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Abstract 

This paper discusses the technical issues involved in 
digitization of large online collections of LPs and presents the 
techniques to perform automatic track separation of unsegmented 
audio streams, the approaches taken to automate metadata 
extraction from scanned record labels, and the tools used to 
automatically create derivatives of audio and image files in various 
optimized formats.  

Introduction 
Long-playing phonograph records (LPs) were one of the 

major analogue recording formats distributed commercially 
throughout most of the twentieth century. Although most of these 
historic sound recordings have long shelf lives, compelling reasons 
have led to a shift toward digital preservation. Digitization is time 
consuming and expensive. Many steps involved in the digital 
conversion, such as track separation and metadata extraction, 
require much human intervention. Due to the enormous quantity of 
existing recordings and the time required to digitize them properly, 
tools to automate the digitization process so as to reduce the cost 
of digitizing very large numbers of LPs are highly desirable.  

This paper discusses the technical issues involved in 
digitization of large online collections of LPs. The techniques to 
perform automatic track separation of unsegmented audio streams, 
the approaches taken to automate metadata extraction from 
scanned images of record labels, and the tools used to automate the 
creation of derivative audio and image files in various optimized 
formats are subsequently discussed. 

Automatic Track Segmentation 
The analog-to-digital conversion of an LP results in a 

continuous audio stream containing unseparated musical pieces. 
For the distribution of music, however, it is convenient to have 
separated musical tracks. Segmenting tracks manually is costly and 
can be avoided by using an automatic track segmentation system. 
Although there are software tools such as Gramofile [1], LP 
Ripper [2], and Rip Vinvyl [3] that perform track segmentation, 
they are primarily designed for popular music. They rely on simple 
heuristics that are inadequate to distinguish between soft musical 
passages and noisy inter-track sections typical of many old 
classical recordings.  

Related works 
Automatic audio segmentation and annotation have gained 

much attention from researchers in various multimedia-related 
domains including music information retrieval. Tzanetakis [4] 
provided an overview of audio segmentation in 2002 while Zhang 
and Kuo [5] used audio portion of a video signal to facilitate video 
classification and retrieval.  

The most popular approach to automatic audio segmentation 
is to use machine learning methods and short-time audio feature 
extraction. A number of techniques have been reported. Support 
Vector Machine was used for classification of silence, speech, pure 
speech, music, and environmental sounds [6] as well as 
segmentation of concert recordings [7]. Segmentation between 
speakers in multi-speaker environments was achieved using 
optimal state sequence changes between speakers by Hidden 
Markov Model [8]. Moreover, the k-nearest neighbor and 
quadratic Gaussian classifier were used to discriminate between 
speech and music [9]. 

ACE-based machine learning approach 
The main goal of track segmentation is to locate the 

boundaries between a music track and its adjacent passages of 
inter-track silences and then separate them accordingly. To locate 
the boundaries, we treat the track segmentation task as a binary 
classification problem. Two types of classes are used for 
classification: music and inter-track silence. We use jAudio’s 
audio feature extraction library [10] and the ACE framework [11] 
to perform supervised learning.  

jAudio is an open-source audio feature extraction tool written 
in Java. It provides a convenient way of selecting various audio 
features and configuring analytical parameters such as sampling 
rate and window length for classifications. Currently 27 distinct 
features are implemented.  

ACE is an open-source framework that provides a convenient 
way to experiment with various combinations of audio features 
and classification methodologies. Given a set of feature vectors, 
ACE experiments with a variety of classifiers, classifier 
parameters, classifier ensembles, and dimensionality reduction 
techniques in order to arrive at a good configuration for the 
problem at hand. The standardized XML format is used as a 
communication protocol for jAudio and ACE. For example, ACE 
reads the feature definition and feature values from the XML files 
generated by jAudio’s feature extraction process and outputs the 
classification result in another XML file. 

Our track segmentation scheme contains the following steps: 
1) Feature extraction using jAudio. 
2) Training the classification model with ACE. 
3) Classification on the test dataset. 
4) Post-processing. 

Feature extraction 
Feature extraction is performed for both the training and test 

datasets. An input audio file with unseparated musical tracks is 
first downsampled to 16kHz to reduce signal variability. A sliding-
window based feature extraction is then performed using 1-second 
windows with no overlap. Although many different combinations 



 

 

of features were tested, it turned out that the root mean square 
(RMS) alone, a feature also adopted in Gramofile, performed as 
well as any other features. The feature definition and extracted 
feature values including the feature types and the analytical 
parameters are stored in XML files for the following steps. 

