
Document Formats for Archiving
James C. King, Leonard Rosenthol and Diana Helander; Adobe Systems Incorporated; San Jose, CA

Abstract
A continuing question that plagues the Archiving community

is the choice of file format to use for archiving electronic
documents. It is complicated by many factors including: the wide
spectrum of archiving situations and specialized requirements,
continuing evolution of existing document file formats, the
invention of new kinds of documents and electronic content which
must be archived, and the difficulty of planning to have all the
appropriate hardware, software and media available in the future
to process these documents. In this paper we focus primarily on the
choice among existing document file formats and discuss their
current suitability for various anticipated tasks.

Electronic Archiving Requirements
Before consideration of what file format is most appropriate

for archiving we must first determine what objectives the archiving
is intended to achieve and what kind of material we are being
asked to archive. This seems rather simplistic but those
considerations are often just assumed and one archivist may not
realize that another archivist has different objectives. An important
first question is: what kind of document is to be archived. For
traditional documents there are two general categories of electronic
documents.

ePaper Documents
For example, if the task is to preserve existing paper

documents, unchanged but in electronic form, then some form of
what we will call �electronic paper� or ePaper is called for. We
expect it to simulate paper electronically, maintain appearance
fidelity and not be easily changed.

This would include documents that are documents of record
that preserve public documents (e.g., birth certificates, wedding
licenses), business transactions (e.g., invoices, agreements), legal
decisions (e.g., court records), or laws (e.g., records from
legislative bodies). Generally the objective when archiving these
ePaper documents is to preserve them for future reference much as
we preserve paper documents emphasizing visual fidelity. They
may have been derived by scanning paper documents. Providing
the ability to edit and reuse these documents is not a requirement.

Editable Documents
On the other hand, if the need is to maintain some master

document that can be edited to produce derivative documents and
to do this over long periods of time, then a document format
primarily designed to preserve the edit-ability of the contents is
needed. If preserving the exact appearance of the master must be
sacrificed in order to provide edit-ability then so be it. Since the
master will be used to produce different derivative documents in
the future, their appearance can be tailored to the needs at that
time.

Other Document Types
Although we are going to focus primarily on more traditional

document file formats, it is worth mentioning some of the other
document types not necessarily aligned with traditional documents.

Live Documents

The most difficult category of document to preserve is the newer
interactive and dynamic document types. As we try to make use of
the ever more powerful computers and displays available to us, we
strive to invent new document metaphors that move away from our
more static paper-based ideas. The challenge in archiving these
documents is two-fold: a wide variety of new document types
which quickly may become obsolete as technology matures, and
the technologies these documents depend upon are also still
maturing, with the result that some of the base technologies may
become obsolete.

Live documents include games and interactive web
applications. One obvious archiving objective for this class of
document is to preserve the ability to repeat the current experience
at some future time. This is a very perplexing type of content since
its value is in its active nature and that depends upon being able to
provide a suitable �execution environment� in the future. Virtual
machines that can simulate today�s computer systems may be the
best answer for experiencing these documents in the future.

Pictures
Pictures, usually referred to as images when in electronic

form, also offer yet another kind of artifact that has its own unique
requirements and objectives for archiving. Since images tend to
consume large amounts of electronic storage space, compression
techniques are a primary focus area for archiving. Color images
compress much more if lossy compression is allowed but the
debate continues about using lossy techniques. The best lossy color
compression remove image features that are impossible for humans
to physically see under normal viewing conditions. So, again, if we
know the archiving requirements and they are confined to normal
human viewing of the archived pictures then careful application of
lossy color compression is acceptable.

Scanned Documents
Since most of our document archiving and preservation

activities in the past have been centered upon paper documents, it
is natural to want to convert some of our existing paper into
electronic representations for electronic archiving. Scanning the
paper pages into computer images is usually the starting point.
TIFF [1] is commonly used for this. However, TIFF supports a
suite of choices for image representation with a wide variety of
technologies including RGB and CMYK color representations and
JPEG [2], LZW [3], fax [4] and other compression technologies.
TIFF is often used with no compression, based on a belief that the

56 Society for Imaging Science and Technology

data may be more easily retrieved and not accidentally corrupted
than when using a lossless compression technique. The price for
this is larger files requiring more archive space. There is also some
risk in using TIFF for archiving, as it is a proprietary standard and
not an open one. In addition, it has been incompatibly fragmented
since the last official publication (TIFF Version 6 in 1992).

