
The Year of Content:
Learning from Experience Transferring Digital Content across
the NDIIPP Network
Michelle Gallinger; Leslie Johnston
Library of Congress (USA)

The Library of Congress and the National Digital Information
Infrastructure and Preservation Program (NDIIPP) network
partners declared 2008 “The Year of Content.” As a part of the
Year of Content, the NDIIPP network and the Library focused on a
program of digital content transfer. The NDIIPP network
comprises libraries, archives, universities, research centers, non-
profit and for-profit organizations and professional associations
across the United States as well as a wide variety of international
partners (Anderson 2008). The NDIIPP partners participated in
developing and testing standards, best practices, and technological
solutions for digital preservation challenges. A number of NDIIPP
projects acquired and preserved at-risk digital content and worked
to send a copy of the content to the Library for safekeeping. This
effort was accomplished in 2008.

Selecting, packaging, and sending content highlighted the
challenges of content transfer as well as the importance of this
element of the preservation lifecycle. Many of the partners found
that moving digital content to the Library was beneficial to their
own work, refining their own stewardship processes and
strengthening common standards and practices in the community.

The NDIIPP network gained practical experience moving
digital information from one institution to another and, in the
process, learned and confirmed digital preservation lessons that
inform the ever-changing roles of curators and stewards.

Learning By Doing
Content was moved to the Library primarily by bulk transfers

of digital files, using a combination of manual and automated
processes that were negotiated between the Library and each
partner to establish workflows. Through these experiences we have
gained experience in transfer processes, and have been able to
simplify the complexity of those initial approaches. As the content
packaging, transfer, and inventorying approaches have become
increasingly standardized, it has become possible to automate and
improve the efficiency of transfers through the development of a
suite of tools

Content transferred to the Library includes digital public
television programs such as Nature; geospatial information
ranging from satellite images, historic maps, and transportation
infrastructures; captured web sites featuring government and news
content; electronic journals, cartoons, and social science datasets.

The first content transferred were collections of Doonesbury
and Oliphant comics from the Universal Press Syndicate (UPS).
UPS transferred these collections via File Transfer Protocol (FTP).
This experience emphasized need for a specification that included
standardized methods for dealing with checksums to verify the
fixity of the files. One of the files transferred with an error

rendering it unusable. We were able to identify the file that had the
problem, using the checksums sent by UPS with the files; however,
because the checksums and the files were not communicated in a
standardized way, the identification was done manually rather than
automatically. This worked for an initial transfer but was
recognized as being unsustainable for the many transfers expected.
A more regularized system was needed.

At the same time, the Library was also working with the
California Digital Library (CDL) to transfer its data. The strong
interest in developing a more standardized transfer from the
Library transfer team was met by an equally strong interest on the
part of the CDL team. The groups collaborated on developing a
transfer specification that was eventually refined into BagIt (see
Appendix A) and adopted for all transfer activities at the Library.

Problems with early transfers that occurred during the
development of the specification helped refine it. An early transfer
from Stanford University using a preliminary version of BagIt
showed an unexpected error. A file did not match the manifest
description even though it did match the file on the server it came
from. This anomaly helped refine the specification, which now
requires that the manifest itself have an accompanying checksum,
and also the transfer workflow in which the manifest is transferred
and validated first with the content following.

Decisions on which transfer tools to use were also influenced
by the actual transfers taking place. Issues that came into play for
each partner and set of content included: availability and type of
resources, total size and number of files, bag size, and the technical
environment (e.g., network options, availability of Internet2 at
partner location, etc). Each of the early transfers refined the
Library and partner workflow. Each of the tools used offered
specific benefits and it was through use of each that the Library
was able to evaluate each and determine the most practical tools
and guidelines for general use. Many tools were explored.
Transfers were made using File Transfer Protocol (FTP), Fast Data
Transfer (FDT), Logistical Storage (L-store, www.lstore.org),
HTTP, Lots of Copies Keeps Stuff Safe (LOCKSS,
www.lockss.org), rsync and hard drives sent through the mail.

Early in the year of content, UPS transferred their numerous
but relatively small collection via FTP. This transfer was relatively
easy, employing a well-known tool to good effect. However, the
speed of transfer was such that FTP was impractical for use by
some of the NDIIPP partners with larger collections.