Training the classification model 
During the training phase, an N-1 (N is the total number of 

training audio files) fold cross-validation is performed with ACE 
on the features of the training dataset to minimize overfitting. 
Ground-truth data is gathered by manually labeling the training 
data using a convenient graphical audio editor developed by the 
authors as an extension to the open-source software Audacity [12]. 
ACE is then used to compare various classification schemes and 
determine the most suitable approach. In our experiment, the 
selected optimized classifier was the C4.5 Decision Trees with 
bagging. The classification model is stored for the test phase.  

Post-processing 
The classification result from the test phase is an array of 

class labels, m for music and s for silence, assigned to each of the 
1-second window in the audio stream. We often found that a 
continuous music track or an inter-track silence passage is 
contaminated with interleaving m’s and s’s due to sporadic 
misclassifications. A rule-based post-processing was therefore 
designed to correct these errors.  

Previous methods, such as in [13], use a fixed-window-length 
sliding-window analysis to perform a smoothing process that re-
labels segments according to the majority category in a window. 
This smoothing process often fails when only a portion of an 
interleaving structure is captured by the window.  

Our strategies involve variable-sized window for smoothing 
and the use of high-level heuristics. For the smoothing, we 
introduce the concept of a “chunk,” which is a group of 
consecutive windows that share the same label. The music and 
inter-track silence chunks are labeled M and S, respectively; thus, 
for every M there will be two adjacent S’s and vise versa. We then 
assign a level of confidence to each chunk. Chunks that were 
classified with a high confidence level are taken as boundaries and 
a smoothing function is applied to the chunks enclosed by the 
boundaries.  

Our heuristics include: 
1) The chunks at the beginning and end of an album are usually 

S.  
2) If an M is overly short, the classification of either the chunk 

itself or an adjacent chunk labeled S is likely to be wrong.  
3) If a chunk longer than 3 seconds is labeled as S or a chunk 

longer than 10 seconds is labeled as M, the classification is 
likely to be correct. Also, S chunks should be much shorter 
than M chunks in most music albums. 

Based on the heuristics 1) and 2), a special filtering is applied to 
correct any mislabeled chunks at the very beginning and end of 
audio streams. By using 2) and 3) and by comparing the relative 
size of neighboring chunks, incorrectly assigned small chunks are 
relabeled by smoothing until correct total number of tracks are 
obtained. 
    
   

Evaluation method 
The error measurement used for the regular window-wise 

classification, i.e., the percentage of misclassified segments, is not 
suitable for the track segmentation task evaluation. For example, if 
a 1-second m in the middle of a music track is mislabeled as s, then 
the resulting number of tracks will be wrong even though the 
classification accuracy would be greater than 99%. Therefore, a 
special error measurement was developed. The classification errors 
are categorized into three types in terms of their influences on the 
track segmentation results. Given a ground-truth data segment 
“mmsssmm,” 
1) Error Type I is defined as any mislabels that split a complete 

music track into segmented pieces that lead to a wrong 
number of tracks. This error is computed by:  

1
e TF TT (TF TT)/= − +  (1) 

where TF denotes the number of tracks found and TT denotes 
the correct number of tracks. An example of this type of error 
is “mmsmsmm.” 

2) Error Type II is defined as any mislabels that mistakenly 
mark m for s at transitions. This has a lesser negative impact 
on the segmentation result than Type I. However, this could 
still affect the position at which the actual track segmentation 
is executed. This error is computed by the ratio of the 
number of mislabeled windows to the total number of 
windows. An example of this type of error is “msssssm.” 

3) Error Type III is any mislabels that mistakenly mark s for m 
at transitions. This error has the least impact on the result. 
The error is computed by the ratio of the number of 
mislabeled windows to the total number of windows. An 
example of this type of error is “mmmsmmm.” 

Finally, the error function of the track segmentation algorithm is 
the weighted sum of all three types of errors in the output: 

1 1 2 2 3 3
e w e w e w e+ += , 
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i

i i i+> ∈ =∑    (2) 

where w i is the assigned weight for the Error Type i.  

