently performed on each
image include automatic skew correction, image scaling to
produce thumbnail images and encoding/decoding in different
image formats.

One item not previously discussed is that moving to a GPU
based solution comes with additional costs in the form of
transferring data to/from the GPU for computation. The previous
results presented have included this time when comparing
performance of operations. To maximize performance, as few
transfers back and forth from the GPU as possible should be made.
For example, if the crop and sharpen operations are performed in
sequence, it is only necessary to transfer the image to and from the
GPU once at the beginning and end of the operational sequence.

To begin to show what performance gains an entire DPC
operational plan may have through parallelization on the GPU, the
work on cropping and sharpening operations was combined
without returning the image to the CPU between operations.
Figure 4 shows a comparison of executing these two operations on
each test image.

Overall, the results of the cropping and sharpening operations
in tandem result in roughly a 6-10x speed improvement on the
GPU, increasing as image sizes increase. While this is very
attractive, it must be pointed out that the cropping and sharpening
operations represent only about 6% of the average total processing
time per image in the current CPU implementation. Therefore,
even these impressive gains in performance would not have a very
large impact on the overall processing time.

While this is very attractive, it must be pointed out that the
cropping and sharpening operations represent only about 6% of the
average total processing time per image in the current CPU

Archiving 2011 Final Program and Proceedings 123

Figure 4. Comparison of time to crop and sharpen images in tandem

implementation. Therefore, even these impressive gains in
performance would not have a very large impact on the overall
processing time.

Further work concentrating on performing the skew
correction and image decoding/encoding operations on GPUs will
be necessary to realize overall dramatic gains. However, if GPU
optimized versions of all DPC operations were written it is
expected that the overall speed improvement would at least meet
and likely exceed the 2.5x speedup found by Lee et al. [15] when
comparing various algorithms on CPUs and GPUs in a similar
manner as done in this paper.

Conclusions and Future Work
This paper has shown that there is a significant increase in

performance by parallelizing image processing operations for
execution on GPUs. There also appears to be great potential in a
GPU based approach to image processing at FamilySearch,
especially if GPU performance continues to improve more quickly
over time than CPU performance and the libraries, languages and
tools for GPU computing continue to get better. It is also believed
that similar gains may be had by smaller archives utilizing a GPU
in a single desktop workstation.

However, performance increases are highly dependent on the
ability to take advantage of the data parallel nature of GPUs, but
libraries such as NPP provide solutions that can be relatively easily
applied to existing code bases such as the image processing library
at FamilySearch without extensive knowledge of GPU
programming.

Another potential improvement to image processing at
FamilySearch by using GPUs is that more computationally
intensive operations may be used to improve image quality
without sacrificing current levels of performance.

In order to fully assess the viability of using GPUs for image
processing at FamilySearch, the entire set of operations performed
in the DPC should be implemented using GPU based libraries or
languages to compare against the current CPU based library. This
includes implementing or utilizing libraries to perform image
encoding/decoding. One potential solution for JPEG-2000
encoding/decoding is the Cuj2k library [16].

To better validate actual throughput improvements,
comparisons of CPU and GPU performance for image processing

should also include an investigation in more production-like
environments where thousands of images per hour are
simultaneously processed across multiple servers executing
multiple threads each.

Finally, as FamilySearch increases the number of images
processed it is believed that the performance gains shown in this
paper will result in decreased processing times per image,
increased throughput, smaller form factor and decreased total cost
of ownership.

References
[1] James Fung and Steve Mann, Using Graphics Devices in Reverse:

GPU-Based Image Processing and Computer Vision, Proc. ICME, pg.
9-12. (2008)

[2] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E. Lefohn, and Tim Purcell, A Survey of General-
Purpose Computation on Graphics Hardware, Computer Graphics
Forum, 26(1):80–113, (2007)

[3] General-Purpose Computation on Graphics Processing Units.
[Online] http://gpgpu.org.

[4] Will Ramey, Languages, APIs and Development Tools for GPU
Computing, GPU Technology Conference. (2010).

[5] CUDA Zone. [Online]
http://www.nvidia.com/object/cuda_home_new.html.

[6] CUDA Course Map - CUDA University Courses. [Online]
http://www.nvidia.com/object/cuda_courses_and_map.html.

[7] High Performance Computing (HPC) - Supercomputing with
NVIDIA Tesla GPUs. [Online]
http://www.nvidia.com/object/tesla_computing_solutions.html.

[8] Intel® Integrated Performance Primitives Peformance Library -
Intel® Software Network. [Online] http://software.intel.com/en-
us/articles/intel-ipp/.

[9] Stewart Taylor, Intel Integrated Performance Primitives, How to
Optimize Software Applications Using Intel IPP.

[10] OpenCV Wiki. [Online] http://opencv.willowgarage.com/wiki.
[11] NVIDIA NPP. [Online]

http://developer.nvidia.com/object/npp_home.html.
[12] Anton Obukhov, Frank Jargstorff , NVIDIA Performance Primitives

& Video Codecs on GPU, GPU Technology Conference, (2009).
[13] Jean-Philippe Farrugia, Patrick Horain, Erwan Guehenneux, Yannick

Alusse, GPUCV: A Framework for Image Processing Acceleration
with Graphics Processors.

[14] FamilySearch.org - Indexing. [Online]
http://www.familysearch.org/eng/indexing/frameset_indexing.asp.

[15] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher,
Daehyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail
Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal
and Pradeep Dubey , Debunking the 100X GPU vs. CPU Myth: An
Evaluation of Throughput Computing on CPU and GPU.

[16] JPEG 2000 on CUDA. [Online]
http://cuj2k.sourceforge.net/index.html.

Author Biography

Ben Baker received his BS in Computer Science from the
University of Utah (1999) and an MBA from Brigham Young
University (2008). He is currently employed at FamilySearch as a
Senior Software Quality Engineer on the Imaging team. He has
over 10 years experience in the software industry including 3 years
with medical imaging devices at GE Healthcare

124 ©2011 Society for Imaging Science and Technology

	70
	17
	32
	4
	1
	60
	56
	34
	39
	28
	27
	65
	63
	59
	15
	55
	71
	64
	13
	7
	25
	8
	51
	10
	43
	22
	38
	42
	9
	46
	50
	54
	58
	61
	11
	12
	14
	26
	29
	30
	35
	44
	72
	45
	6
	18
	40
	33
	19
	20

