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Abstract 
We describe the deployment of the Audit Control 

Environment (ACE)[1] on the Chronopolis distributed archive 
environment. The ACE system provides a scalable, auditable 
platform to actively ensure the availability and integrity of digital 
archival holdings over the lifetime of the archive. The core of ACE 
is a small integrity token issued for each monitored item that is 
part of a larger, externally auditable cryptographic system. Two 
components that describe this system, the Audit Manager and 
Integrity Management Service, have been developed and were 
released in October 2008. 

ACE allows for the policy driven active monitoring of 
collections on a variety of disk and grid based storage systems. 
Each collection in ACE is subject to monitoring based on a 
customizable policy. 

The Chronopolis archiving environment consists of three sites 
located at the University of Maryland(UMD), San Diego 
Supercomputing Center(SDSC)/UCSD Libraries, and the National 
Center for Atmospheric Research(NCAR). Data that has been 
ingested into storage at SDSC is replicated to UMD and NCAR. 
Current collections from data providers in Chronopolis range 
from a relatively few large files to collections containing millions 
of mostly small files. In total, these collections represent over 5.5 
million files and 17 Terabytes of data. 

With three copies of each object, the problem of ensuring the 
integrity of each copy across the three sites arises. An ACE Audit 
Manager at each site provides continuous monitoring of files to 
ensure no corruption occurs locally. In addition, periodic audits of 
each collection across the sites are made to ensure that the 
collection contents are consistent across all three sites. 

We describe the deployment and performance of the Audit 
Manager at each of the three sites. Specifically, we compare peak 
theoretical ACE performance against varying collections. 

ACE Overview 
ACE is an integrity monitoring platform based on creating a 

small-size integrity token for each digital object upon its deposit 
into the archive (or upon registration of the object of an existing 
archive). This token is stored either with the object itself or in a 
registry at the archive as authenticity metadata.  

These tokens are linked together through time spans by an 
auditable third party. For each time interval, cryptographic 
summary information(CSI) that depends on all the objects 
registered during that time interval is generated. The summary 
information is very compact and is  size independent of the 
number or sizes of the objects ingested. The period of each round 
is currently defined in seconds but can adapted as needed by the 
archive.  

At the end of each day, all CSI’s generated are aggregated 
into a final witness value. This witness value is a single number 
that is used to verify all CSI’s issued during the previous day. The 
value is expected to be stored in reliable, read-only media, and 
pubished over the internet. An independent auditor, given a trusted 
witness, may assert the integrity of all CSIs for a given time 
period. Once CSIs are certified, they may be used to validate all 
tokens covered by the summaries. Once tokens are validated, an 
auditor may assert that any file whose cryptographic digest 
matches its token has not been tampered with to a high probability. 

Regular audits will be continuously conducted, which will 
make use of the integrity tokens and the summary integrity 
information to ensure the integrity of both the objects and the 
integrity information. In our implementation, audits can also be 
triggered by an archive manager or by a user upon data access. 
However we are assuming that the auditing services are not 
allowed to change the content of the archive even if errors are 
detected. The responsibility for correcting errors is left to the 
archive administrator after being alerted by the auditing service. 

The ACE system consists of two components, first is an 
Integrity Management Service(IMS) which gathers token requests 
into rounds and generates Integrity Tokens(IT) at the end of each 
round. The IMS is also responsible for publishing nightly witness 
values. The University of Maryland currently hosts a publically 
available IMS for any party to use. The second component of ACE 
are multiple, independent Audit Managers(AM) that are installed 
locally at archives and periodically check the integrity of 
monitored objects according to a locally defined policy. 

ACE Workflow 
Two different workflows have been implemented in the first 

release of ACE. The first is a token registration workflow where 
new ITs are issued from an IMS. This occurs only once when a 
new file is detected. The second workflow is a validation 
workflow where previously issued tokens are used to validate the 
integrity of files and the stored digest of those files. 

Both registration and validation are performed by an AM. 
This AM runs physically close to the data that is to be monitored. 
It is designed to have bit-level access to the data so that it may 
read all monitored files and generate cryptographic digests across 
those files. The AM defines policy that determines when an audit 
of holdings will occur. During the course of an audit, the AM will 
invoke both of these workflows unbeknownst to the end user.   

