

PAWN: a Policy-Driven Software Environment for
Implementing Producer-Archive Interactions in Support of Long
Term Digital Preservation
Mike Smorul, Mike McGann, Joseph JaJa; Institute for Advanced Computer Studies, University of Maryland, College Park

Abstract
The ingestion process of digital objects into a long term

archive constitutes a critical phase of the overall archiving process
during which the object’s content, metadata, context, and
provenance have to be assembled correctly. This task becomes
quite complicated when there are many independent producers
involved, each with a possibly different arrangement with the
archive. In this paper, we describe the underpinnings of a novel
software environment for capturing the interactions between
distributed producers and an archive which ensures the inclusion
of all the necessary elements to preserve the digital information. A
prototype system called PAWN (Producer – Archive Workflow
Network) provides a flexible and scalable platform for creating
and securely ingesting digital information into a remote archive
while allowing flexible interactions between the producer and the
archive. PAWN is policy – driven with built-in core functions and
policies that can be customized to address ingestion requirements
for any archiving community. The environment is platform –
independent and is based on open standards and web technologies,
and is designed to operate across multiple administrative domains
using strong security mechanisms. The latest PAWN release
version .5 is currently under testing by a number of projects that
involve realistic environments with significant amounts of digital
data to be preserved.

1. Introduction
A large portion of the scientific, business, cultural, and

government digital information being created today needs to be
archived and preserved for future use of periods ranging from a
few years to decades and sometimes centuries. Since the mid
nineties, the issue of long-term preservation of digital information
has received considerable attention by major archiving
communities, library organizations, government agencies,
scientific communities, and individual researchers. These efforts
(such as [1,2,3]) have identified major challenges regarding the
technology infrastructure needed to achieve long-term preservation
of and access to digital information. These challenges include the
handling of technology evolution in computer hardware and
media, systems and applications software; the maintenance of the
authenticity and integrity of the data throughout its lifetime; and
risk management and disaster recovery due to technology
degradation and failure, natural disasters, operational errors, and
malicious corruption of the data. Clearly, the long-term
preservation of digital information is a process that must begin
before the data is ingested into an archival system and that must
remain continuously active throughout the lifecycle management
of the digital objects.

In this paper, we describe PAWN – Producer Archive
Workflow Network – a software system that provides a flexible
and scalable platform for creating and reliably ingesting digital
information into a remote archive by a wide variety of producers
while allowing the customization of the interactions between each
producer and the archive. PAWN builds on the previous version
[4] by offering a considerably more flexible environment including
policy driven management of the ingestion process. More
specifically, PAWN presents:

• A flexible and robust environment for defining and

implementing interaction policies between producers and
archives.

• A secure, reliable, and scalable ingestion from
distributed producers into an archive, which ensures the
inclusion of all the necessary information to preserve
each digital object.

• Built-in core functions and policies that can be
customized to address ingestion pipeline requirements
for any archiving community.

• A platform-independent system based on open standards
and web technologies, which is designed to operate
across multiple administrative domains using, in its
current version, PKI and SAML assertions.

PAWN enables the interactions between the producers and

the archive within a secure, reliable, and scalable environment.
The term producer [5,6] designates the persons or systems which
supply the archive with the information to be preserved. Note that
the archive itself can either be centralized or distributed. In fact,
our PAWN testing has been performed on the pilot persistent
archive consisting of a federated data grid that includes storage
systems at the San Diego Supercomputer Center, the National
Archives, and the University of Maryland.

PAWN encapsulates properties of content, structure, context,
and presentation within a digital object architecture making use of
METS (Metadata Encoding and Transmission Standard) to define
the ingest package [7,8]. We adopt the framework developed by
the Open Archival Information Systems (OAIS) [5] focusing on
the Producer – Archive interactions [6], in which producers
prepare and transfer the information to be preserved to an archive,
which is responsible for managing the digital information and for
providing an interface to the consumers (data users). For each
stage, OAIS provides a detailed model of the information, called
respectively the Submission Information Package (SIP), the
Archival Information Package (AIP), and the Dissemination
Information Package (DIP).