Stanford University and University of California at Santa
Barbara (UCSB) attempted to send their National Geospatial Data
Archive (NGDA) collections to the Library via FDT. Early
experiments with FDT indicated that it offered extremely fast
transfer, but calibrating the threads required more time on both

Archiving 2008 Final Program and Proceedings 65

http://www.lstore.org/
http://www.lockss.org/

ends of the transfer than either the Library or the NDIIPP partners
could really dedicate.

At the same time, Stanford University and UCSB worked
with University of Tennessee at Knoxville and Vanderbilt
University to transfer data to the Library using L-store. L-store is
designed to provide a flexible logistical storage framework for
distributed, scalable, and secure access to data for many different
users. It is designed to provide a decentralized management
system, user controlled replication and striping of data on a file and
directory level, a virtual file system interface in both a web and
command line form. It also supports the concept of geographical
locations for data migration to facilitate quicker access. While
providing robust storage options, L-store proved challenging to use
for the transfer of NDIIPP data in the period of this transfer
project. At that time, L-store was unable to support bags
conforming to the emerging BagIt specification. Earlier transfers
of data from the Vanderbilt TV archive using L-store were
successful but these transfers did not conform to the BagIt
specification. The Library decided to continue transferring this
video content using L-store because of the previous success.
However, we determined that new transfers should conform to the
emerging specification. The NGDA data coming from UCSB and
Stanford University was ultimately transferred almost exclusively
using BagIt.

Many of the NDIIPP partners ultimately transferred their data
using rsync, including CDL, Stanford University, UCSB, and
WNET of the Preserving Public Television project. Rsync was first
released in 1996. It is a well-established software application that
synchronizes files and directories from one location to another. An
important feature of rsync not found in most similar programs or
protocols is that the mirroring takes place with only one
transmission in each direction. Rsync can copy or display directory
contents and copy files, optionally using compression and
recursion. This allowed the transfers to run on multiple threads and
speeds the rate of transfer completion.

Rsync was also familiar to most NDIIPP partners. It allowed
bags of content to be transferred via the network at the
approximate rate of 1 TB/day. This speed has improved as the
transfers continued and have been optimized.

The Library and several of the NDIIPP partners have had
great success transferring bags via rsync, but it was not practical
for all of the partners to transfer their content over the network.
Some partners only had connections to the commodity Internet
(rather than the higher-speed Internet2), some did not have
personnel with time or expertise to set up a software application,
and some partners were confronted with security requirements that
restricted their use of network-based protocols. Hard disk transfers
met the needs of these partners.

University of Maryland transferred a collection of business
plans from the Dot-Com Archive via flash drive sent though the
mail. North Carolina State University transferred some of the
geospatial information that their project has preserved via hard
drives also mailed to the Library. Hard drive transfers offered
some distinct advantages. It was a well understood technique,
employed by the Library in the National Digital Newspaper Project
(NDNP), and the NDIIPP partners were equally experienced in
transferring content with hard drives. It became a standard second-
choice for transfers. However, because of delays in mailing

content, the need to return hard drives, and the obvious benefits of
increasing network transfer speeds and experience, hard drive
transfer will not be a primary mechanism of transfer going
forward.

The Library is proposing that HTTP transfer will eventually
take the place of some of the hard drive transfers. HTTP transfers
will not require the same resources or expertise as rsync transfers.
Instead, a well-defined HTTP transfer process will take advantage
of the common ability of almost all NDIIPP partners to access web
pages for transfer.

Another transfer mechanism that was explored was LOCKSS.
Transfers of content from the MetaArchive were made by the
Library becoming a member of the MetaArchive Private LOCKSS
Network (PLN). This required the Library to set up a LOCKSS
box and open it to the private network. A PLN has materials
published to the LOCKSS boxes which then collect it for
preservation. LOCKSS software continuously compares the copies
stored in other LOCKSS boxes in the private network as part of a
process to allow repair of lost or corrupted copies. The LOCKSS
boxes communicate over the Internet to continually audit the
content they are preserving. If the content in one LOCKSS box is
damaged or incomplete, that LOCKSS box will receives repairs
from the content based on other LOCKSS boxes. This automated
cooperation between the LOCKSS boxes avoids the need to back
them up individually. It also provides unambiguous reassurance
that the system is performing its function and that the correct
content is available throughout the network of replicated boxes.