Scanning page images is valued for being as close to saving
the paper itself in electronic form but it also inherits a lack of more
sophisticated electronic capabilities like content searching.

For those archivists who prefer to use open standards, scanned
documents should be saved as PDF/A [6] for which several
compression choices are provided including: none, fax, flate (PNG
[7]), JBIG2 [8] and JPEG2000 [9]. There are also products that
will do optical character recognition and document recognition on
scanned images while turning them into non-image PDF/A files to
which word searching may be applied [10].

Document Binding Stages
Our attention will now be focused more on compound

documents and their binding to particular output devices. There is
a spectrum of document formats determined by how tightly the
contents of the document have been �bound� for presentation on a
particular display or onto paper. At the right end of the spectrum
shown in Figure 1, at binding stage 4, is the actual display or
printed page that is typically produced from a device resolution
bitmap as shown. This is the most tightly bound form for a
document.

Text Streams

Style Directives

Binding Stage 1

Binding Stage 2

Binding Stage 3

Flowable
Presentation

OOXML & ODF

PDF/A

Final
Presentation

Layout and
Formatter

Template and
Style Processor

Resource
(e.g., pictures, fonts)

Binding Stage 4
Displayed
Document

Printed
Document

Device
Renderer

Scanned Page
Images

Figure 1. Document Binding Stages

At the other least bound end of the spectrum, at binding stage

1 in Figure 1, we have the raw materials from which a document is
composed consisting of one or more streams of text, pictures,
graphics and other resources such as fonts and color spaces. In
between we have identified document representations that
represent interesting points along the �binding� spectrum at
binding stages 2 and 3 in Figure 1.

One way the spectrum can be explored is to imagine creating
a document as we move its representation from least bound (stage
1) to most bound (stage 4). We begin with the raw material from
which a compound document will be created including text,
pictures, graphics, required resources and styling directives at stage
1. We combine all this raw material into a single document that
represents a flowable presentation document at binding stage 2.
The raw items could be used for some purpose other than a

presentation, but in moving to stage 2 we begin to bind the
material together with a presentation as the ultimate target. At this
stage the exact layout has not been determined but font choices and
placement constraints have been introduced. We have a flowable
document marked up for presentation. We have not yet bound the
information to a presentation size and shape. XHTML, ODF and
OOXML are examples of stage 2 document formats.

To arrive at binding stage 3 we actually perform the layout
and formatting determining exact placements, line breaks,
hyphenations, pagination, etc. PDF/A is a good example of a
format in which to capture binding stage 3. The document has not
been committed to a particular screen or page but the general size
and layout characteristics have been totally bound.

And finally the document can be further bound to a bitmap
destined to drive a particular display or to be printed by a particular
printer on particular paper at binding stage 4. Here we are safely
assuming that nearly all of today�s output devices are driven by
bitmaps.

Text Streams

Style Directives

Binding Stage 1

Binding Stage 2

Binding Stage 3

Flowable
Presentation

OOXML & ODF

PDF/A

Final
Presentation

Layout and
Formatter

Template and
Style Processor

Resource
(e.g., pictures, fonts)

Binding Stage 4
Displayed
Document

Printed
Document

Device
Renderer

Scanned Page
Images

Figure 2. Positioning OOXML, ODF, PDF/A, and scans

In Figure 2 we have introduced some common document

formats and related them to the binding stages. OOXML [11] and
ODF [12] are examples of binding stage 2, PDF/A is an example
of binding stage 3, and scanned images are a special case also at
binding stage 3.

Scanned pages result in scan resolution bitmaps which are not
tightly bound to a particular device since they may not match the
device�s resolution or bitmap characteristics (number of bits per
pixel, number of color channels per pixel, if any, etc.). A further
binding via the device rendering process is necessary to create a
final presentation from this scanned material.

Note that for OOXML and ODF there is an arrow going from
the layout/formatter to those files types. This is because they also
serve as the native file format for the authoring applications,
saving key information that can be restored to continue creating or
editing the documents after an interruption.

Note also that PDF/A is not a stage 2 representation but is a
stage 3 format that is more tightly bound to the final output.
PDF/A-1a does support including enough stage 2 information so
that searching and reading aloud to the blind can be accomplished.
PDF/A-1b is strictly stage 3.

