

Implementation of a high performance architecture for managing
and storing web-harvested collections
Michael Smorul, Joseph JaJa; Institute for Advanced Computer Studies, Department of Electrical and Computer Engineering,
University of Maryland; College Park, Maryland

Abstract
As institutions continue to grow their collections of web-

harvested content, there is an ever increasing need for tools that
organize, index and share this data. Even a modest web crawl
consisting of a few web sites may generate millions of harvested
documents. Repeating these crawls over time greatly expands the
complexity of stored data. Identifying the scope of a crawl, the
location of a page within a crawl and the differences over time
between crawls becomes a challenging task. In this paper we will
describe a software architecture in use at the University of
Maryland designed to support research on quickly extracting
information about the crawls, including statistical information,
and on indexing web content. While designed to support research,
many of the challenges addressed in this software exist at any site
which has to manage large sets of time-spanning data.

Our architecture consists of two components. The first is a
database application for organizing WARC-based web data called
a WarcManager. The WarcManager was designed to track URL
location and to allow easy extraction of crawl statistics across
collections of warc-stored data. It provides both a REST-based
API to harvested data as well as a portal for viewing statistics
across the collection. The second component is a high
performance, http based, storage service called the Simple Web-
Accessible Preservation(SWAP) system. The SWAP system is
distributed, novel file placement and retrieval service. It has been
designed to be minimally intrusive and to allow complete data
recovery even in the absence of any SWAP software.

These two components have been used to successfully support
research into high performance indexing of web-based content. We
will describe the implementation and performance characteristics
of each component as well as possible real-world uses for the
system.

Introduction
The ADAPT Project at the University of Maryland is

currently researching problems surrounding temporal text
searching of web archives. During the course of this research
UMD has been allowed to borrow several large web crawl
collections from the Library of Congress. These collections consist
of data from many sites, crawled repeatedly over the period of
several months. Immediately after receiving this data, several
questions arose.

1. What data do we have?
2. What are the characteristics of the crawls?
3. How can subsets of the data be extracted?
4. How can the data be effectively stored and distributed to a

high performance compute cluster for further exploration?

The two web collections we received contained 660GB and
8.6TB of unstructured data respectively. The storage to host these
collections was only available in 3.4TB partitions. Compounding
the problem, raid arrays were connected to multiple servers and
each array could stream data at a maximum sustained rate of
60MB/s, or about 50% of the total bandwidth for each server. To
effectively distribute data to a high performance compute cluster,
data would need to be served from multiple disk arrays, stored on
multiple servers.

Answering these challenges resulted in the development of
two pieces of software. First the Warc Manager was created to
provide a database of all items in the test collections. The Warc
manager is a database application which stores metadata about
items in ARC[1] and WARC[2] files. The database stores enough
metadata to allow researchers to quickly determine how many
copies of a URL exist in an archive, where those copies are
located, and how many unique versions or duplicates exist within
the archive.

The second component, the Simple Web-Accessible
Preservation (SWAP) system was developed to provide a
lightweight storage solution for managing terabytes of data. In
order to overcome the disk limitations in the lab, the system had to
be able to split data across multiple partitions stored on several
servers. To accommodate access by high performance clusters,
careful consideration had to be given to avoid introducing
bottlenecks. To solve both of these tasks, SWAP emerged as a set
of servers able to intelligently place data without requiring a
central file location catalog.

We will now describe the Warc Manager and its functionality
followed by a description of the SWAP approach to data storage.

Warc Manager
The Warc Manager is a web application which consists of

two parts. The first is a MySQL database used to store metadata
about each page in a web archive. The second piece is a REST-
API[5] used to provide programmatic access for ingesting new
contend and querying existing archives. The Warc Manager was
built using common open source components including Tomcat,
MySQL, and Java.

The MySQL database captures the following information
about each page in a collection:
 Offset and physical location in a ARC/WARC file.
 URL of each page with a full-text index
 Metadata about the page including digest, crawl date, and

mime type.
 Container contents for each WARC/ARC file in the collection

On top of this database, a REST-API was developed for data

ingest and querying.

Archiving 2011 Final Program and Proceedings 3

REST-API
The REST-API provides programmatic to the underlying

collection data base for querying and ingesting of new content.
Specifically, the API provides the following functionality:
 Register new ARC/WARC files
 Query for URL’s based on a free-text string
 Retrieve the detailed contents of any WARC/ARC file in the

collection.
 List all ARC files in a collection.
 Retrieve details for a URL including metadata and

crawl/duplicate entry information.