In this way, the MetaArchive collections arrived at the
Library, but have never been formally transferred using BagIt.
Rather, the Library acts as another member in the PLN. The
“transfer” in this instance is not about a complete handoff of data
from one institution to another but about the constant update of a
collection through a preservation and storage mechanism.

The exploration of transfer tools, techniques, and mechanisms
led to collaboration between the Library and many NDIIPP
partners that produced a remarkably simple and valuable
specification and a set of automated tools and guidelines that will
continue to be leveraged for ongoing preservation activities at the
Library and throughout the preservation community.

The Transfer Tools and Specifications
Working with John Kunze of the California Digital Library

and Keith Johnson of Stanford University, Andy Boyko, Justin
Littman, Liz Madden, and Brian Vargas of the Library produced a
generalized version of what had been initially referred to as the
"LC Package Specification,. This is now called "BagIt." For the
purpose of transferring content, a package is a set of files stored in
a file system, which may be a subset of a larger collection of
content, to be transferred and managed as a unit. The set of files
comprising a package may be transferred as a single file in a
container format such as ZIP or tar to be unpacked upon receipt.

BagIt is a hierarchical file package format designed to support
the transfer of any digital content. The specification builds on the
idea of “bagging and tagging” data, organizing content in a
directory and labeling the data in that directory. BagIt organizes
files to be transferred and manages them as unit. This eases the
transfer process by providing a simple, predictable unit of transfer

Society for Imaging Science and Technology66

that is effective regardless of domain, format, or size of the content
being transferred.

The base directory of a Bag contains a file manifest, a
content directory, and an optional package information
directory. The content directory (/data) contains the contents of
the package, as determined by the producer of the bag. The file
manifest lists the names and checksums of the content files and the
package information files—excluding itself and any shipping files.
The file manifest is used to provide an inventory and validate the
fixity of each of the transferred files. The manifests assist in the
transfer, archiving, and preservation of the package as a unit, rather
than supplying any description of the content. Neither the file
manifest nor the package manifest obviates the need for descriptive
metadata being supplied by the package producer or provider.

The content directory may have any name and internal
structure. There is no limit on the number of files or directories this
directory may contain. The size of a Bag should be based on
physical media limitations or expected network transfer rates. The
Library recommends 500 Gb as the maximum size (based on
practical experience), although Bags as large as 1.8 Tb have been
transferred successfully.

A number of tools have been developed for retrieval,
receiving and managing of content transfers with the BagIt
standard (Johnston 2009). The Parallel Retriever implements a
simple Python-based wrapper around wget and curl, capturing files
and producing a package that meets the BagIt specification when
given a file manifest and a fetch.txt file. It was initially built
specifically for transfers to the Library via rsync, but has been
extended to HTTP and FTP. The Parallel Retriever has been
released by the Library as open source on SourceForge
(http://sourceforge.net/projects/loc-xferutils/).

 The Library has created a Bag Validator script. This script
checks that all files listed in manifest are in the data directory;
there are no files in the data directory that are not listed in
manifest; and there are no duplicate entries in the manifest. The
VerifyIt script is used to verify the checksums of files in a Bag
against its manifest. The Bag Validator and VerfiyIt have also been
released by the Library as open source on SourceForge
(http://sourceforge.net/projects/loc-xferutils/).

A client-side Bagger application has been developed for
partners engaged in small-scale transfers. Bagger automates the
packaging and submission of locally-hosted content without
requiring the Library involvement. Ideally, this requires no client-
side IT support or infrastructure and can be used by non-technical
content curators or producers. This tool will be equally suited for
packaging and transferring digital files from fixed media (such as
DVDs or CDs) to enterprise transfer and storage environments. It
is expected that this can be used within an institution, such as the
Library itself. Bagger is implemented as a Java Web-Start
application for use across platforms, and supports the aggregation
of files into Bag packages, including the creation of checksum
manifests and Bag information files. This application was, in part,
built on top of BIL—the BagIt Library—a Java library developed
to support Bag services. BIL is also on SourceForge
(http://sourceforge.net/projects/loc-xferutils/) released as open
source software by the Library of Congress.