Token Issuing 
Tokens are issued as part of the registration workflow 

described earlier. The AM generates a SHA-256 digest of the file 
to be monitored. This generated digest and file name is submitted 
to the IMS for inclusion in the current round. It should be noted 
the IMS can handle requests for any digest, not only SHA-256. 
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The submitted token is aggregated with other requests during 
the same time interval. During an aggregation round, the hashes of 
all the objects submitted for registration as well as random hashes 
as necessary are aggregated using an authentication tree such as 
the Merkle’s tree [2]. This resulting CSI is stored in a database to 
be later used for witness generation and IT validation. For each 
request, the IMS generates an IT which is returned to the AM. In 
the AM, communication with the IMS is handled out of band of 
the main audit process. This allows the AM to send batch requests 
and not to block on the IMS communication should the AM 
operate in a high latency environment. The token request flow is 
shown in Figure 1. 

Figure 1: Token Request Flow 

File and Token Validation 
File and token validation occur on the AM subject to a 

specified policy. This policy may vary between collections. 
Periodically, each monitored item is read, a digest is calculated 
and compared with the stored value.  

Token validation requires showing the stored digest has not 
been altered. Validation is done by linking the stored digest to an 
IMS CSI. This involves calculating the round CSI using the 
authentication tree stored in the IT and the stored item’s digest. 
The IMS is then queried to retrieve the CSI for the round where 

the IT was issued. The returned CSI is compared to the calculated 
CSI and if it matches, the IT and digest are considered trustworthy 
to a high probability. As with registration, the AM has a batching 
mechanism to group CSI requests and minimize calls to the IMS. 

Chronopolis Description 
The Chronopolis Preservation Environment is a consortium of 

three data storage partners, and several data providers. Data 
storage partners include the University of Maryland(UMD), San 
Diego Supercomputing Center(SDSC)/UCSD Libraries, and the 
National Center for Atmospheric Research(NCAR).  

Currently, Chronopolis uses the Storage Resource Broker 
(SRB)[3] to provide data grid services. The SRB provides a 
unified namespace and common functionality for data access and 
placement while abstracting access to underlying data resources. 
Each Chronopolis partner has an SRB installation backed by a 
metadata catalog(MCAT) and disk storage. These SRB 
installations are federated, so each site is able to see shared data at 
other partner sites. 

Collections in Chronopolis are provided by a set of data 
providers. Data first staged into the SRB installation at SDSC, then 
periodically replicated to resources at UMD and NCAR. Once data 
is replicated, it is detected and monitored by installations of the 
ACE Audit Manager at each partner site.   

Table 1: Chronopolis Collections 

Provider Files Directories Size(GB) 
CDL 46,762 28 4,291 
SIO-GDC 197,718 5,230 815 
ICPSR 4,830,625 95,580 6,957 
NC-State 608,424 42,207 5,465 

Table 1 shows that collections supplied by data providers 
vary both in after file size and number of object in the collection.  

ACE Audit Manager Installation 
Each partner in the Chronopolis grid has an installation of the 

ACE Audit Manager locally auditing their collections. While it is 
possible to access the entire Chronopolis holdings from one 
partner, the effects of latency make remote auditing unfeasible. 
Therefore, each AM installation was configured to monitor only 
the local files. 

Installation at each site required a unix compatible OS, 
MySQL database server, and Java 1.6 or greater. These 
requirements are standard for a lot of database driven library 
software including Fedora[4] and DSPace[5]. After installation, all 
additional configurations are handled through a web interface. This 
includes defining collection location, audit policy, and viewing 
audit logs and results. 

 
 

Audit Manager Performance 
The following is a description of the performance of the AM 

on the UMIACS Chronopolis storage node. First we describe the 
peak performance provided by the AM software, performance of 
the UMIACS and finally, observed audit performance.  

Figure 2: Validation Workflow 
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Performance of the Audit Manager is affected by several 
factors. These are described below: 
• Storage metadata performance. The AM performs several 

queries to list files in collections, and to determine on which 
storage resource they are held. For small files, these metadata 
operations may require more time than actually transferring a 
file. 

• Data transfer speed. The rate at which data is read by the AM 
from a storage resource. In the case of distributed storage, 
there may be additional overhead for remotely connecting to 
resources holding data 

• Digest Calculation. The AM calculates a SHA-256 digest for 
each object processed. 

• ACE metadata overhead. Each registration operation 
generates several database operations to save an object’s 
properties. Log events are saved for each state change an 
object generates. In addition, each audit requires that 
timestamps are updated for each tracked object. 

