

Technical Issues in Digitization of Large Online Collections of
Phonograph Records
Beinan Li, Catherine Lai, and Ichiro Fujinaga; Music Technology Area, Schulich School of Music, McGill University; Montreal,
Quebec/Canada

Abstract

This paper discusses the technical issues involved in
digitization of large online collections of LPs and presents the
techniques to perform automatic track separation of unsegmented
audio streams, the approaches taken to automate metadata
extraction from scanned record labels, and the tools used to
automatically create derivatives of audio and image files in various
optimized formats.

Introduction
Long-playing phonograph records (LPs) were one of the

major analogue recording formats distributed commercially
throughout most of the twentieth century. Although most of these
historic sound recordings have long shelf lives, compelling reasons
have led to a shift toward digital preservation. Digitization is time
consuming and expensive. Many steps involved in the digital
conversion, such as track separation and metadata extraction,
require much human intervention. Due to the enormous quantity of
existing recordings and the time required to digitize them properly,
tools to automate the digitization process so as to reduce the cost
of digitizing very large numbers of LPs are highly desirable.

This paper discusses the technical issues involved in
digitization of large online collections of LPs. The techniques to
perform automatic track separation of unsegmented audio streams,
the approaches taken to automate metadata extraction from
scanned images of record labels, and the tools used to automate the
creation of derivative audio and image files in various optimized
formats are subsequently discussed.

Automatic Track Segmentation
The analog-to-digital conversion of an LP results in a

continuous audio stream containing unseparated musical pieces.
For the distribution of music, however, it is convenient to have
separated musical tracks. Segmenting tracks manually is costly and
can be avoided by using an automatic track segmentation system.
Although there are software tools such as Gramofile [1], LP
Ripper [2], and Rip Vinvyl [3] that perform track segmentation,
they are primarily designed for popular music. They rely on simple
heuristics that are inadequate to distinguish between soft musical
passages and noisy inter-track sections typical of many old
classical recordings.

Related works
Automatic audio segmentation and annotation have gained

much attention from researchers in various multimedia-related
domains including music information retrieval. Tzanetakis [4]
provided an overview of audio segmentation in 2002 while Zhang
and Kuo [5] used audio portion of a video signal to facilitate video
classification and retrieval.

The most popular approach to automatic audio segmentation
is to use machine learning methods and short-time audio feature
extraction. A number of techniques have been reported. Support
Vector Machine was used for classification of silence, speech, pure
speech, music, and environmental sounds [6] as well as
segmentation of concert recordings [7]. Segmentation between
speakers in multi-speaker environments was achieved using
optimal state sequence changes between speakers by Hidden
Markov Model [8]. Moreover, the k-nearest neighbor and
quadratic Gaussian classifier were used to discriminate between
speech and music [9].

ACE-based machine learning approach
The main goal of track segmentation is to locate the

boundaries between a music track and its adjacent passages of
inter-track silences and then separate them accordingly. To locate
the boundaries, we treat the track segmentation task as a binary
classification problem. Two types of classes are used for
classification: music and inter-track silence. We use jAudio’s
audio feature extraction library [10] and the ACE framework [11]
to perform supervised learning.

jAudio is an open-source audio feature extraction tool written
in Java. It provides a convenient way of selecting various audio
features and configuring analytical parameters such as sampling
rate and window length for classifications. Currently 27 distinct
features are implemented.

ACE is an open-source framework that provides a convenient
way to experiment with various combinations of audio features
and classification methodologies. Given a set of feature vectors,
ACE experiments with a variety of classifiers, classifier
parameters, classifier ensembles, and dimensionality reduction
techniques in order to arrive at a good configuration for the
problem at hand. The standardized XML format is used as a
communication protocol for jAudio and ACE. For example, ACE
reads the feature definition and feature values from the XML files
generated by jAudio’s feature extraction process and outputs the
classification result in another XML file.

Our track segmentation scheme contains the following steps:
1) Feature extraction using jAudio.
2) Training the classification model with ACE.
3) Classification on the test dataset.
4) Post-processing.