Figure 5: Detailed URL information

Layered above this REST-API a javascript interface eas
developed to provide user-friendly access to collections. This
interface permits users to browse the contents of a web archive,
search groups of URL’s and discover multiple versions of pages.
Users may specify search patterns to extract all the pages in a
particular site. Figure 5 shows a summary for a single URL in our
collection. This summary shows multiple versions of a page,
multiple crawl dates, and metadata for each instance when the
page was crawled.

Production Installation
The Warc Manager fully indexes the two collections provided

by the Library of Congress. A script was developed to read each
ARC file and extract the information required by the Warc
Manager. The collection has the following characteristics.
 177 million unique entries
 37.4 million unique URL’s
 63,694 ARC files occupying 9.2Tb of storage

Next Steps
The Warc Manager provides a useful portal into large

archives of web content. It allows any individual to quickly
browse the ARC files in a collection, list what URLS have been
crawled and determine if duplicates exist for any URL. Beyond
answering these basic questions a few more requirements have
arisen which will be addresses in future versions. Specifically
some of the questions we anticipate being able to answer about
collections are:

 For any object in an archive, what links point to it?
 What possible paths exist in a collection from one URL to

another?
 How temporally complete is a page? How close in age are all

the contents of a given page?

SWAP Approach
The SWAP approach is a simple solution to data placement

which provides an http-based API for accessing data distributed
across multiple disk partitions and servers. It was designed to be
completely disposable, meaning that no data will be lost even in
the event all SWAP software is removed from the data servers.

Dividing a namespace
In SWAP, data is organized into generic collections.

Collections are defined to be data that is somehow related and the
size of a collection may vary from a few gigabytes to many
terabytes containing millions of files. Each of the web crawls we
received was considered one collection. Collections are split up
into a number n of slices. Each slice is then assigned to a different
disk partition. Each slice is assigned a unique index between 0 and
n -1.

Data in a collection is split up and written to one of the slices.
To determine which slice should receive the data, we calculate the
result of the MD5 digest of the file path relative within the
collection modulo the number of slices in the collection.

Slice s = MD5(path) % number of slices

The slice resulting from this calculation is responsible for

storing the data for the given path. To locate any file in a
collection you only need to know the locations of all the slices in a
collection, and their index values. This removes the need for a file
location catalog. Additionally, if a server tracks the locations of all
slices in a collection, it is able to return the location of any file to a
client in the event it receives a request for a file that does not
reside on one of its slices.

Managing Namespace
A primary goal of SWAP was to allow collections to be

unified by recursively copying the data in all component slices
into a single directory. This allows recovery of a collection
without any requirement on the SWAP software. To allow for this
recovery, a few simple rules on how a path is represented are
required. First, a path separator of ‘/’ is always used regardless of
platform, second all slices must reside on the same type of
filesystem. Limitations on characters, etc are not imposed, but
non-standard characters may limit rebuilding of collections to the
type of filesystem in which the slices currently reside.

While files will map to a specific slice, directories will exist
across slices. For example, assume the file
‘documents/myfile1.txt’ maps to slice 1 and documents/myfile2.txt
maps to slice 2. This results in the directory ‘documents’ existing
on both slice 1 and slice 2.

In order to write data into SWAP, a check must be performed
to guard against namespace conflicts. A conflict may occur when
attempting to write a file onto a slice where part of the path is a
physical file on another slice. For example, a file is uploaded with
the path ‘documents/project1’. Assume the placement algorithm

4 ©2011 Society for Imaging Science and Technology

determined this file was to be placed on slice 1. Later, another
request is made to upload a file with the path
‘documents/project1/readme.txt’. Assume the placement algorithm
maps this file to slice 2. If this file is written to slice 2, a collision
will exist on the ‘project1’ component of the path. Attempts to
merge the slices into a single collection will fail.

To solve this problem, whenever a new directory is
encountered in a path, a slice must check with its peer slices to
ensure no conflict exists before creating the path. Failure to do so
will result in a namespace conflict and an inability to recombine
the collection and create a unified version. Through caching and
checking pre-existing directories performance concerns can be
mitigated.

Scaling
We are able to efficiently scale a collection across many

slices by doubling the number of slices in a collection. After
doubling, data must be rebalanced on to the new slices. On each
slice, only approximately 50% of all data will require moving to
the new slices, the other half will continue to remain on the
original slice. Let’s examine a two slice collection which doubles
to 4 slices. The doubling process will result in approximately half
the data from slice 0 migrating to slice 2 and half data from slice 1
migrating to slice 3. No data will movement will occur between
the original slices 0 and 1. Each file path on each slice will have to
be processed through the placement algorithm to determine which
data will move.