Figure 1: Overall PAWN Environment

Most relevant to PAWN is the SIP that consists of the

following components (see [5] for more details):

• First is the Content Information (CI), which is divided into
two parts.

o Content Data Object, consisting of the actual
bitstream to be preserved.

o Representation Information, which includes file
format, endian issues, and encoding format.
Consider for example the case of image files. The
corresponding information would be given about
expected header formats, location of internal
checksums and what utilities can be used to verify
the file can be loaded. Enough information should
be given to ensure that the archive would be able to
process the bitstream.

• Second is Preservation Description Information (PDI) that
contains four parts.

o Chain of custody.
o Context in relation to other Information Packages
o Reference information unique to the bitstream (eg,

ISBN, global identifier, etc)
o Fixity information required to ensure bitstream

integrity (eg, hashes, or checksums).
• Packaging Information describes the relationship between CI

and PDI. This describes the physical location of the Content
Information and corresponding PDI.

• Descriptive Information used for data discovery. This user-
defined metadata will be supplied during the ingestion of the
bitstream at the producer. This includes descriptions of the
bitstream, authorship and other elements (e.g. Dublin Core).
PAWN assembles a SIP and uses METS as the default

method to represent the various elements of the SIP. However

PAWN can also publish into other packaging formats such as
XFDU [9] that was developed for handling scientific data.

In the next section, we present the core concepts underlying
the design and architecture of PAWN, while Section 3 is devoted
to an overview of the PAWN architecture and its corresponding
software components.

2. Basic Concepts
PAWN supports an environment in which many distributed

producers independently of each other manage their ingestion
strategy, as well as, independently assemble and transfer their data
to the archive. In fact, PAWN provides a common infrastructure
for both producers and the archive to manage and monitor the
overall ingestion process. As articulated in [6], it is expected that
negotiations between the producer and the archive about the details
of what needs to be preserved, types of data objects, transfer
conditions, user access policy, and delivery schedule must take
place prior to any data transfer from a producer to the archive.
These negotiations should produce a clear understanding of the
elements necessary to assemble the corresponding SIP for each
item to be preserved, referred to as a submission agreement. In
particular, information related to data representation, context,
chain of custody (including date of transfer), preservation and
access has to be agreed upon prior to ingestion. PAWN
encapsulates such information into a document called a record
schedule, which gets embedded within the PAWN environment as
we will see later.

In order to manage distributed ingestion by independent
producers, the archive organizes the producers into some kind of a
global structure (typically a hierarchy), which provides an overall
context into which transferred data can be linked to. Using this
structure, we further group the producers into domains, each
domain to be viewed as a single logical entity by the archive.
Within each domain, we attach an overall hierarchy that broadly
lists all the types of data produced by this domain; a record
schedule as defined above; and customized subsets of the record
schedule, called record sets, which serve as submission templates
for producers within this domain. In particular, a record set is a
convenient grouping of items from the record schedule and serves
as a template to be filled by an end-user.

In summary, each producer operates within a domain and can
create SIP packages and submit them directly to the archive using
the record sets associated with his/her account. Our framework
allows a separate data organization per domain, and moreover the
final destination of the data at the archive may also be assigned on
a per domain basis.

We next provide more details about domains, policy
management and role assignment, creation and management of SIP
packages, and the security infrastructure, which constitute the
underpinnings of the PAWN distributed environment.

Domains and their Structures
A domain in PAWN corresponds to a group of individual

producers that share a common agreement with the archive.
Domains will typically be established along administrative
boundaries. Consider for example the process of setting up an
archive for an academic institution, structured administratively
around the Offices of the President and the Vice Presidents, and
the Colleges within which all the departments and centers operate.