Archiving 2008 Final Program and Proceedings 57

Exploring the Binding Spectrum
Moving from less bound to more bound along the binding

spectrum involves removing degrees of freedom from the
representation. For example, at stage 2 the styling information may
bind the document to two column formatting. All points to the
right must conform to that choice. In order to reverse that choice
we have to return to a less bound point on the spectrum. Tighter
binding also may lose information no longer essential for just
presenting the content. For example, at stage 2 we may know that a
text string is a �heading� but at the more bound stage 3 that
information is no longer needed, since it already has been used to
bind the string to a large font and a particular page position.

Information may be dropped as the document moves to more
bound representations, which means that it may be difficult to
move a document in the opposite direction, from more bound to
less bound. For example, one can only guess that certain spacing
and font choices mean that a text string is a heading. There could
have been other high level semantics other than that of �heading�
that determined the same font and positioning.

This is an important observation. Documents scanned into
image formats like TIFF fall to the more bound end of the
spectrum and it is difficult to move them toward the less bound end
because we have to deduce information not readily available in the
image representation. For example, optical character recognition
makes informed guesses that certain pixel clusters in the image
data are really letters of the alphabet. A level of uncertainty
accompanies those determinations. Going further toward stage 1
involves guessing which strings form paragraphs, which strings are
headings, which numbers are page numbers and so on.

When starting with scanned pages one must determine if
simply being able to present the highly bound pages for viewing or
printing is sufficient or if other requirements will dictate that we do
optical character recognition or document recognition.

File Size
Each of the document representations has a cost in terms of

file storage size. For example, full page scans are usually much
larger than more compact �coded� representations using text
strings and graphics commands to describe the pages (e.g.,
PDF/A). The most efficient representations with respect to size
seem to lie in the middle of the spectrum where enough is known
about the document contents to compress or otherwise reduce the
size but not so bound that it is using an image representation. At
the most unbound end of the spectrum we may have more
information than is actually needed to produce the required
presentation.

Of course, the most flexible and reusable document
representations are those that are least bound. This is almost a
tautology. The less bound the material is, the more binding choices
remain to be made and hence the more flexible that representation
is. But if a document owner or author wants to control the
presentation of a document then we need to remove the flexibility
and bind the document to reflect the author�s wishes.

An archivist needs to determine the correct trade-off between
flexibility and authentic appearance and choose one or more
document formats accordingly.

Augmenting Stage 3 Documents
There is a file format attribute that runs orthogonal to the

binding axis and that is the search-ability of the document content.
We may have no requirements for editing or modifying the
documents but we may still need to see if given words, phrases or
concepts can be found in the text of the document. We may also
want to search non-textual material although the techniques for
that are still under development.

Text streams (e.g., text articles) are the key component of
documents needing to be searched. Special efforts are made in
PDF/A-1a documents to retain or re-introduce the higher level
information to be able to extract the text streams and search them.
This is also necessary for reading aloud for the blind. So in this
case we have a hybrid representation that is primarily tightly bound
but contains additional information allowing reconstruction of a
less bound form for parts of the document. A conforming PDF/A-
1a file is required to have this additional information. Sometimes
this kind of extra information is difficult or impossible to obtain,
and hence the need for the more relaxed PDF/A-1b.

In the other direction, given that we have enough styling and
other formatting constraints in a loosely bound representation, it
may be only a matter of computer power to turn that representation
quickly into a bound displayable or printable representation. The
trick that seems not to have been accomplished adequately to date,
is to be able to carry out this formatting to produce 100%
consistent output from user to user, computer system to computer
system, from product revision to product revision and to do it very
quickly even for large documents. In many cases perfect
instantaneous reproduction across display environments is an
essential requirement.

A Closer Look
We want to examine the less bound end of the spectrum in a

little more detail because it may expose some interesting and
commonly held misconceptions. In Figure 1 stage 1 we indicate
the use of typical file formats used to contain the raw document
components in their most unbound form. These include common
image formats like JPEG, PNG and TIFF, graphic formats like
EPS [13] and WMF [14], and text stream formats. By text stream
we mean the raw stream of words that make up an articles
contents. Various XML [15] markup languages are effective for
marking up these text streams with basic semantic information,
like delineating paragraphs and identifying chapters, headings, and
titles (e.g., DocBook [16], XHTML [17]). These are, at times,
called �structured text streams.�

Of course, each particular type of text stream may require its
own special markup language. In our model, these markup
languages do not contain styling information, font choices, or any
other information that determines the form a presentation might
take. We are embracing the classic separation of �form� and
�content� and here we are talking strictly about content. The form
gets added as we take steps to bind the document into a stage 2
representation.

