

A Case Study in Distributed Collection Monitoring and Auditing
Using the Audit Control Environment (ACE)
Michael Smorul, Joesph JaJa; Institute for Advanced Computer Studies, Department of Electrical and Computer Engineering,
University of Maryland, College Park, Maryland, USA

Abstract
We describe the deployment of the Audit Control

Environment (ACE)[1] on the Chronopolis distributed archive
environment. The ACE system provides a scalable, auditable
platform to actively ensure the availability and integrity of digital
archival holdings over the lifetime of the archive. The core of ACE
is a small integrity token issued for each monitored item that is
part of a larger, externally auditable cryptographic system. Two
components that describe this system, the Audit Manager and
Integrity Management Service, have been developed and were
released in October 2008.

ACE allows for the policy driven active monitoring of
collections on a variety of disk and grid based storage systems.
Each collection in ACE is subject to monitoring based on a
customizable policy.

The Chronopolis archiving environment consists of three sites
located at the University of Maryland(UMD), San Diego
Supercomputing Center(SDSC)/UCSD Libraries, and the National
Center for Atmospheric Research(NCAR). Data that has been
ingested into storage at SDSC is replicated to UMD and NCAR.
Current collections from data providers in Chronopolis range
from a relatively few large files to collections containing millions
of mostly small files. In total, these collections represent over 5.5
million files and 17 Terabytes of data.

With three copies of each object, the problem of ensuring the
integrity of each copy across the three sites arises. An ACE Audit
Manager at each site provides continuous monitoring of files to
ensure no corruption occurs locally. In addition, periodic audits of
each collection across the sites are made to ensure that the
collection contents are consistent across all three sites.

We describe the deployment and performance of the Audit
Manager at each of the three sites. Specifically, we compare peak
theoretical ACE performance against varying collections.

ACE Overview
ACE is an integrity monitoring platform based on creating a

small-size integrity token for each digital object upon its deposit
into the archive (or upon registration of the object of an existing
archive). This token is stored either with the object itself or in a
registry at the archive as authenticity metadata.

These tokens are linked together through time spans by an
auditable third party. For each time interval, cryptographic
summary information(CSI) that depends on all the objects
registered during that time interval is generated. The summary
information is very compact and is size independent of the
number or sizes of the objects ingested. The period of each round
is currently defined in seconds but can adapted as needed by the
archive.

At the end of each day, all CSI’s generated are aggregated
into a final witness value. This witness value is a single number
that is used to verify all CSI’s issued during the previous day. The
value is expected to be stored in reliable, read-only media, and
pubished over the internet. An independent auditor, given a trusted
witness, may assert the integrity of all CSIs for a given time
period. Once CSIs are certified, they may be used to validate all
tokens covered by the summaries. Once tokens are validated, an
auditor may assert that any file whose cryptographic digest
matches its token has not been tampered with to a high probability.

Regular audits will be continuously conducted, which will
make use of the integrity tokens and the summary integrity
information to ensure the integrity of both the objects and the
integrity information. In our implementation, audits can also be
triggered by an archive manager or by a user upon data access.
However we are assuming that the auditing services are not
allowed to change the content of the archive even if errors are
detected. The responsibility for correcting errors is left to the
archive administrator after being alerted by the auditing service.

The ACE system consists of two components, first is an
Integrity Management Service(IMS) which gathers token requests
into rounds and generates Integrity Tokens(IT) at the end of each
round. The IMS is also responsible for publishing nightly witness
values. The University of Maryland currently hosts a publically
available IMS for any party to use. The second component of ACE
are multiple, independent Audit Managers(AM) that are installed
locally at archives and periodically check the integrity of
monitored objects according to a locally defined policy.

ACE Workflow
Two different workflows have been implemented in the first

release of ACE. The first is a token registration workflow where
new ITs are issued from an IMS. This occurs only once when a
new file is detected. The second workflow is a validation
workflow where previously issued tokens are used to validate the
integrity of files and the stored digest of those files.

Both registration and validation are performed by an AM.
This AM runs physically close to the data that is to be monitored.
It is designed to have bit-level access to the data so that it may
read all monitored files and generate cryptographic digests across
those files. The AM defines policy that determines when an audit
of holdings will occur. During the course of an audit, the AM will
invoke both of these workflows unbeknownst to the end user.

Token Issuing
Tokens are issued as part of the registration workflow

described earlier. The AM generates a SHA-256 digest of the file
to be monitored. This generated digest and file name is submitted
to the IMS for inclusion in the current round. It should be noted
the IMS can handle requests for any digest, not only SHA-256.

Archiving 2008 Final Program and Proceedings 183

The submitted token is aggregated with other requests during
the same time interval. During an aggregation round, the hashes of
all the objects submitted for registration as well as random hashes
as necessary are aggregated using an authentication tree such as
the Merkle’s tree [2]. This resulting CSI is stored in a database to
be later used for witness generation and IT validation. For each
request, the IMS generates an IT which is returned to the AM. In
the AM, communication with the IMS is handled out of band of
the main audit process. This allows the AM to send batch requests
and not to block on the IMS communication should the AM
operate in a high latency environment. The token request flow is
shown in Figure 1.