In order to support the expanding numbers and types of
transfers, the need for additional types of software tools became

clear. The Deposit service is a web-hosted application for use by
transfer partners in registering and negotiating a new transfer. This
application will support the registration and initiation of the
transfer content both via network transfer and via fixed media,
such as hard drives or DVDs. As of early 2009, the Deposit
service is mid-way through the production implementation
process, including review by representatives of multiple digital
content acquisition projects.

The Inventory Tool implements a domain model for
packages, a suite of command line inventory tools, and a reporting
web application. The Inventory Tool collects and maintains data
by recording life cycle events on a package level and on a file
level. Examples of Package Events include “Package Received
Events,” which are recorded when a project receives a package;
and “Package Accepted Events,” which are recorded when a
project accepts curatorial responsibility for a package. Examples of
File Location Events include “File Copy Events,” which are
recorded when a package is copied from one File Location to
another; and “Quality Review Events,” which are recorded when
quality review is performed.

All the tools can be tied together into any of a number of
project-based Workflow systems (see Appendix B for a generic
project-based data flow diagram). The underlying workflow
process steps are formalized with a graphical interface on top of
them. With this graphical user interface, users can identify lists of
tasks to be performed, initiate, monitor and administer processes;
and notify the workflow engine of the outcome of manual tasks,
including task completion. Workflow tasks can include transfer,
validation by project-specific validation applications such as the
one in production for the NDNP (Littman 2009), manual quality
review inspection, and file copying to archival storage and
production storage. Both the Inventory Tool and all workflows are
built on top of the BIL Java Library.

In late 2008 the Library for the first time released its own
open source software. The first of the Transfer tools—the Parallel
Retriever, the Bag Validator, VerifyIt, and BIL—have all been
released by the Library as open source on SourceForge
(http://sourceforge.net/projects/loc-xferutils/). The Library plans to
release additional tools as part of a suite of solutions and software
development resources as they are completed over time, and
expects to continue to maintain and refine the tools with more
experience.

NDIIPP Partner Workflow
The transfer tools and specifications that the Library and

various NDIIPP partners developed have transformed digital
preservation workflow into a true network with well-defined
interfaces. Several NDIIPP partners have adopted "Bagged"
transfer and several of the tools developed by the Library of
Congress in their own preservation practices and for use with other
projects and partners.

The content transfers from Stanford University to the Library
have inspired changes to the Stanford Digital Repository (SDR)
output. The SDR is now outputting all content that is output from
the repository in the form of Bags.

New York University (NYU), the technical partner of the
Preserving Public Television (PTV) project (Pawletko 2008), is
using Bags for general content transfer within their project. Bags

Archiving 2008 Final Program and Proceedings 67

http://sourceforge.net/projects/loc-xferutils/
http://sourceforge.net/projects/loc-xferutils/
http://sourceforge.net/projects/loc-xferutils/
http://sourceforge.net/projects/loc-xferutils/

are employed when transferring content from the NYU digitizing
stations to the NYU storage servers, from outside vendors to the
NYU repository, to transfer submission information packages from
content producers to the NYU repository, and also to transfer
content from NYU to other repositories. The PTV project and
NYU are developing scripts of their own to automate transfer
processes including a source-node script that ‘bags’ content and a
target-node script to validate a bag. NYU is developing its own
system for handling receipts and acknowledgements of transferred
bags. NYU is also exploring fetch.txt as a way of facilitating
content processing at the target node.

The North Carolina Geospatial Data Archiving Project
(NCGDAP) has been working with very large geospatial data
collections originating from small, local agencies (Morris 2008);
such as hundreds of Gb of orthophotos (aerial photographs that
have been corrected to have uniform scale, a photo-map) from a
single county. The small, local government agencies have limited
network capacity and require simple network transfer solutions.
Therefore the project transfers data from these agencies via
external hard drives. This orthophoto “sneakernet” between
agencies has been a good transfer method but has lacked data
integrity management in the disk transfers. Bags have offered a
way for NCGDAP to provide the data integrity management they
needed without adding to the burden of the local agencies.