These text streams are fed together with pictures, graphics,
and resources, such as fonts and color spaces, into a template
completion and styling step where additional styling information is
supplied. The output of this stage is then a document that is bound
to styling and formatting constraints although they have not been

58 Society for Imaging Science and Technology

�executed� yet � stage 2. Typical of this level of binding are
OOXML, ODF and XHTML as shown in Figure 2. They are
sufficiently unbound that the presentation geometry may still be
changed and a complete re-layout and re-formatting of the
document is possible. We might consider this the best definition of
a �revisable� document and the first point in our binding spectrum
where all the required components are bound together with choices
that define the presentation document. Before stage 2 we only have
a collection of raw materials that have not yet been shaped into a
document.

Stage 2 documents are input to a layout and formatting
process that binds the document further to a class of devices,
primarily based upon presentation size and shape, by performing
pagination, layout, hyphenation and justification, figure placement
and all those functions we have come to expect from InDesign,
FrameMaker, Microsoft Word and Open Office; a stage 3
document is the result.

Since one may spend considerable time and effort working at
this stage, the document formats are created such that the work can
be saved in a file (e.g., OOXML, ODF, FM), that can subsequently
be opened and read to restore the application to the point it was at
when the file was saved. These can be characterized as revisable
flowable document formats.

These formatting applications can also move the document
along the binding axis by generating PDF [5], PDF/A, PostScript
[18] or other similarly more-bound representation that captures all
the layout, styling and formatting decisions into a concise
document format.

Common Questions
There are a couple of typical questions that arise when

choosing a document archiving format and we address these now
since we have laid a foundation upon which they can be addressed.

ODF versus PDF/A
A common question is: should I use ODF or PDF/A to

archive my documents? This is one of the easiest to answer
because it depends upon whether one wants to do further editing
and revision of the document (e.g., ODF) or whether one wants a
relatively frozen presentation format (e.g., PDF/A). PDF/A will
guarantee that everyone subsequently viewing or printing that
document will obtain results identical to all others doing the same
thing and they will all see what the original author intended and/or
what the original paper document looked like. If one wants to
archive documents that will be further edited or used as templates
for future work then a revisable format is more advised (e.g.,
ODF). Both stage 2 and stage 3 documents can be searchable.

What about XML documents
Another common question is: shouldn�t we use XML as our

archiving format? In actual fact, that is not a very well formed
question. Although the long name of XML is the Extensible
Markup Language, we choose to think of it as a method for
creating markup languages rather than a markup language itself.
The term markup derives from the early publishing practice of
marking up paper drafts with editing, styling and formatting
comments to guide the creation of subsequent drafts. This moved
into computer markup, primarily on text streams to delineate

logical structure and semantic components within the text (e.g.,
paragraphs, emphasized text, chapter headings, etc.).

Using the XML notation we may create markup languages for
a wide variety of uses. What often comes to mind for many people
when one just says �XML� is an XML markup language for
general documents that includes tags for paragraphs, list of various
kinds, heading, chapters, foreword, preface, and other common
document textual components (e.g., DocBook). However, the
XML notation has been used to markup thousands of other kinds
of documents ranging from business cards, invoices, health
records, vector graphics, and database entries to programming
languages. See [24] for thousands of examples.

Given the diversity of specialized markup languages, we
encourage people to talk about XML for business cards, or XML
for general documents, or XML for hypertext (XHTML) rather
than just use the term �XML.� It needs to be �XML for X.� To
say that one has created an XML Document is akin to saying you
have written some text using the Roman alphabet. It is much more
informative and useful to say that you have used an XML for
technical reports analogous to saying that I have written a poem in
the German language using the Roman alphabet.

Compound Documents
In our case we are most interested in XML used for some

form of a general document. However, we are interested in
compound documents that include pictures, graphics and other
non-textual elements. The XML notation has a heavy bias toward
marking up text, in fact, Unicode [19] encoded text. Only clumsy
provisions are made for representing binary data or anything not
easily or compactly coded using Unicode.

Another property of the XML notation is that it is a stream
notation, making the most sense when read/written sequentially
from start to end. Compound documents by their nature are
composed from a variety of distinct components and it is useful to
maintain their distinctiveness in the overall document format. In
some situations it is also necessary to read one of the components
independently from the whole document or independently from
any of the other components. The nature of XML markup
languages forces a processor to treat it more as one whole, perhaps
reading everything into random access storage, usually into a
Document Object Model or DOM, for more flexible accessing. In
all cases in order to find any particular element in an XML marked
up file one has to scan through the file looking for it.