Figure 1: Token Request Flow

File and Token Validation
File and token validation occur on the AM subject to a

specified policy. This policy may vary between collections.
Periodically, each monitored item is read, a digest is calculated
and compared with the stored value.

Token validation requires showing the stored digest has not
been altered. Validation is done by linking the stored digest to an
IMS CSI. This involves calculating the round CSI using the
authentication tree stored in the IT and the stored item’s digest.
The IMS is then queried to retrieve the CSI for the round where

the IT was issued. The returned CSI is compared to the calculated
CSI and if it matches, the IT and digest are considered trustworthy
to a high probability. As with registration, the AM has a batching
mechanism to group CSI requests and minimize calls to the IMS.

Chronopolis Description
The Chronopolis Preservation Environment is a consortium of

three data storage partners, and several data providers. Data
storage partners include the University of Maryland(UMD), San
Diego Supercomputing Center(SDSC)/UCSD Libraries, and the
National Center for Atmospheric Research(NCAR).

Currently, Chronopolis uses the Storage Resource Broker
(SRB)[3] to provide data grid services. The SRB provides a
unified namespace and common functionality for data access and
placement while abstracting access to underlying data resources.
Each Chronopolis partner has an SRB installation backed by a
metadata catalog(MCAT) and disk storage. These SRB
installations are federated, so each site is able to see shared data at
other partner sites.

Collections in Chronopolis are provided by a set of data
providers. Data first staged into the SRB installation at SDSC, then
periodically replicated to resources at UMD and NCAR. Once data
is replicated, it is detected and monitored by installations of the
ACE Audit Manager at each partner site.

Table 1: Chronopolis Collections

Provider Files Directories Size(GB)
CDL 46,762 28 4,291
SIO-GDC 197,718 5,230 815
ICPSR 4,830,625 95,580 6,957
NC-State 608,424 42,207 5,465

Table 1 shows that collections supplied by data providers
vary both in after file size and number of object in the collection.

ACE Audit Manager Installation
Each partner in the Chronopolis grid has an installation of the

ACE Audit Manager locally auditing their collections. While it is
possible to access the entire Chronopolis holdings from one
partner, the effects of latency make remote auditing unfeasible.
Therefore, each AM installation was configured to monitor only
the local files.

Installation at each site required a unix compatible OS,
MySQL database server, and Java 1.6 or greater. These
requirements are standard for a lot of database driven library
software including Fedora[4] and DSPace[5]. After installation, all
additional configurations are handled through a web interface. This
includes defining collection location, audit policy, and viewing
audit logs and results.

Audit Manager Performance
The following is a description of the performance of the AM

on the UMIACS Chronopolis storage node. First we describe the
peak performance provided by the AM software, performance of
the UMIACS and finally, observed audit performance.

Figure 2: Validation Workflow

Society for Imaging Science and Technology184

Performance of the Audit Manager is affected by several
factors. These are described below:
• Storage metadata performance. The AM performs several

queries to list files in collections, and to determine on which
storage resource they are held. For small files, these metadata
operations may require more time than actually transferring a
file.

• Data transfer speed. The rate at which data is read by the AM
from a storage resource. In the case of distributed storage,
there may be additional overhead for remotely connecting to
resources holding data

• Digest Calculation. The AM calculates a SHA-256 digest for
each object processed.

• ACE metadata overhead. Each registration operation
generates several database operations to save an object’s
properties. Log events are saved for each state change an
object generates. In addition, each audit requires that
timestamps are updated for each tracked object.

Audit Manager Peak Performance
The throughput of ACE is determined by two factors, first

AM metadata operations. These operations include item metadata
retrieval, token registration, and event logging. Performance for
these functions are determined by database performance.
Webservice calls to the IMS are handled in a separate thread to
allow for batched requests and to mitigate the effects of network
latency. The second factor that affects AM performance is the
time required to calculate cryptographic digests for all monitored
data.

Two tests were performed to determine the effects of database
overhead and digest calculation. A test collection containing
1.25million simulated files was created. Each file in this collection
was 1MB in size, separated into 10 files per directory, at a depth of
three directories from root of the collection. Digest calculation was
performed serially with object registration. In most production
drivers, file reading and digest calculation is performed in
multiple, separate threads to mitigate storage system overhead.

The two tables show the registration and audit speed of an
audit manager. The first test was performed registration and
auditing was performed against simulated digests, the second test
executed digest calculation on block of data stored in memory.

Table 2: Collection Registration

Digest source Time(h) Files/s
Auto-generated 3:06 122
Calculated 5:07 67.8

Table 3: Collection Auditing

Digest source Time(h) Files/s
Auto-generated 1:15 277
Calculated 4:30 77.2

From the tables, we notice that registration time is more than
50% greater than auditing time; however this difference shrinks
when the Audit Manager required to perform digest calculation.
We will see in the following observed performance that in practice

other limitations occur before AM performance becomes a
bottleneck.