Various members of these administrative units constitute potential
producers of different types of data to be archived for various
lengths of time. A possible organization of the producers consists
of a domain for the Offices of the President and Vice Presidents,
and a domain for each of the colleges in the institution. A record
schedule for a college domain for example will include the
preservation information and actions required for each type of data
produced by the college (including all the units within the college)
such as administrative, financial, publication reports, and so on.
PAWN enables the customization of the record schedule to each
individual producer within a domain (e.g. a faculty member, an
administrator, a member of the administrative or technical staff) so
that only the relevant pieces of the record schedule will be seen by
that producer. In fact, PAWN presents each producer with a list of
relevant record sets (customized from the record schedule) that she
must fill. For example, a faculty member will be presented with
templates corresponding to technical reports, conference/journal
papers, presentations or posters, which need to be filled, after
which the data can be attached and transferred to the archive.
PAWN will automatically extract all the necessary items for the
SIP, assemble and transfer the corresponding SIP to the archive.
Figure 2 illustrates a possible organization of the domains
associated with an academic institution.

Figure 2 Possible Organization of Domains Associated with an Archive for an
Academic Institution

Record sets provide a convenient packaging of contextual
information for creating a SIP, and considerably simplify package
creation by presenting the end-user with a simple template to fill.
A Record set typically contains a descriptive name, list of allowed
users, a mapping into the record schedule, and a note regarding the
set’s use. The mapping from a record schedule into a record set
also allows managers to limit what types of documents an end-user
may ingest.

Policy Management and Roles in PAWN
Given that the interactions between the producer and the

archive can vary significantly depending on the communities and
organizations involved, PAWN provides a flexible environment to
enable the customization of the ingestion process to capture a wide

variety of possible interactions between the producer and the
archive. This is done through the introduction of roles. Each
account in PAWN is assigned a role. A role is defined by a group
of actions allowed. These actions range from package management
(view, modify, delete items) to operations that are used for account
management, record set manipulation and record set creation.
Roles are configurable and can be created as needed depending on
the relationship between the producer and archive.

By default, there are four preconfigured roles in PAWN.
These are a global administrator (GA), records manager (RM),
archive manager (AM), and producer (P). The global
administrator is able to perform all actions including the creation,
modification, and deletion of domains, and setting up manager
accounts. The records manager is expected to sit within the data
producers administrative structure and is able to create record sets,
end-user accounts, and assist in creating and editing packages. The
archive manager can assist in managing record organization, edit
submitted packages, move items from packages into long term
storage, and remove items from PAWN after processing. The last
role is an end-user (data producer) who creates and submits
packages to PAWN for preservation.

Creation and Management of Packages
Information in PAWN consists of producer submitted

packages. A package contains data and metadata that a producer
wishes to archive. Combined with additional contextual
information extracted by PAWN, a package contains all necessary
elements to assemble a SIP. In fact, a package is constructed by
attaching data to the categories of a record set. This data is
organized into a hierarchy rooted at the record set category with
data and metadata attached at various points in the hierarchy
defined by the record set.

Within a package, the content information (as defined by
OAIS) is provided by the physical bits attached and the
representation information is supplied by the client as a mime type.
A verification service such as the format verification service
available through FOCUS [10] can be used at the archive’s staging
area to validate the representation information.

PAWN provides for Preservation Description Information (as
defined by OAIS) as follows. The chain of custody is recorded in
two places. The package tracks the original location of data on a
client’s computer and the identifier and location of the data on a
PAWN receiving server. Second, an event log described below
tracks all actions and final destination of data as it moves though
PAWN. Context of a package is provided by the record set
structure. The record set hierarchy is used to show the location and
use of packages within a larger organization. PAWN and its
archival resources track reference information for all data that
moves through PAWN using internal identifiers. Fixity
information is provided by clients in the form of SHA-256 digests
on all items. In addition, PAWN will check all data and metadata
for consistency.

Packaging information in PAWN is described by using
METS files to track data objects and all associated system and
administrative metadata. The METS files record the hierarchical
structure of the package and where any descriptive metadata may
be associated in that hierarchy.