ZIP Archive Packaging

Because of the limitations of XML markup languages, most
of the compound document formats that use XML actually do so
with the assistance of a file packaging strategy, typically ZIP
archives [20]. Most of us are familiar with ZIP archives as a
compression and packaging technology that can turn a directory
structure, including any files therein, into a single file for more
convenient transport or archiving. What is less well known is that
we do not have to �unpack� the single ZIP file in order to read its
component files. Software has been written that can read any given
component individually from the ZIP file without reading any of
the other components and especially without reading the whole
archive. When writing, ZIP has the option to use lossless
compression (e.g., Flate [21]) on the sub files so it has the

Archiving 2008 Final Program and Proceedings 59

additional benefit of making the overall document files smaller.
The sub files are easily decompressed upon reading. And perhaps
most importantly, the sub files within a ZIP archive can be in any
encoding not just XML so binary data can be kept in its own
efficient binary representation compressed or not. Sub files
encoded in an XML markup language can be compressed to great
advantage.

So the use of ZIP archives provide us with optional
compression to make the overall file size smaller, independent
random access to the components of the document, and the ability
to store special and binary formatted material unchanged.

For these reasons OOXML, ODF and many other �XML�
document types are actually not XML files but ZIP archive files.
Reference to these formats as �XML Document� formats might be
justified because the primary sub files within the archives are using
XML markup languages but it is a misuse of terminology.

The XML Myths
As with many powerful and general technologies, we tend to

attribute to the XML markup notation more positive attributes than
it actually earns, and we tend to use it in cases that are much better
served by other technologies. The marriage of XML markup
languages with an encompassing file packaging technology (e.g.,
ZIP) is a good one and many, if not all, of the XML markup
weaknesses can be compensated for when used in this way.

A reputation that XML markup languages enjoy is that they
are easier to access and process and would likely be more
accessible in the distant future � thus a good archiving technology.
But we challenge the idea that XML files are more human readable
and that it matters for archival purposes.

Since XML is really a notation and toolset for creating unique
and specialized markup languages, the ability to understand any
given markup language is dependent upon the complexity of the
markup language not on the complexity of the XML notation.
Consider Figure 3, which shows a fragment of an XSLT language
program [22]. This is extremely difficult to decipher without an
XSLT manual.

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">
<xsl:for-each select="./body/p">

 <p>
 <style>
 bchar { font-size:"xxlarge";}
 </style>
 <xsl:value-of select="."/>

</p>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

Figure 3. Fragment of an XSLT �program�

Or consider the simple Scalable Vector Graphic (SVG) [23]

file shown in Figure 4. Will these really be easier to understand in
50 years than say PDF/A? In 50 years will we be so limited that
text base information will be easier to digest and understand?

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 12August
1999//EN" "http://www.w3.org/Graphics/SVG/SVG-
19990812.dtd">
<svg xml:space="preserve" width="612" height="792">

<path style="fill-rule:nonzero;"
d="M297,264V64.5H64.5V264H297"/>

<path style="fill-rule:nonzero;fill:#FF0000;"
d="M241.5,320.5c55.228,0,100-44.772,100-100c0-
55.228-44.772-100-100-100c-55.228,0-100,44.772-
100,100c0,55.228,44.772,100,100,100"/>

<path style="fill-rule:nonzero;fill:#FFFF00;"
d="M260.406,204.138l-
97.894,175.38l232.207,0.087L260.406,204.138"/>

</svg>

Figure 4. Sample Scalable Vector Graphics (SVG) file

The complexity of the document format is a function of the

complexity of the document not of the notation in which the
contents and their relationships are recorded. Note: this SVG file
defines a simple drawing of a square (in black), triangle (in
yellow), and circle (in red) and overlapping.

Conclusion
One must first determine the use to which the archived

documents will be put in the future, the intention of the archiving
activity. Then one can chose one or more file formats for archiving
that class of documents. In particular, a choice between preserving
the exact appearance and preserving the full edit-ability of our
document determines whether to use ODF or PDF/A.

We should always consider the particular XML markup
language being used. XML, itself, is really just notations, rules and
tools for defining text markup languages and the complexity for
the files is in the complexity of the markup language not in the
complexity of XML. Just as the Roman alphabet is relatively
simple to understand it is quite different from being able to read
and understand a poem in the German Language written using the
Roman alphabet.

Recent trends to team up XML markup languages with a file
packaging technology like ZIP archives seem to be able to make
the best use of XML markup languages and complement their
weaknesses.