Feature extraction
Feature extraction is performed for both the training and test

datasets. An input audio file with unseparated musical tracks is
first downsampled to 16kHz to reduce signal variability. A sliding-
window based feature extraction is then performed using 1-second
windows with no overlap. Although many different combinations

of features were tested, it turned out that the root mean square
(RMS) alone, a feature also adopted in Gramofile, performed as
well as any other features. The feature definition and extracted
feature values including the feature types and the analytical
parameters are stored in XML files for the following steps.

Training the classification model
During the training phase, an N-1 (N is the total number of

training audio files) fold cross-validation is performed with ACE
on the features of the training dataset to minimize overfitting.
Ground-truth data is gathered by manually labeling the training
data using a convenient graphical audio editor developed by the
authors as an extension to the open-source software Audacity [12].
ACE is then used to compare various classification schemes and
determine the most suitable approach. In our experiment, the
selected optimized classifier was the C4.5 Decision Trees with
bagging. The classification model is stored for the test phase.

Post-processing
The classification result from the test phase is an array of

class labels, m for music and s for silence, assigned to each of the
1-second window in the audio stream. We often found that a
continuous music track or an inter-track silence passage is
contaminated with interleaving m’s and s’s due to sporadic
misclassifications. A rule-based post-processing was therefore
designed to correct these errors.

Previous methods, such as in [13], use a fixed-window-length
sliding-window analysis to perform a smoothing process that re-
labels segments according to the majority category in a window.
This smoothing process often fails when only a portion of an
interleaving structure is captured by the window.

Our strategies involve variable-sized window for smoothing
and the use of high-level heuristics. For the smoothing, we
introduce the concept of a “chunk,” which is a group of
consecutive windows that share the same label. The music and
inter-track silence chunks are labeled M and S, respectively; thus,
for every M there will be two adjacent S’s and vise versa. We then
assign a level of confidence to each chunk. Chunks that were
classified with a high confidence level are taken as boundaries and
a smoothing function is applied to the chunks enclosed by the
boundaries.

Our heuristics include:
1) The chunks at the beginning and end of an album are usually

S.
2) If an M is overly short, the classification of either the chunk

itself or an adjacent chunk labeled S is likely to be wrong.
3) If a chunk longer than 3 seconds is labeled as S or a chunk

longer than 10 seconds is labeled as M, the classification is
likely to be correct. Also, S chunks should be much shorter
than M chunks in most music albums.

Based on the heuristics 1) and 2), a special filtering is applied to
correct any mislabeled chunks at the very beginning and end of
audio streams. By using 2) and 3) and by comparing the relative
size of neighboring chunks, incorrectly assigned small chunks are
relabeled by smoothing until correct total number of tracks are
obtained.

Evaluation method
The error measurement used for the regular window-wise

classification, i.e., the percentage of misclassified segments, is not
suitable for the track segmentation task evaluation. For example, if
a 1-second m in the middle of a music track is mislabeled as s, then
the resulting number of tracks will be wrong even though the
classification accuracy would be greater than 99%. Therefore, a
special error measurement was developed. The classification errors
are categorized into three types in terms of their influences on the
track segmentation results. Given a ground-truth data segment
“mmsssmm,”
1) Error Type I is defined as any mislabels that split a complete

music track into segmented pieces that lead to a wrong
number of tracks. This error is computed by:

1
e TF TT (TF TT)/= − + (1)

where TF denotes the number of tracks found and TT denotes
the correct number of tracks. An example of this type of error
is “mmsmsmm.”

2) Error Type II is defined as any mislabels that mistakenly
mark m for s at transitions. This has a lesser negative impact
on the segmentation result than Type I. However, this could
still affect the position at which the actual track segmentation
is executed. This error is computed by the ratio of the
number of mislabeled windows to the total number of
windows. An example of this type of error is “msssssm.”

3) Error Type III is any mislabels that mistakenly mark s for m
at transitions. This error has the least impact on the result.
The error is computed by the ratio of the number of
mislabeled windows to the total number of windows. An
example of this type of error is “mmmsmmm.”

Finally, the error function of the track segmentation algorithm is
the weighted sum of all three types of errors in the output:

1 1 2 2 3 3
e w e w e w e+ += ,

,1 (0,1),w w w w 1i
i

i i i+> ∈ =∑ (2)

where w i is the assigned weight for the Error Type i.