Packages in PAWN follow a simple lifecycle from creation
through the final stage consisting of publication into the archive

and removal from PAWN. All actions, except for details of the
initial package creation, are logged. Once a package leaves PAWN
and its content removed, the log of the package will remain.

The typical workflow for items in PAWN is the following:

1. Producer selects a record set to use as a package template.
2. PAWN builds a package locally and transfers it to a receiving

server. A package does not have to be compiled at once, but
can be appended and modified later as necessary.

3. A producer may lock the package to prevent further
modification and signal that the submission is complete.

4. A manager at either the producer or the archive may review
the package and optionally reject submitted items. If an item
is rejected, the package can be unlocked, modified, and
resubmitted by the producer.

5. Submitted and locked packages that have not been rejected
can be passed to the archive. Final destination and any errors
from the archive are logged.

6. After archiving, a manager at the archive can review the
package log and remove the package from PAWN if it is no
longer needed. The package log remains.

The log for a package in PAWN tracks all changes after

initial creation. It records the type of action, who performed the
action, and any errors that may have occurred. In addition, the log
also tracks specific items that may have been affected by the
action.

The following package-level events are logged:

• Lock – Package is locked and no further modification is
allowed.

• Unlock – Package is made available for modification.
• Finish / Remove – Entire package is removed and log file is

stored.

The following events occur to individual items, where the

affected items are also logged:

• Reject – Individual items are rejected.
• Accept – Items are no longer rejected and may be archived.
• Archive – Items are pushed to an archival resource. Final

destination is logged.
• Add / Remove – Items are added or removed from a package.

Security Model
Responsibility for security in PAWN is distributed between

the archive receiving components and management server(s). This
requires that a certain level of trust exist between components on
the producer side, and components on the archive side. The trust
exists only between producer and archive, not between various
producer installations.

From a trust perspective, there are three types of calls that are
made in PAWN. First are producer only calls where a locally
authenticated client communicates with its management server.
Second are package management calls where a producer-
authenticated client needs to access package data stored at an
archive receiving server. Third are management calls between
components at the archive. The package management calls require
a trust relationship between the producer and archive.

We use WS-Security with Security Assertion Markup
Languge(SAML)[11] to provide the necessary security for calls
that cross administrative boundaries. The Apache WSS4J project
provides the physical mechanism for signing web service calls.
The following steps show how trust is established between a
producer and the archive.

1. Producer management server gets a signed key pair that will

be used to create SAML assertions.
2. A copy of the producer’s public key and SAML namespace is

transferred to archive. (Pre-existing trust relationship, locked
briefcase, etc.)

3. All archive components receive a copy of the key and
namespace

4. Client authenticates to its local management server and
presents a public key.

5. Producer inspects supplied key, ensures it’s signed by a
recognized CA and creates a signed SAML assertion with role
information and client’s public key embedded. The assertion
is returned to the client.

6. Client inspects the resulting assertion to ensure that it was
signed by its producer.

7. Client creates a web service call, signs it with its private key
and embeds the SAML assertion in the call header.

8. Archive service receives assertion, checks to ensure that call
signature matches embedded key and checks assertion
signature against local copy of producer’s key and
namespace.

9. Embedded role information is used to finally determine if

<Event Date="2006-05-31T11:06:51.133-04:00" Domain="umiacs"
Issuer="http://umiacs.umd.edu" User="umiacs:toaster">

<Reject/>
<ItemList ManifestId="urn:pawn:mets-id.1148670951996293000"
ManifestIncluded="false" Name="backgrounds" Obligation="z1">

<Parents>urn:pawn:mets-id.1148670947787630000</Parents>
<Item ID="urn:pawn:file-id.xccfcf684cec05554516b9a2b6b14c2a3"

Name="utopy.jpg"/>

</ItemList>
</Event>

Figure 3 Sample log example

authorized to use call.

3. PAWN Architecture and Main Software
Components

The PAWN environment is built upon four major software
components: management server, client, scheduler, and receiving
server. Briefly, the management server builds and tracks accounts,
record schedules, record sets, package lists, and provides security
mechanisms for the domains. The client is used to ingest data,
manage users and data organization, and to trigger transfers into
the archive. The scheduler allocates resources on the receiving
servers and manages all the security services of the receiving
servers. The receiving server stores and manages data transferred
from clients, including the invocation of validation services on the
data received.