It is also important to remember that the format alone does
not make the archive. There are so many other considerations that
go into a well-defined archival process. The document file format
is just one piece of an archiving strategy.

60 Society for Imaging Science and Technology

References
 [1] TIFF Revision 6.0, Final, Adobe Systems Incorporated, 1992.
 [2] JPEG, ISO/IEC 10918-1:1994, Digital Compression and Coding of

Continuous-Tone Still Images, 1994.
 [3] LZW Compression, Lempel, Ziv, Welch compression,

http://en.wikipedia.org/wiki/LZ77_and_LZ78.
 [4] ITU-T (CCITT) T.6. Facsimile Coding Schemes and Coding Control

Functions for Group 4 Facsimile Apparatus, 2005.
 [5] PDF Reference, Version 1.7, � 5th ed., (ISBN 0-321-30474-8),

Adobe Systems Incorporated (ISO 32000-1:2008).
 [6] ISO 19005-1:2005, Document management -- Electronic document

file format for long-term preservation -- Part 1: Use of PDF 1.4
(PDF/A-1), 2005.

 [7] RFC 2083, PNG (Portable Network Graphics) Specification, Version
1.0, 1997.

 [8] JBIG2, ISO/IEC 11544:1993/Cor 2:2001, Information technology�
Coded representation of picture and audio information�Progressive
bi-level image compression, 1993.

 [9] ISO/IEC 15444-2:2004, Information Technology�JPEG 2000 Image
Coding System: Extensions.

[10] Adobe Capture 3, Adobe Systems Incorporated, 2007.
[11] OOXML, Open Office XML, ISO/IEC 29500, 2008.
[12] ODF, ISO/IEC 26300:2006 Open Document Format for Office

Applications, 2005.
[13] EPS, Encapsulated PostScript, Adobe Systems Incorporated, 1992.
[14] Windows Metafile Format (WMF), Microsoft Corporation, 2007.
[15] Extensible Markup Language (XML) 1.1, World Wide Web

Consortium (W3C), 1998.
[16] DocBook, DocBook.org, http://www.docbook.org/, 2007.
[17] XHTML 1.0: The Extensible HyperText Markup Language,

http://www.w3.org/TR/xhtml1/, 2000.
[18] PostScript Language Reference, Third Edition, Addison-Wesley,

Reading, MA, 1999.
[19] The Unicode Standard, Version 4.0, Addison-Wesley, Boston, MA,

Unicode Consortium, 2003.
[20] ZIP Archives, PKWare, http://www.pkware.com/documents/

casestudies/APPNOTE.TXT, 2007.
[21] RFC 1951, DEFLATE Compressed Data Format Specification,

Version 1.3, Internet Engineering Task Force (IETF), 1996.
[22] Extensible Stylesheet Language (XSL) 1.0,

http://www.w3.org/TR/xsl/.
[23] Scalable Vector Graphics (SVG) 1.0 Specification,

http://www.w3.org/TR/2001/REC-SVG-20010904/.
[24] XML Applications and Initiatives,

http://xml.coverpages.org/xmlApplications.html.

Author Biographies
James C. King received his Ph.D. from Carnegie Mellon University

(1969). Since then he has held three jobs, one with IBM Research at the T.
J. Watson Research Center, the second with IBM at the Almaden Research
Center and the third with Adobe Systems Incorporated where he is now a
Senior Principal Scientist and PDF Architect. He is a Past President of the
IS&T and a member of ACM and IEEE-CS.

Leonard Rosenthol serves as the Technical Standards Evangelist
focusing on PDF standardization for Adobe Systems having been involved
with PDF technology for more than 10 years. Prior to joining Adobe,
Leonard worked as the Director of Software Development for Appligent,
and the Chief Innovation Officer for Apago, while also running the
successful consulting business of PDF Sages. Before becoming involved in
PDF, Leonard was the Director of Advanced Technology for Aladdin
Systems and responsible for the development of the StuffIt line of products.

Diana C. Helander is currently the Group Manager for Worldwide
Standards for Adobe Systems. Her team represents Adobe in global
standards organizations and industry associations responsible for setting
standards, including PDF-based and XML data standards for government
as well as the financial services, manufacturing, and life sciences
industries. Ms. Helander was previously responsible for managing and
growing Adobe Acrobat�s presence in the manufacturing and AEC
(building) markets. Ms. Helander graduated from Amherst College and is a
member of the Board of Trustees of St. Timothy�s School.

Archiving 2008 Final Program and Proceedings 61