Storage Node Performance
UMD has several servers configured as storage nodes for

Chronopolis. Each node is connected to two Apple XRaids by a
2Gbps storage area network(SAN) connection. Storage nodes are
accessible through a 1 1Gbps Ethernet connection. Each storage
node was configured to access 4 independent raid arrays (two
arrays per XRaid). IOZone testing on the storage nodes showed an
individual array is able to read data at close to 100MB/s. As an
audit manager has four arrays, this easily allows for saturation of
the 1Gbps Ethernet connection. The following graph shows the
performance characteristics of the raids.

Figure 3: Raid Performance

During replication, a collection was assigned to a storage

node; files were then dispersed equally across all arrays attached to
that node. This file striping was performed so that the raids would
not become a bottleneck when managing collections containing
many small files.

Observed Performance
Final testing was performed against live collections at the

UMD site. Each collection was audited while no other activity
occurring on the storage nodes. Total audit time for all collections
was a little over one week. During auditing we observed the
largest bottleneck occurred when processing small files. This
bottleneck is due to overhead involved in querying the MCAT,
followed by opening connections to data nodes. The AM driver for
the SRB was configured to use 5 threads to retrieve and calculate
digests in parallel. The Audit Manager was installed on a two
processor, 8 cpu core server with a 1Gbps connection to the
storage nodes.

The following table shows the resulting throughput that was
achieved during an audit.

Archiving 2008 Final Program and Proceedings 185

Table 4: Collection auditing throughput

Provider Time(h) Files/s Bandwidth(MB/s)
CDL 20:32 .63 59.44
SIO-GDC 6:49 8.05 34.00
ICPSR 122:48 10.93 16.11
NC-State 32:14 5.24 48.22

While audit times vary widely, we see that per object

throughput on the Audit Manager is fewer than 20% available
transaction capacity. For files with large collections, Chronopolis
was able to supply data to the audit manager at slightly less than
50% of the 128MB/s available network capacity.

The most interesting characteristic of Chronopolis is how
small files affect the overall audit rate. The following table shows
file size compared to collection audit rate.

Table 5: Average File Size vs Throughput

Collection Average Size(MB) Bandwidth(MB/s)
ICPSR 1.47 16.11
SIO-GDC 4.22 34.00
NC State 9.19 48.22
CDL 93.96 59.44

While the preservation environment shows some bottlenecks
when auditing small files, an audit policy could be devised where a
collection containing small files was audited in parallel with a
collection containing large files. Since the large file collection
would not require significant MCAT or AM resources, overall
audit performance could be significantly increased.

Conclusion
In this paper, we describe the ACE Audit Manager as it is

installed on the Chronopolis preservation environment and the
resulting performance characteristics resulting from that
installation. ACE has been shown to provide an easy to use
environment while providing a high performance integrity
management platform.

References
[1] Song, S. and JaJa, J. ACE: A Novel Software Platform to

Ensure the Integrity of Long Term Archives. in Archiving
2007. 2007: IS&T.

[2] Ralph Merkle. “Protocols for public key cryptosystems,” In
Proceedings of the 1980 Symposium on Security and Privacy,
IEEE Computer Society Press, 1980, pp 122–133.

[3] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Procs. of CASCON'98, Toronto,
Canada, 1998

[4] Staples, Thornton, and Ross Wayland, "Virginia Dons
Fedora: A prototype for a digital object repository," D- LIb
Magazine, July 2000

[5] DSpace, http://dspace.org
[6] Iozone filesystem benchmark, http://www.iozone.org

Author Biography
Mike Smorul received his BS in computer science from the University

Of Maryland. He has a background in network and high performance
computing system administration. More recently, he has worked as lead
programmer for the UMIACS ADAPT project. Current project include
developing a modular set of tools to aid in ingestion and integrity
monitoring in support of long term stewardship of digital objects.

Joseph JaJa currently holds the position of Professor of Electrical
and Computer Engineering with a joint appointment at the Institute for
Advanced Computer Studies at the University of Maryland, College Park.
Dr. JaJa received his Ph.D. degree in Applied Mathematics from Harvard
University and has since published extensively in a number of areas
including parallel and distributed computing, combinatorial optimization,
algebraic complexity ,VLSI architectures, and data-intensive computing.
His current research interests are in parallel algorithms, digital
preservation, and scientific visualization of large scale data. Dr. JaJa has
received numerous awards including the IEEE Fellow Award in 1996, the
1997 R&D Award for the development of software for tuning parallel
programs, and the ACM Fellow Award in 2000. He served on several
editorial boards, and is currently serving as a subject area editor for the
Journal of Parallel and Distributed Computing and as an editor for the
International Journal of Foundations of Computer Science.

Society for Imaging Science and Technology186

	1_57
	2_45
	3_32
	4_43
	6_18
	7_7
	8_49
	9_52
	10_40
	11_37
	12_42
	13_30
	14_28
	15_20
	16_19
	17_17
	18_14
	19_10
	20_55
	22_46
	23_34
	25_12
	26_11
	27_27
	28_47
	29_36
	30_13
	31_3
	32_24
	33_44
	34_51
	35_41
	36_16
	38_25
	39_31
	40_29
	41_26
	42_60
	43_35
	44_15
	45_9
	46_8
	47_62
	49_54
	50_56
	51_50
	52_33
	53_22
	54_39

