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Abstract 
Recovery of spectral reflectances of imaged objects is important to 
reproduce color images under arbitrary illuminations. In this paper, 
a new method is proposed to recover spectral reflectances 
accurately through the use of image data without prior knowledge 
of the imaged objects. It is shown that the Wiener estimation which 
uses the noise variance estimated by training samples and the 
features of the recovered spectral reflectances is effective to 
improve the recovery performance. 

Introduction  
Digital archive of art paintings and objects is a key technology 

to record and to leave them as historical heritages for the future. 
Since the impressions of a painting change extremely by the changes 
in the illuminations, the reproduction of a color image under a 
variety of illuminations by taking account of the chromatic 
adaptation of the visual system is very important[1,2]. The 
colorimetric values of the pixels of the imaged paintings under 
arbitrary illuminations are required to use these models. Therefore, 
the accurate recovery of spectral reflectances of the imaged objects 
through the use of image data is very important for the purpose.  

There have been various studies to recover spectral reflectances 
of imaged objects[3-8] through the use of image data. Among them 
the finite dimensional linear mode[4], the Wiener estimation[3,9] and 
the regression model[5, 10] are widely used. The linear model and 
the Wiener estimation require the spectral sensitivities of a color 
imaging device and the spectral power distribution of the 
illumination used for the image acquisition, on the other hand the 
regression model does not require the spectral characteristics of 
them. Although the regression model is easy to use, however the 
recovery performance is not sufficient when test samples are 
different from the learning samples. Usually, the recovered spectral 
reflectances by the linear model are very sensitive to noise and 
instabilities in the recovery occur in the presence of noise [8]. On the 
other hand the Wiener estimation is robust to noise, but its recovery 
performance depends largely on the noise variance used for the 
estimation.  

All these recovery models require the learning process, since 
prior knowledge of spectral reflectances of the imaged objects  
such as the art paintings is unknown  in the image acquisition. In the 
learning model, the evaluation of the computational efficiency, 
robustness and statistical stability are very important. The robustness 
means that the algorithms must handle noisy data for real 
applications. The statistical stability means the performance of the 
algorithms should not be sensitive to the particular training data set.  

One of the authors (N.S) already proposed a model to estimate 
the noise variance of an image acquisition system by using the 

spectral reflectances of the learning color samples and their 
corresponding image data, and applied it to recover spectral 
reflectances by the Wiener estimation without prior knowledge of 
the spectral reflectances of the imaged objects[3]. The accuracy of 
the recovered spectral reflectances by this proposal was compared 
with other recovery models, such as the linear model[4], regression 
model[5, 10], Imai-Berns model[6] and Shi-Healey model[7], and it 
is confirmed that the results by this proposal is the most accurate 
when test samples are different from learning samples[8]. The main 
reasons of the results are :(1) the regression model, Imai-Berns 
model and Shi-Healey model do not satisfy the statistical stability, 
i.e., these model optimized for the training samples and outperform 
superiorly for training samples but does not perform well for test 
samples. (2) The liner model does not satisfy the robustness, i.e., it is 
sensitive to noise. 

However the mean square error (MSE) of the spectral 
reflectances between measured and recovered by this proposal is 
three times larger than that of the spectral reflectances recovered 
by the Wiener filter with the autocorrelation matrix calculate by the 
measured spectral reflectances of the imaged objects [8]. The main 
reason of the differences in the accuracy is considered to be 
originated from the differences in the features of the spectral 
reflectances of the learning samples and test samples (imaged 
objects). Several experimental results of the regression model 
showed that selecting the training spectral reflectance similar to that 
of the test samples is effective to improve the recovery performance. 
However the color samples except for a test sample in the same 
color chart were used as a set of training samples[5,10]. 

 In this paper, it is shown that the Wiener estimation which 
uses the estimated noise variance and features of the recovered 
spectral reflectances is effective to improve the recovery 
performance. 