Experimental results
Our approach to automatic track segmentation was evaluated

on digitized recordings of the David Edelberg’s Handel LP
collection [14]. Five digitized 20-minute classical LP albums were
used as training dataset and six other albums from the same
collection were used as the test dataset. The music passages
included songs with piano, choir, solo instrumental, and orchestral
music. The inter-track silence passages of these recordings are
usually noisy.

For our dataset, the optimized classification scheme selected
by ACE among a total 36 different schemes was the C4.5 Decision
Trees with bagging. Table 1 shows the segmentation accuracies
measured before and after post-processing compared with those of
Gramofile using our error measurement. The error weights used
were 0.6, 0.35 and 0.05, respectively. Note that Gramofile failed to
identify any tracks in Album 4.

Table 1. Comparison of track segmentation accuracies between
our algorithm (before and after post-processing) and Gramofile.

 Before
post-proc (%)

After
post-proc (%)

Gramofile
(%)

Album 1 82.33 99.99 99.84
Album 2 72.71 99.99 99.77
Album 3 89.97 99.98 99.93
Album 4 69.98 99.98 35.71
Album 5 64.82 99.99 92.20
Album 6 76.87 99.97 99.89

Automatic metadata extraction from LP record
labels

Metadata extraction is another time-consuming step of
digitization and we attempted to automate the metadata extraction
using document analysis and OCR techniques. As shown in Figure
1, a typical LP record label contains horizontal text lines,
decorative graphical glyphs, and curved text strings. Our automatic
metadata extraction aims to segment the text glyphs from the
image and then extract the metadata by using OCR.

Text segmentation
 As an unprecedented attempt towards record label
segmentation, our approach is rule-based. The algorithm includes
the following six steps:
1) Pre-processing
2) Binarization and connected component (CC) analysis
3) Removal of non-text glyphs
4) Separation of horizontal strings and curved strings
5) Separation of the lines of multi-line curved strings
6) Straightening of the curved strings
The algorithm is developed based on our open-source document
analysis tool, GAMERA [15].

Pre-processing
A label image is first rotated so that the horizontal lines of

text are truly horizontal. Because the scanned high-resolution label
images are often in multicolor, a direct binarization applied on
images tends to generate many broken text strokes due to the color
diffusion present in the original labels. This would cause the CC
analysis on the binarized image to fail; therefore, a color
quantization using K-means clustering is performed to minimize
color diffusion.

Removal of the non-text glyphs
The CCs resulted from the CC analysis comprise of not only

text objects but also of graphical glyphs and noise. To eliminate as
many non-text CCs as possible, a filter based on the size and
location of CCs is used to eliminate obvious non-text glyphs and
noise. We remove overly large and small CCs, namely large
graphical glyphs and noise. The CCs that belong to the center hole
of the label are also removed. The other non-text CCs are
gradually removed in subsequent steps.

Figure 1. An LP record label with curved strings.

Figure 2. An LP record label with multi-line curved strings.

Separation of horizontal strings and curved strings
Several attempts were made to separate the curved strings

from the non-curved strings. The first approach was to extract
horizontally aligned CCs row by row and use the fact that curved
strings are usually located near the rim of the disc label. However,
this approach was inadequate and failed to isolate the characters
around the rim when the curved characters are very close to
horizontal text lines or when multi-line curved strings are present
(Figure 2). Another approach was based on the observation that the

curved texts are usually arranged in concentric circles with the
center being the label center. This approach, however, was also
problematic because it is difficult to distinguish between a circle
structure extracted from a real curved string and one from a non-
curved text block with densely aligned rows.

From the experience that human tends to group things that are
visually close together, we devised another discrimination strategy
based on grouping by local continuity. A series of rules are used to
assist the grouping process:
1) A group is composed of more than one CC.
2) The distance between two CCs from the same group is

relatively short compared to the distance between two CCs
from two different groups.

3) A group can only contain CCs from a single non-curved line
or a single curved line.

A typical CC group as part of a curved string is shown in Figure 3.
Two additional rules are used to differentiate between curved and
horizontal CC groups:
1) If the group height, denoted by Hg, is greater than the height

of the tallest CC member, Hc, in the group by a certain ratio,
then this is a curved CC group.

2) If the standard deviation of the baselines of a group of CCs is
greater than a threshold, then this is a curved CC group.