Conclusion
These transfer tools and processes are important advances for

digital stewardship. Our initial interest came from the need to
better manage transfers from NDIIPP partners to the Library, at the
same time that the transfer and transport of files within the
organization for the purpose of archiving, transformation, and
delivery is an increasingly large part of daily operations.
Developing tools to manage such transfer tasks reduce the number
of tasks performed and tracked by humans, and automatically
provides for the validation and verification of files with each
transfer event.

After much experimentation, the best transfer practices that
emerged during the Year of Content relied upon established,
reliable tools; well-defined transfer specifications; and good
communication between content provider and content receiver.
Each transfer provided insight into the developing content transfer
best practices and each exchange brought more expertise. The
digital preservation community continues to engage with transfer
best practices, helping these practices to evolve.

The digital preservation community not only helped develop
transfer tools, standards, and best practices, but is applying them to
their own preservation lifecycles in innovative ways. The
community is always refining digital preservation practices based
on the newest developments, and transfer related activities are no
exception. Digital preservation practitioners have adopted these
transfer best practices to ingest, backup, export, and other
activities. They have come to believe, as Justin Mathena of UCSB
has commented, “it is all transfer.”

Ultimately, the practices and tools that arose from the Year of
Content focused on not just on transfer optimization, but on ways
in which to improve the communication between submitter and
receiver. The most important part of transfer is not the technical
connection but the exchange of information. Communicating what

is coming, when it will arrive, what form it will take and making
the process predictable and flexible has been the most valuable
result of the 2008 efforts to bring NDIIPP partner content to the
Library of Congress.

These transfer developments are important for the digital
preservation community beyond the NDIIPP network. Information
creators have ever-growing data volumes that require transfer to a
long-term stewardship entity, and these tools will be of great help.
Archives, libraries, and other content stewards also can use the
tools to distribute one or more copies of digital content among
different locations to protect it from catastrophic loss.

References:
[1] Anderson, Martha. 2008. “Evolving a Network of Networks: The

Experience of Partnerships in the National Digital Information
Infrastructure and Preservation Program.” The International Journal of
Digital Curation (July 2008: Volume 3, Issue 1).
http://www.ijdc.net/ijdc/article/view/59/60.

[2] Johnston, Leslie, 2009. “Identifying and Implementing Modular
Repository Services.” DigCCurr 2009: Digital Curation Practice,
Promise and Prospects.

[3] Littman, Justin. 2009. “A Set of Transfer-Related Services.” D-Lib
Magazine (January/February 2009: Volume 15, Number 1/2).
http://dlib.org/dlib/january09/littman/01littman.html.

[4] Morris, Steve. “The NC Geospatial Data Project Archiving
Experience.” Digital Library Federation Fall 2008 Forum.
http://www.diglib.org/forums/fall2008/presentations/Morris.pdf

[5] Pawletko, Joseph. “NDIIPP: Preserving Digital Public Television.”
Digital Library Federation Fall 2008 Forum.
http://www.diglib.org/forums/fall2008/presentations/Pawletko.pdf

Appendix A: BagIt Specification
BagIt is a hierarchical file packaging format designed to

support disk-based or network-based transfer of generalized digital
content. A "bag" holds a brief "tag" and an otherwise semantically
opaque payload. The name, BagIt, is inspired by the "enclose and
deposit" method, sometimes referred to as "bag it and tag it".

A "bag" consists of a base directory containing a set of top-
level files comprising the "tag" and a sub-directory named "data/"
that holds the payload. The base directory may have any name and
the "data/" directory may contain an arbitrary file hierarchy.

The "tag" consists of one or more files named "manifest-
algorithm.txt", a file named "bagit.txt", and zero or more
additional files. In top-level text files with ".txt" extension, each
line should be terminated by a newline (LF) or carriage return plus
newline (CRLF); in practice cautious programmers will also accept
a carriage return by itself (CR) as a line terminator. In all such tag
files, text is assumed to be Unicode encoded as UTF-8.