 

Model 

 A. Wiener Estimation with Estimated Noise 
Variance 
In this section, a brief sketch for the estimation of the noise variance 
of a color image acquisition system is described. A vector space 
notation is useful in the problems. In this approach, the visible 
wavelengths are sampled at constant intervals and the number of the 
samples is denoted as N. A sensor response vector from a set of 
color sensors for an object with an 1N×  spectral reflectance vector 
r  can be expressed by 
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erp += SL ,               (1) 
 

where p is an 1M×  sensor response vector from the M channel 
sensors, S  is an NM×  matrix of the spectral sensitivities of sensors 
in which a row vector represents a spectral sensitivity, L  is an 

NN×  diagonal matrix with samples of the spectral power 
distribution of an illuminant along the diagonal, and e  is an 1M×  
additive noise vector. The noise e  represents the system noise [3] 
that includes not only the noise of the CCD but also includes all 
measurement errors in the spectral characteristics of an image 
acquisition system. The system noise is assumed to be signal 
independent, zero mean and uncorrelated to itself. For abbreviation, 
let SLSL = . The MSE of the recovered spectral reflectances r�  is 
given by 

 

{ }2
�EMSE rr −= ,                                       (2) 

 
where { }•E  represents the expectation. If the Wiener estimation is 
used to recover a spectral reflectance r� , then r�  is given by 
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where T represents the transpose of a matrix, SSR  is an 
autocorrelation matrix of the spectral reflectances of samples that 
will be captured by a device, and 2

eσ  is the noise variance used for 
the estimation. Substitution of Eq.(3) into Eq.(2) leads to[3]  
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where, iλ  is the eigenvalues of Rss , and ijb , v

iκ  and β  represent j-

th element in the i-th right singular vector, singular value and a rank 
of a matrix 2/1

LVS Λ , respectively, 2σ  is the actual system noise 
variance, V is a basis matrix and Λ  is an NN×  diagonal matrix 
with positive eigenvalues iλ  along the diagonal in decreasing order.  

If we let the noise variance 02
e =σ  for the Wiener filter in Eq. 

(3), then the MSE( 02
e =σ ) is derived as ( by letting 02

e =σ  in Eq. (4) 
) 
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From Eq.(5) the system noise variance 2�σ  can be estimated by 
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Therefore, the system noise variance 2σ  can be estimated using Eq. 
(6), since the all terms of the fraction in the right hand side of 
Eq.(6) except MSE( 02

e =σ ) can be computed if the surface 
reflectance spectra of objects, the spectral sensitivities of sensors and 

the spectral power distribution of an illuminant are known. The 
MSE( 02

e =σ ) can also be obtained by the experiment using Eqs. (2) 
and (3) by applying the Wiener filter with 02

e =σ  to sensor 
responses. Therefore, Eq. (6) gives a method to estimate the actual 
noise variance 2σ [3]. 

Therefore the noise variance estimated by Eq.(6) can be used to 
recover the spectral reflectances by the use of Eq.(3).  

B. A Recovery Model which uses the Feature of 
Recovered Spectral Reflectances 
Several studies have been performed to improve the recovery 
performance by the use of pseudoinverse model. In these 
approaches, the training samples were selected so that these 
samples are similar to the test samples. In the previous works, the 
samples except for test samples in the same color chart were used 
for training samples. 

In this study, different color charts were used for training and 
test samples, e.g., the GretagMacbeth ColorChecker was used for 
test samples and Kodak Q60 (IT8) was used for training samples, 
and vice versa. 

Fig.1 shows the schematic illustration of the proposal. In the 
first step, the noise variance is estimated by using training samples 
as illustrated. In the second step, the estimated noise variance 

2�σ and the autocorrelation matrix ssR  calculated by using training 
sample�s spectral reflectances were used to recover the spectral 
reflectances of imaged object (test samples) by the use of the image 
data p. In the third step, spectral reflectances similar to recovered 
spectral reflectances in the second step were selected from the data 
base. In the final step, those selected spectral reflectances 
( )m21 ,,, rrr L   and the noise variance 2�σ   estimated in the first step 
were used for the second recoveries. 

In the data base, the spectral reflectances of the Munsell color 
chips were used for the experiments, and if spectral reflectances of 
the training samples were used for the data base, then the spectral 
reflectances similar to that of the test samples would be selected 
from the training samples.  