Figure 3. A typical local character group that belongs to a curved string (left)
and a horizontal string (right). For a curved string, the group height (Hg) is
significantly higher than the height of the tallest member CC of the group (Hc).

Separation of the lines of multi-line curved strings
As mentioned before, the curved text strings on a record label

are usually organized as concentric circles with the center being
the label center, the location of which was determined during the
CC analysis. We calculate the polar coordinates of all the CCs of
the curved CC groups with the label center as the origin. Then by
grouping the CCs that share a similar radius, we find the CCs that
belong to the same concentric circle, i.e., the same line of curved
strings. The azimuths of the CCs can be used to determine the
parameters for the straightening process later.

Straightening the curved strings
Curved text strings need to be straightened into horizontal

line for a successful OCR. The straightening involves two steps.
First the CCs are rotated to their upright positions according to
their azimuths. Then the inter-character spaces are calculated and
applied to the rotated CCs. Note that a curved string can be
arranged with the bottom of a character pointing to or away from
the center depending on whether the curve is part of an upper
circle or a lower circle. This was taken into account in the rotation
step to avoid an inverted line.

Let α denote the azimuth of a CC. The rotation angle θ is
calculated as follows, with counter-clockwise being the positive
direction:

α α [0, π/2)

π α α (π/2, π]
θ =

α π α (π, 3π/2)

2π α α (3π/2, 2π]

⎧ − ∈
⎪ − ∈⎪
⎨

 − ∈⎪
⎪ − ∈⎩

 (3)

The rotation angles on the positions π / 2 and 3π / 2 are
determined by whether the CCs at these positions belong to a
group of an upper circle or a lower circle.

The inter-character space between two adjacent CCs in a
straightened curved string, CCn and CCn+1, is calculated by:

1
, 1 1

r r
D α α

2
n n

n n n n
+

+ +

+
−= ⋅ (4)

where (rn , αn) and (1rn+ , 1αn+) are respectively the original
polar coordinates of CCn and CCn+1 before being straightened.

OCR
OCR was performed by using commercial software ABBYY

FineReader 8.0 [16]. The test dataset included 4 LP record label
images from our collection scanned at 1200dpi. The character
recognition performance is shown in Table 2, where accuracy is
the ratio of correctly recognized characters and the total number of
characters in a category. Note that after straightening, the
recognition rate for the curved characters increased significantly.

Table 2. OCR accuracies (H: horizontal characters, C: curved
characters, C1: non-straightened curved characters, C2:
straightened curved characters, #: number of characters, Acc.:
OCR character recognition rate)

 # of H # of C Acc. of

H (%)
Acc. of
C1 (%)

Acc. of
C2 (%)

Label 1 204 20 99.02 0 100
Label 2 322 29 100 10.34 82.76
Label 3 259 162 100 0 99.38
Label 4 598 180 99.00 10.00 93.89

Automatic Derivative Creation
For the creation of media derivatives to be used for the web

delivery, we use cross-platform, open-source software tools that
are command-line based and can perform batch processing easily.
We use ImageMagick [17] for image format conversion and
libsndfile [18], SoX [19], and LAME [20] for audio format
conversion. The conversion workflow is written in Unix Shell
scripts and monitored remotely through SSH. A processing log
was created and maintained in the digitization database to monitor
the workflow.

Conclusions and future work
Several technical issues have been described concerning the

digitization of large online collections of phonograph records. Our
machine learning-based automatic track segmentation approach
achieved better results than its peer tools. Our rule-based approach

Hc Hg

to automatic metadata extraction from record labels was also
effective.

Currently the feature used for our automatic track
segmentation includes only RMS. It would be interesting to
experiment with different features for the same task using a larger
and varied collection of LPs. Also, an improvement should be
made to our current label segmentation scheme, which assumes
that there is only one foreground and one background color present
in the image. The next major step in this endeavor is to
automatically extract metadata and full text from album covers and
liner notes using sophisticated document analysis techniques.

Acknowledgement
This research is funded in part by the “Richard M. Tomlinson

Digital Library Innovation and Access Award,” David Edelberg
Foundation, CIRMMT, CFI, and FQRSC.