Figure 1: Rebalancing a collection

By reversing the process, we reduce the number of slices to
by cutting the number of slices, in half and moving all data from
the upper slices s to their corresponding lower peer. If an attempt
is made to increase or decrease the number of slices in a
collection, the amount of data movement will increase
significantly as data will likely not be able to remain on the old
nodes.

Using these two techniques, we can scale a collection up to
dozens of slices and all the way down to one slice.

Collection Organization
Collections within a SWAP network are combined into a

unified namespace. Any file in SWAP has a unique path which
consists of two parts. The first is a collection namespace and the
second is the local namespace within a collection. The collection
namespace helps define the collection’s address within a
hierarchy. While each collection has a unique namespace, parts of

that namespace my overlap with other collections. For example the
Chronopolis collections at UMIACS all share a starting prefix of
‘chronopolis’ in their collection name. Collections from individual
data suppliers share a prefix containing ‘chronopolis’ and the
provider name. For example the umiacs data provider has two
collections, code and documentation. These collections would
appear in SWAP as: ‘chronopolis/umiacs/code’ and
chronopolis/umiacs/documentation’.

Architecture and Implementation
SWAP has been implemented as a standalone server which

distributes data using http and communicates with a set of trusted
peers to manage data placement and lookup. The server consists of
two parts, first is an http/1.1[4] compatible server which clients
and other servers use for file ingest and access. The second part is
a tcp socket connection between peers and management software
to locate slices of a collection.

HTTP Server
Each SWAP server runs a webserver which distributes data to

multiple clients. This webserver presents a global URL hierarchy
based on the unified namespace of the SWAP network. For
example, to access a file with relative collection path
‘documents/project1/readme.txt’ and a collection with namespace
‘chronopolis/umiacs/code’ residing on a server
‘swapserver1.umiacs.umd.edu’ a client would connect to the URL
‘http://swapserver1.umiacs.umd.edu:8080/get/chronopolis/umiacs/
code/documents/project1/readme.txt’. As each SWAP server
tracks the locations of all slices in the network, servers are able to
return an http 302 redirect to clients which request files from the
wrong server. This allows clients to know the identity of a single
SWAP server and still be able to retrieve any data stored in the
network. This redirect is illustrated in figure 2
1. A Client send an HTTP GET request to Server-1 for the file

‘documents/file’ in a collection.
2. Server-1 executes the placement algorithm and determines the

file resides on slice 3 which it does not host
3. Server-1 returns an HTTP 302/Redirect to the client with a

URL that contains the server responsible for slice 3.
4. The client issues another HTTP GET request to the correct

server.
5. The server returns either the requested file, or a 404/not found

response to the client.

In addition to distributing data using http, SWAP also uses

http to receive data. To upload data into SWAP, a client issues an
HTTP PUT request containing the file to be uploaded to any
server. If it contacts the wrong server, it will receive a redirect
response pointing to the server which will store the data.

Archiving 2011 Final Program and Proceedings 5

Figure 2: HTTP Request flow

An advantage of using primitive HTTP PUT and GET
requests is the wide variety of tools available which can
understand the protocol. The unix command-line tool ‘curl’ is able
to follow 302 redirects can be used to upload files to a SWAP
server. For example, the following command will upload the file
‘screenshot.png’ into swap:

Expanding this example, we can combine ‘curl’ with the

‘find’ utility to upload unlimited amounts of data into SWAP. At
UMIACS, this method has successfully been used to move dozens
of terabytes from local disk into SWAP resources.

In addition to command-line utilizes, any web browser is able

to retrieve data out of a SWAP system.

Server Architecture
 A SWAP server organizes slices into a set of partitions, each
of these partitions may contain at most one slice from any one
collection. Partitions store both data on disk organized by its
collection and local namespace. This disk layout was designed to
allow for easy access to SWAP-managed data outside of the
SWAP environment. For example, the file
‘documents/project1/readme.txt’ stored in the
‘chronopolis/umiacs/code’ collection written to a partition located
at ‘/disk1/swap-partition’ would have an absolute unix path of
‘/disk1/swap-
partition/chronopolis/umiacs/code/documents/project1/readme.txt’.
Partitions contain a simple metadata file in its root directory which
contains a unique identifier for the partition and a brief
description.

Each SWAP server also opens a TCP socket which is used to
coordinate slice location and provide management functions. In
order to effectively redirect and accept new data, SWAP servers
maintain a persistent connection to all peers. When a server is
brought online, it immediately attempts to contact its peers. In
addition to contacting peers upon startup, a background task
periodically checks an internal peer list and attempts to reestablish
communication with any offline server. When a connection is

established to a peer server, a complete list of collections and
slices are exchanged. These slice and collection lists are used to
direct clients to the correct SWAP server when a request for a
remote file is received.