 Experimental Procedures and Results  
The GretagMacbeth ColorChecker, Kodak Q60 and Munsell Color 
Chips were used for the experiments. In the Wiener estimation  
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Figure 1. Schematic illustration of the procedures used in the 
experiments 
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without the prior knowledge of the imaged objects, the noise 
variance is estimated by using the spectral reflectances of the 
training samples and their corresponding image data, and the 
spectral reflectances of imaged objects are recovered by applying it 
to the Wiener filter. Three different procedures, which use the 
recovered spectral reflectances in the second step, were performed. 
These three procedures were: 
(1) The recovered spectral reflectances in the second step were 

directly used in the second recovery (the fourth step). The 
autocorrelation matrix calculated by using the recovered 
spectral reflectances was used for the second recovery, where 
the noise variance estimated using the training samples in the 
first step was always used in the second recovery.  

(2) The spectral reflectances of the Munsell color chart similar to 
recovered spectral reflectances in the second step were selected 
from the database, and those spectral reflectances were used to 
calculate the autocorrelation matrix in second recovery (the 
fourth step).  

(3) The spectral reflectances similar to recovered spectral 
reflectances in the second step were selected from the training 
samples, and those spectral reflectances were used to calculate 
the autocorrelation matrix for the second recovery.  
The selection of the spectral reflectances from the data base 

was performed so that the square of the Euclid norm of the 
difference between the recovered spectral reflectance and spectral 
reflectance in the data base is minimized.  
 A multispectral color image acquisition system was assembled 
by using seven interference filters (Asahi Spectral Corporation) in 
conjunction with a monochrome video camera (Kodak KAI-
4021M). Image data from the video camera were converted to 16-
bit-depth digital data by an AD converter. The spectral sensitivities 
of the video camera were optimized based on the colorimetric 
evaluation model proposed by the author (N.S.) [11] and were 
measured over wavelength from 400 to 700 nm at 10-nm intervals. 
The spectral sensitivities of the camera with each filter are shown in 
Fig.2. The illuminant that simulates daylight (Seric Solax XC-
100AF) was used for the image acquisition. The spectral power 
distribution of the illuminant was measured by the 
spectroradiometer (Minolta CS-1000) from 400 to 700nm at 10nm 
sampling interval and it is presented in Fig.3.  

 
Figure 2. Spectral sensitivities of a multispectral camera 

 
Figure 3. Spectral power distribution of the illumination used for 
image acquisition 

 
Figure 4. Recovered spectral reflectances with different 
procedures. 
 

Typical examples of the spectral reflectances recovered by 
different procedures are shown in Fig.4. From the experimental 
results, it can be understand that the recovered spectral reflectances 
by the procedure (2) is most accurate than the others and that the 
recovery performance by other procedures are almost the same. The 
MSE and the mean color difference *Eab∆  of the recovered spectral 
reflectances in the CIELAB uniform color space under the D65 
illuminant are summarized in Table 1. The experimental results in the 
table show typical examples of the recovery performance when the 
Kodak Q60 and the GretagMacbeth ColorChecker were used for 
training and test samples, respectively. The left column in the table 
shows the procedures used for the recovery.  The notation of 
�Macbeth ColorChecker� in this column indicates the recovery 
performance when the GretagMacbeth ColorChecker was used as 
samples for both training and test. The notation of �Kodak (First 
R e c o v e r y ) �  i n  t h e  c o l u m n  i n d i c a t e s  t h e  
recovery performance when Kodak Q60 was used for training 
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Table 1: Comparative spectral recovery performance :Kodak 
Q60 used as samples for training and GretagMacbeth 
ColorChecker used as test samples 

Procedure                                     MSE             *Eab∆  
  Macbeth ColorChecker                          0.01216             1.03 
Kodak (First Recovery)                            0.03981             1.21 

Procedure (1)                                    0.03816             1.15 
Procedure (2)                                    0.01462             1.11 
Procedure (3)                                    0.04195             1.28 

 
samples and the GretagMacbeth ColoChecker was used for test 
samples in the second step as illustrated in the figure 1. 
 The experimental results show that the recovery performance 
of the procedure (2) is superior and that the accuracy of this 
procedure is close to the results when the GretagMacbeth 
ColoChecker was used for both test and training. The procedure (1) 
improves the accuracy slightly from the first recovery in the second 
step. The procedure (3) degrades the accuracy.  
 

Conclusion 

In this paper, we proposed a new model that recovers the spectral 
reflectances of imaged objects accurately without prior knowledge 
of the imaged objects. The Wiener estimation which uses the noise 
variance estimated by training samples and the features of the 
recovered spectral reflectances is effective to improve the recovery 
performance.. 
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