These components are shown in Figure 4. It should be noted
that there may be multiple sets of management servers and clients
connecting to one scheduler and a set of receiving servers.

Figure 4: PAWN Components

Management Server
The PAWN management server manages accounts and

domains. In PAWN, there may be multiple management servers
whose clients submit data to resources sitting at an archive.
Management servers are independent, relying only on the archive.
A management server does not share accounts and record
information with other management servers.

When a client connects to PAWN, it authenticates to a
management server. The server determines what permission the
client has been allocated and returns it to the client. The client uses
these permissions to present the appropriate interface to the end
user.

The management server tracks all packages that have been
submitted to the archive through any of the domains under its
management. This includes packages that may have been removed
from PAWN as well. The management server tracks the current
state of a package, whether it is locked, unlocked, or has been
removed. When a package is removed from PAWN, a copy of its
log file is stored on the management server to provide a record of
what actions may have occurred on items in the package.

In a security context, each management server is responsible
for issuing SAML assertions for all of its clients. Clients send a
request for a SAML token during login and upon successful login,

and presentation of a valid public key, the server will issue the
assertion. The issued assertions are signed with a key pair that is
trusted by the archive. Each issued assertion contains the list of
roles that a particular client is allowed to perform.

Scheduler
The scheduler in PAWN provides a gateway into archive

based services. It serves two roles. First it allocates resources on
receiving servers for client packages and second it acts as a
repository for receiving server configurations. The scheduling
aspect is handled using the Condor classad[12] system and an
interface is provided to all configurations on the scheduler.

Scheduling in PAWN is performed using the condor classad
library. This library helps create and evaluate classads. Classads
are mappings from attribute names to expressions. There is a
protocol for evaluating one classad with respect to another in order
to match compatible classads[12]. In PAWN, classads are
constructed to represent client requirements and receiving server
resources. The classads are then evaluated to find compatible
matches, and in the case of multiple matches the most desirable
match. The classads are based primarily on required disk space of
client packages and available receiving server space.

Periodically, each receiving server in PAWN will publish a
classad to the scheduler describing currently used and available
resources. The receiving server will also specify requirements for
accepting client submissions. Any receiving server that fails to
publish a classad within a specified time is removed from the list
of available servers.

When a client requests a resource, its request is transformed
into a classad that specifies information about the current client
and the requirements are set to the required space. This request
flow is shown in Figure 5.

The requirements from both parties can be expanded in the
future. For example, a client may wish to request receiving servers
that contain specific archival services, or a receiving server may
wish to restrict access to clients from a given domain.

Figure 5: Scheduler Workflow

Receiving Server
A receiving server in PAWN provides storage space for

packages that are under the control of PAWN. It enforces access
control on items in a package, logs actions that occur to a package,
and handles publishing packages into archival resources.

A receiving server consists of one or more storage pools that
are used to house packages. The states of these pools are

periodically published to the scheduler in the form of a classad.
These classads allow the scheduler to place new packages in a
particular storage pool on a receiver.

Each package in pool contains its own set of access controls.
These access controls allow packages from various domains and
management server to be stored in the same pool. Packages also
store the state of all contained items and limit actions depending
on the state of an item. For example, a package will not allow an
archive attempt on an item that has been rejected.

When packages are removed from the receiving server, all
items regarding the package are removed, and a copy of the
package log is sent to the management server.

Receiving servers also contain the necessary software to
transfer packages to a long term digital archive. PAWN provides a
simple API that allows 3rd party developers to create gateways into
their archive. It is recognized that an archive may have multiple
repositories to store various types of data. As such, PAWN allows
any number of gateways to be defined on a per-domain basis. This
allows differing policy decisions regarding the final placement of
objects within PAWN to be represented.