Audit Manager Peak Performance 
The throughput of ACE is determined by two factors, first 

AM metadata operations. These operations include item metadata 
retrieval, token registration, and event logging. Performance for 
these functions are determined by database performance. 
Webservice calls to the IMS are handled in a separate thread to 
allow for batched requests and to mitigate the effects of network 
latency.  The second factor that affects AM performance is the 
time required to calculate cryptographic digests for all monitored 
data.  

Two tests were performed to determine the effects of database 
overhead and digest calculation. A test collection containing 
1.25million simulated files was created. Each file in this collection 
was 1MB in size, separated into 10 files per directory, at a depth of 
three directories from root of the collection. Digest calculation was 
performed serially with object registration. In most production 
drivers, file reading and digest calculation is performed in 
multiple, separate threads to mitigate storage system overhead.  

The two tables show the registration and audit speed of an 
audit manager. The first test was performed registration and 
auditing was performed against simulated digests, the second test 
executed digest calculation on block of data stored in memory.  

 

Table 2: Collection Registration 

Digest source Time(h) Files/s 
Auto-generated  3:06 122 
Calculated 5:07 67.8 

Table 3: Collection Auditing 

Digest source Time(h) Files/s 
Auto-generated  1:15 277 
Calculated 4:30 77.2 

From the tables, we notice that registration time is more than 
50% greater than auditing time; however this difference shrinks 
when the Audit Manager required to perform digest calculation. 
We will see in the following observed performance that in practice 

other limitations occur before AM performance becomes a 
bottleneck. 

Storage Node Performance 
UMD has several servers configured as storage nodes for 

Chronopolis. Each node is connected to two Apple XRaids by a 
2Gbps storage area network(SAN) connection. Storage nodes are 
accessible through a 1 1Gbps Ethernet connection. Each storage 
node was configured to access 4 independent raid arrays (two 
arrays per XRaid). IOZone testing on the storage nodes showed an 
individual array is able to read data at close to 100MB/s. As an 
audit manager has four arrays, this easily allows for saturation of 
the 1Gbps Ethernet connection. The following graph shows the 
performance characteristics of the raids. 

Figure 3: Raid Performance 

 
During replication, a collection was assigned to a storage 

node; files were then dispersed equally across all arrays attached to 
that node. This file striping was performed so that the raids would 
not become a bottleneck when managing collections containing 
many small files.  

Observed Performance 
Final testing was performed against live collections at the 

UMD site. Each collection was audited while no other activity 
occurring on the storage nodes. Total audit time for all collections 
was a little over one week. During auditing we observed the 
largest bottleneck occurred when processing small files. This 
bottleneck is due to overhead involved in querying the MCAT, 
followed by opening connections to data nodes. The AM driver for 
the SRB was configured to use 5 threads to retrieve and calculate 
digests in parallel. The Audit Manager was installed on a two 
processor, 8 cpu core server with a 1Gbps connection to the 
storage nodes. 

The following table shows the resulting throughput that was 
achieved during an audit.  
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Table 4: Collection auditing throughput 

Provider Time(h) Files/s Bandwidth(MB/s) 
CDL 20:32 .63 59.44 
SIO-GDC 6:49 8.05 34.00 
ICPSR 122:48 10.93 16.11 
NC-State 32:14 5.24 48.22 

 
While audit times vary widely, we see that per object 

throughput on the Audit Manager is fewer than 20% available 
transaction capacity.  For files with large collections, Chronopolis 
was able to supply data to the audit manager at slightly less than 
50% of the 128MB/s available network capacity. 

The most interesting characteristic of Chronopolis is how 
small files affect the overall audit rate. The following table shows 
file size compared to collection audit rate. 

Table 5: Average File Size vs Throughput  

Collection Average Size(MB) Bandwidth(MB/s) 
ICPSR 1.47 16.11 
SIO-GDC 4.22 34.00 
NC State 9.19 48.22 
CDL 93.96 59.44 

While the preservation environment shows some bottlenecks 
when auditing small files, an audit policy could be devised where a 
collection containing small files was audited in parallel with a 
collection containing large files. Since the large file collection 
would not require significant MCAT or AM resources, overall 
audit performance could be significantly increased.  

Conclusion 
In this paper, we describe the ACE Audit Manager as it is 

installed on the Chronopolis preservation environment and the 
resulting performance characteristics resulting from that 
installation. ACE has been shown to provide an easy to use 
environment while providing a high performance integrity 
management platform. 
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