A manifest is a top-level file listing payload files that must be
present in a complete bag. Every bag must contain one or more
manifest files. A manifest file has a name of the form manifest-
algorithm.txt, where algorithm is a string specifying a
cryptographic checksum algorithm. A manifest contains a
complete list of files that must be present in a fully constituted bag.

For reasons of efficiency, a bag may be sent with a list of files
to be fetched and added to the payload before it can meaningfully
be checked for completeness. An optional top-level file named
"fetch.txt", if present, contains such a list. The receiver of a bag

Society for Imaging Science and Technology68

http://www.ijdc.net/ijdc/article/view/59/60
http://dlib.org/dlib/january09/littman/01littman.html
http://www.diglib.org/forums/fall2008/presentations/Morris.pdf
http://www.diglib.org/forums/fall2008/presentations/Pawletko.pdf

with a "fetch.txt" tag file is expected promptly to complete the bag
by fetching all URL-identified components as the sender is not
bound to make the absent components available indefinitely.

The "fetch.txt" file essentially allows a bag to be transmitted
with "holes" in it, which can be practical for several reasons. For
example, it obviates the need for the sender to stage a large
serialized copy of the content while the bag is transferred to the
receiver. Also, this method allows a sender to construct a bag from
components that are either a subset of logically related components
(e.g., the localized logical object could be much larger than what is
intended for export) or assembled from logically distributed
sources (e.g., the object components for export are not stored
locally under one filesystem tree).

In some scenarios, such as network transfer, it may be
convenient for the sender first to serialize the filesystem hierarchy
representing the bag (the outermost base directory) into a single-
file archive format such as TAR or ZIP. After receiving the
resulting aggregate file, which we will call a serialization, the
receiver deserializes it to recreate the filesystem hierarchy.

The BagIt file hierarchy format poses no direct risk to
computers and networks. Implementors of tools that complete bags
by retrieving URLs listed in a "fetch.txt" file need to be aware that
some of those URLs may point to hosts, intentionally or
unintentionally, that are not under control of the bag's sender.
Checksum algorithms are designed to protect against corruption
and spoofing in bag transfer, but they are not a guarantee.

The most current version of the BagIt specification is
available at
http://www.digitalpreservation.gov/library/resources/tools/docs/ba
gitspec.pdf.

Archiving 2008 Final Program and Proceedings 69

http://www.digitalpreservation.gov/library/resources/tools/docs/bagitspec.pdf
http://www.digitalpreservation.gov/library/resources/tools/docs/bagitspec.pdf

Appendix B: Generic Project-Based Transfer
Tool Data Flow Diagram

Society for Imaging Science and Technology70

Appendix C: “FetchIt” Parallel Retriever
The Parallel Retriever (alternately referred to as “FetchIt”)

implements a Python-based wrapper around wget and rsync to run
a parallelized multi-threaded process for efficient file transfers.
When given a "file manifest" and a "fetch.txt" file it completes a
bag that conforms to the BagIt specification. It is used to transfer
content from rsync, FTP, and HTTP servers. The Parallel Retriever
relies on two operating scripts:

• parallelretriever.py
o Used for rsync and FTP transfers of

complete and holey bags.
 Implements a Python-

based wrapper around wget and
rsync to run a parallelized multi-
threaded process for efficient file
transfers.

o Python script invoked from the
command line.

o Takes as input:
 The file manifest
 The retrieval order
 A local identifier I for the

package.
 The fetch.txt if it is a

Holey Bag
o Takes as configuration:

 A reasonable number of
parallel processes based on local
environment, general rules of thumb.
(i.e. "16")

 A destination directory
into which to place the retrieved
package, a means of notifying a

coordinating system that the retrieval
completed, and its success or failure
(e.g. a 'messaging' destination)

o Outputs a text log for success,
failures, errors.

• fetch-it-http-ranges.sh
o Used only for parallel transfers of

large serialized Bags via HTTP 1.1 byte
ranges.

o Bash shell script invoked from the
command line.

o Takes as input:
 The file manifest
 The retrieval order
 A local identifier I for the

package.
o Takes as configuration:

 A reasonable number of
parallel processes based on local
environment, general rules of thumb.
(i.e. "16")

 A destination directory
into which to place the retrieved
package, a means of notifying a
coordinating system that the retrieval
completed, and its success or failure
(e.g. a 'messaging' destination)

o Outputs a text log for success,
failures, errors.