Client Interface
The PAWN client provides a workbench for accessing most

functionality in PAWN. It is used to configure domains, accounts,
record organizational structures and manage packages.

The client provides a mechanism for developing custom
package builders. PAWN provides a simple data model that
custom package builders can use to create packages. The package
builder supplies an interface to the end user for package creation
and later modification.

4. Conclusion
We have presented an overview of the basic concepts and

architecture for the PAWN environment. We have argued that
PAWN presents an extremely flexible environment to capture a
wide variety of possible interactions between distributed producers
and an archive. Moreover, the design of PAWN paid from the
beginning a particular attention to security, reliability, and
scalability using open standards and web technologies.

5. Acknowledgements
This work was supported in part by the National Archives and

Records Administration, ERA Program through the National
Science Foundation.

6. References
[1] Trusted Digital Repositories: Attributes and Responsibilities, Report

by the Research Libraries Group, Mountain View, CA, May 2002.
http://www.rlg.org

[2] It’s About Time: Research and Challenges in Digital Archiving and
Long-Term Preservation, Report on Workshop on Research

Challenges in Digital Archiving: Toward a National Infrastructure for
Long-Term Preservation of Digital Information, 2002.
http://www.loc.gov/

[3] The National Archives and Records Administration: Center for
Electronic Records. http://www.nara.gov/nara/electronic/

[4] PAWN: Producer – Archive Workflow Network in Support of Digital
Preservation, M. Smorul, J. JaJa, Y. Wang, and F. McCall, UMIACS
Technical Report, UMIACS-TR-2004-49, University of Maryland,
College Park, 2004.

[5] Reference Model for an Open Archival Information System (OAIS),
CCSDS 650.0-B-1, Blue Book, Issue 1, January 2002 [Equivalent to
ISO 14721:2002].

[6] Producer – Archive Interface Methodology: Abstract Standard,
Consultative Committee for Space Data Systems, CCSDS-651.0-R-1,
Red Book, December 2002.

[7] METS – Metadata Encoding and Transmission Standard
http://www.loc.gov/standards/mets/

[8] METS Profile 1.0 Requirements, J. McDonough.
http://www.loc.gov/standards/mets/profile_docs/MET
S.profile.requirements.rtf, June 2003.

[9] XML Formatted Data Unit – XFDU:
http://sindbad.gsfc.nasa.gov/xfdu/

[10] Using Scalable and Secure Web Technologies to Design a Global
Digital Format Registry Prototype: Architecture, Implementation, and
Testing, M. Geremew, S. Song, and J. JaJa, Proceedings of Archiving
2006, 92-95, May 23-26, 2006, Ottawa, Canada.

[11] Web Services Security (WS-Security) and Security Assertion Markup
Language (SAML): http://www.oasis-open.org/specs/

[12] The Condor Project: http://www.cs.wisc.edu/condor/

7. Author Biography
Mike Smorul received his BS in computer science from the University

of Maryland. He has a background in network and high performance
computing system administration. More recently, he has worked as lead
programmer for the UMIACS ADAPT project. Current project include
developing a modular set of tools to aid in ingestion and long term digital
stewardship of digital objects.

Joseph JaJa currently holds the position of Professor of Electrical and
Computer Engineering with a joint appointment at the Institute for
Advanced Computer Studies at the University of Maryland, College Park.
Dr. JaJa received his Ph.D. degree in Applied Mathematics from Harvard
University and has since published extensively in a number of areas
including parallel and distributed computing, combinatorial optimization,
algebraic complexity ,VLSI architectures, and data-intensive computing.
His current research interests are in parallel algorithms, digital
preservation, and scientific visualization of large scale data. Dr. JaJa has
received numerous awards including the IEEE Fellow Award in 1996, the
1997 R&D Award for the development of software for tuning parallel
programs, and the ACM Fellow Award in 2000. He served on several
editorial boards, and is currently serving as a subject area editor for the
Journal of Parallel and Distributed Computing and as an editor for the
International Journal of Foundations of Computer Science