In order to handle the directory/file collision described above,
this management connection is used to query remote servers to
ensure a collision isn’t possible. When checking to see if a
collision occurs, a server analyzes the parent path of a file, and
will recursively check each that path until it is determined the
partial path is a directory, or a collision is detected. Servers will
cache the results of previous peer queries to avoid excessive inter-
node messages. The steps a server follows to determine if a
directory contains no namespace collision follows:

1. Check locally to see if directory for path exists in slice

partition.
2. Check cache to see if peer responded true.
3. Query peer responsible for path.
4. Repeat check using parent path unless collection root has

been reached.

Figure 3: SWAP Management Interface

This management network also provides an API to query file
attributes, create new collections, remove data, and list server
status. A management user interface(UI) has been built to allow
archive administrators to easily create, modify, and delete
collections and files in a SWAP network. This management UI is
shown in figure 3.

Performance and Use-Cases
A set of SWAP servers has been deployed at the University of

Maryland to manage the storage for two projects. The first project
is the web indexing project described earlier. The second use is to
manage storage for the UMIACS Chronopolis Digial Preservation
Project site. Data for these two projects are hosted on a set of
Apple XRAIDS connected to multiple dual-core Sun AMD
servers. These servers each had a 1Gbps network interface. Local
performance testing demonstrated the peak performance of a
single raid partition was approximately 50-60MB/s, or 50% of the
available bandwidth of a server.

6 ©2011 Society for Imaging Science and Technology

By deploying the SWAP system across 8 partitions divided
between two servers, we were able demonstrate a sustained
transfer approaching 1Gbps over several hours. This performance
approached the peak capacity of the network link between the
SWAP storage nodes and the high performance compute cluster
used for indexing. Figure 4 shows this traffic.

Figure 4: Network traffic graph for SWAP node uplink

Furthermore, the two servers were able to distribute small
files (4k) at a rate in excess of 2000 files per second per node and
handle redirects for missed requests at over 3000 requests per
second.

Conclusion
Through the development of the Warc Manager and the

Simple Web-Accessible Preservation system we have created a
software stack which has demonstrated a method for storing and
managing large collections of web content. Furthermore, the
SWAP system has shown how to distribute data in an easy to
manage, yet fully recoverable fashion. Both of these tools are still
under active development and will likely be released under an
open source license in the future.

References
[1] Mike Burner, Brewster Kahle, ARC File Format,

http://www.archive.org/web/researcher/ArcFileFormat.php
[2] ISO 28500:2009, Information and documentation -- WARC file

format ISO/DIS 28500
[3] The MD5 Message-Digest Algorithm

http://tools.ietf.org/html/rfc1321
[4] Hypertext Transfer Protocol -- HTTP/1.1

http://tools.ietf.org/html/rfc2616
[5] Fielding, Roy T.; Taylor, Richard N. (2002-05), "Principled Design of

the Modern Web Architecture" (PDF), ACM Transactions on Internet
Technology (TOIT) (New York: Association for Computing
Machinery) 2 (2): 115–150, doi:10.1145/514183.514185, ISSN 1533-
5399

Author Biography
Mike Smorul is currently lead programmer for the UMIACS ADAPT

Project at the University of Maryland, College Park. He oversees
development of the Audit Control Environment, and tool and storage
design for the Chronopolis preservation environment. He received his BS
in computer science from the University of Maryland, College Park.

Joseph JaJa currently holds the position of Professor of Electrical
and Computer Engineering with a joint appointment at the Institute for
Advanced Computer Studies at the University of Maryland, College Park.
Dr. JaJa received his Ph.D. degree in Applied Mathematics from Harvard
University and has since published extensively in a number of areas
including parallel and distributed computing, combinatorial optimization,
algebraic complexity, VLSI architectures, and data-intensive computing.
His current research interests are in parallel algorithms, digital
preservation, and scientific visualization of large scale data. Dr. JaJa has
received numerous awards including the IEEE Fellow Award in 1996, the
1997 R&D Award for the development software for tuning parallel
programs, and the ACM Fellow Award in 2000. He served on several
editorial boards, and is currently serving as a subject area editor for the
Journal of Parallel and Distributed Computing and as an editor for the
International Journal of Foundations of Computer Science.

Archiving 2011 Final Program and Proceedings 7

	70
	17
	32
	4
	1
	60
	56
	34
	39
	28
	27
	65
	63
	59
	15
	55
	71
	64
	13
	7
	25
	8
	51
	10
	43
	22
	38
	42
	9
	46
	50
	54
	58
	61
	11
	12
	14
	26
	29
	30
	35
	44
	72
	45
	6
	18
	40
	33
	19
	20