Archiving 2008 Final Program and Proceedings 71

Appendix C: GrabIt and SWORD
GrabIt is a proposed HTTP-based protocol for systematically

transferring lists of digital packages. A package is an arbitrary
sequence of octets (e.g., a single TAR or ZIP archive) that can
come with an associated content type indicating that extra steps
(not central to GrabIt) may need to be taken to complete and
validate a package before successful receipt can be reported.

A GrabIt job is initiated by a HTTP "post" request with a list
URLs corresponding to packages, sent to a base URL that a
receiver has made known to a sender by a pre-arranged process
outside the scope of GrabIt. Package lists and package report lists
are text files. It is assumed that the receiver maintains a drop box at
that location and that the sender has the right to "post" to it.

The receiver responds to a GrabIt request by promptly
returning a text file that is the initial transfer status report. The
report includes a job URL in an HTTP "Location" header that can
be probed periodically to retrieve transfer status reports. There is
no requirement that the transfer be finished and immediate
reporting is encouraged. Transfer operations implied by GrabIt
jobs often take minutes to hours to complete and reporting early
and often is normal. There are no GrabIt responses that are not
transfer status reports.

Authentication is not addressed by GrabIt. It is assumed that

senders and receivers will make their own arrangements and take
measures (certificates, SSL, passwords, IP address filtering, etc.)
appropriate to their transfer security requirements.

The GrabIt specification is available at:
http://dot.ucop.edu/home/jak/grabitspec.html.

SWORD is a profile of the Atom Publishing Protocol (APP),
which is an application-level protocol for publishing and editing
Web resources. The APP is based on HTTP transfer of Atom-
formatted representations. The SWORD Profile specifies a subset
of elements from the APP for use in depositing content into
information systems, such as repositories. The SWORD profile is
concerned only with the deposit (POST) of data files or packages
and defines a mechanism for POST. The SWORD Profile also
specifies a number of element extensions to APP. This profile also
makes use of the Atom Syndication Format as used in APP, with
extensions. The Profile was produced to support the work of the
JISC-funded SWORD ((Simple Web-service Offering Repository
Deposit) project
(http://www.ukoln.ac.uk/repositories/digirep/index/SWORD_Proje
ct).

APP works by issuing HTTP requests (GET, POST). GET
Service Document (explain/discover). POST ATOM document or
file to collection URI. HTTP response and ATOM document is
returned. HTTP basic authentication is required.

SWORD does not at this time deal in update/delete, and is
POST only. Only binary files can be posted, and SWORD does not
specify how to post Atom documents. APP uses the MIME
mechanism to describe the data encoding for resources. This
mechanism is inadequate where compound types are involved,
such as tar archive files, METS packages, SCORM packages,
MPEG21 DIDL packages, etc. To this end, SWORD extends APP,
adding the sword:acceptPackaging element, which is used in a
similar fashion to app:accept elements inside a app:collection
element within a Service Document to indicate that a SWORD
collection will accept deposits of a particular packaging format.
Atom Categories are not used.

The most current SWORD Profile is available at
http://www.swordapp.org/docs/sword-profile-1.3.html . SWORD 2
is under development.

Society for Imaging Science and Technology72

http://dot.ucop.edu/home/jak/grabitspec.html
http://www.ukoln.ac.uk/repositories/digirep/index/SWORD_Project
http://www.ukoln.ac.uk/repositories/digirep/index/SWORD_Project
http://www.swordapp.org/docs/sword-profile-1.3.html

	1_57
	2_45
	3_32
	4_43
	6_18
	7_7
	8_49
	9_52
	10_40
	11_37
	12_42
	13_30
	14_28
	15_20
	16_19
	17_17
	18_14
	19_10
	20_55
	22_46
	23_34
	25_12
	26_11
	27_27
	28_47
	29_36
	30_13
	31_3
	32_24
	33_44
	34_51
	35_41
	36_16
	38_25
	39_31
	40_29
	41_26
	42_60
	43_35
	44_15
	45_9
	46_8
	47_62
	49_54
	50_56
	51_50
	52_33
	53_22
	54_39