References
[1] A. Bezemer, “GramoFile Home Page.” (2005). Accessed March 5,

2006. Available at
http://www.opensourcepartners.nl/~costar/gramofile/.

[2] CFB Software,” LP Ripper - Split Vinyl LP WAV Files into Tracks.”
(2006). Accessed March 5, 2006. Available at
http://www.cfbsoftware.com/lpripper/lpripper.htm.

[3] Wieser Software Ltd, “LP to CD transfer made easy with RIP Vinyl
from Wieser Software Ltd.” (2006). Accessed March 5, 2006.
Available at http://www.ripvinyl.com/.

[4] G. Tzanetakis, “Manipulation, Analysis And Retrieval Systems For
Audio Signals.” Ph.D. thesis, Princeton University, (2002).

[5] T. Zhang, and C. J. Kuo, Content-Based Audio Classification and
Retrieval for Audiovisual Data Parsing (Springer, MA, 2000).

[6] L. Lu, S. Z. Li, and H. J. Zhang, Content-Based Audio Segmentation
Using Support Vector Machines, Proc. ICME, pg. 956. (2003).

[7] R. Ferguson, “Automatic Segmentation in Concert Recordings,” M.A.
thesis, McGill University, (2003).

[8] D. Kimber, L.Wilcox, F. Chen, and T. Moran, Speaker Segmentation
for Browsing Recorded Audio. Proc. CHI, pg. 212. (1995).

[9] K. El-Maleh, M. Klein, G. Petrucci, P. Kabal, Speech/Music
Discrimination for Multimedia Applications, Proc. ICASSP, vol. 4, pg.
2445. (2000).

[10] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle, Feature
Extraction: An Extensible Library Approach. Proc. ISMIR, pg. 600.
(2005).

[11] C. McKay, R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga, ACE: A
Framework for Optimizing Music Classification. Proc. ISMIR, pg. 42.
(2005).

[12] Audacity Development Team, “Audacity: Free Audio Editor and
Recorder.” (2006). Accessed March 5, 2006. Available at
http://audacity.sourceforge.net/.

[13] W. Chou, and L. Gu, Robust singing detection in speech/music
discriminator design. Proc. ICASSP, vol. 2, pg. 865. (2001).

[14] Marvin Duchow Music Library, “David Edelberg Handel LPs.”
(2006). Accessed March 5, 2006. Available at
http://coltrane.music.mcgill.ca/handel/lp/search.php.

[15] M. Droettboom, K. MacMillan, and I. Fujinaga, The Gamera
framework for building custom recognition systems, Proc. SDIUT, pg.
275. (2003).

[16] ABBYY Software House, “Optical Character Recognition and PDF
Conversion Software.” (2006). Accessed March 5, 2006. Available at
http://www.abbyy.com/finereader8/?param=44890

[17] ImageMagick Studio LLC, “ImageMagick: Convert, Edit, and
Compose Images.” (2006). Accessed March 5, 2006. Available at
http://www.imagemagick.org/script/index.php.

[18] E. C. Lopo, “libsndfile.” (2006). Accessed March 5, 2006. Available
at http://www.mega-nerd.com/libsndfile/.

[19] Sourceforge.net, “SoX - Sound eXchange | HomePage.” (2006).
Accessed March 5, 2006. Available at
http://sox.sourceforge.net/Main/HomePage.

[20] Sourceforge.net, “LAME Ain't an MP3 Encoder.” (2005). Accessed
March 5, 2006. Available at http://lame.sourceforge.net/.

Author Biography
Beinan Li is currently a Ph.D. student in Music Technology in the

Schulich School of Music at McGill University, Canada. He received his
bachelor’s degree in Communication Engineering in 2001 and his master’s
degree in Pattern Recognition and Intelligent Systems in 2004 at Huazhong
University of Science and Technology, China.

Catherine Lai received her BAs in music and applied math with an
emphasis in computer science and M.I.M.S. in information management and
systems from the University of California at Berkeley. She is currently a
Ph.D. student in Music Technology at McGill University. The focus of her
research is on music information retrieval. She is interested in exploring
web-based music information retrieval constituting areas such as
data/information presentation and user interface design.

Ichiro Fujinaga is Assistant Professor of Music Technology at McGill

University. His research interests include optical music recognition, music
perception, machine learning, and music information retrieval.

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