Experimental results 
Our approach to automatic track segmentation was evaluated 

on digitized recordings of the David Edelberg’s Handel LP 
collection [14]. Five digitized 20-minute classical LP albums were 
used as training dataset and six other albums from the same 
collection were used as the test dataset. The music passages 
included songs with piano, choir, solo instrumental, and orchestral 
music. The inter-track silence passages of these recordings are 
usually noisy.  

For our dataset, the optimized classification scheme selected 
by ACE among a total 36 different schemes was the C4.5 Decision 
Trees with bagging. Table 1 shows the segmentation accuracies 
measured before and after post-processing compared with those of 
Gramofile using our error measurement. The error weights used 
were 0.6, 0.35 and 0.05, respectively. Note that Gramofile failed to 
identify any tracks in Album 4.  
   
   



 

 

Table 1. Comparison of track segmentation accuracies between 
our algorithm (before and after post-processing) and Gramofile. 

 Before 
post-proc (%) 

After 
post-proc (%) 

Gramofile 
(%) 

Album 1 82.33 99.99 99.84 
Album 2 72.71 99.99 99.77 
Album 3 89.97 99.98 99.93 
Album 4 69.98 99.98 35.71 
Album 5 64.82 99.99 92.20 
Album 6 76.87 99.97 99.89 

Automatic metadata extraction from LP record 
labels 

Metadata extraction is another time-consuming step of 
digitization and we attempted to automate the metadata extraction 
using document analysis and OCR techniques. As shown in Figure 
1, a typical LP record label contains horizontal text lines, 
decorative graphical glyphs, and curved text strings. Our automatic 
metadata extraction aims to segment the text glyphs from the 
image and then extract the metadata by using OCR.  

Text segmentation 
 As an unprecedented attempt towards record label 
segmentation, our approach is rule-based. The algorithm includes 
the following six steps:  
1) Pre-processing  
2) Binarization and connected component (CC) analysis 
3) Removal of non-text glyphs 
4) Separation of horizontal strings and curved strings 
5) Separation of the lines of multi-line curved strings 
6) Straightening of the curved strings 
The algorithm is developed based on our open-source document 
analysis tool, GAMERA [15]. 

Pre-processing 
A label image is first rotated so that the horizontal lines of 

text are truly horizontal. Because the scanned high-resolution label 
images are often in multicolor, a direct binarization applied on 
images tends to generate many broken text strokes due to the color 
diffusion present in the original labels. This would cause the CC 
analysis on the binarized image to fail; therefore, a color 
quantization using K-means clustering is performed to minimize 
color diffusion. 

Removal of the non-text glyphs 
The CCs resulted from the CC analysis comprise of not only 

text objects but also of graphical glyphs and noise. To eliminate as 
many non-text CCs as possible, a filter based on the size and 
location of CCs is used to eliminate obvious non-text glyphs and 
noise. We remove overly large and small CCs, namely large 
graphical glyphs and noise. The CCs that belong to the center hole 
of the label are also removed. The other non-text CCs are 
gradually removed in subsequent steps. 

 
Figure 1. An LP record label with curved strings. 

 
Figure 2. An LP record label with multi-line curved strings. 

Separation of horizontal strings and curved strings 
Several attempts were made to separate the curved strings 

from the non-curved strings. The first approach was to extract 
horizontally aligned CCs row by row and use the fact that curved 
strings are usually located near the rim of the disc label. However, 
this approach was inadequate and failed to isolate the characters 
around the rim when the curved characters are very close to 
horizontal text lines or when multi-line curved strings are present 
(Figure 2). Another approach was based on the observation that the 



 

 

curved texts are usually arranged in concentric circles with the 
center being the label center. This approach, however, was also 
problematic because it is difficult to distinguish between a circle 
structure extracted from a real curved string and one from a non-
curved text block with densely aligned rows.  

From the experience that human tends to group things that are 
visually close together, we devised another discrimination strategy 
based on grouping by local continuity. A series of rules are used to 
assist the grouping process:  
1) A group is composed of more than one CC. 
2) The distance between two CCs from the same group is 

relatively short compared to the distance between two CCs 
from two different groups.  

3) A group can only contain CCs from a single non-curved line 
or a single curved line. 

A typical CC group as part of a curved string is shown in Figure 3. 
Two additional rules are used to differentiate between curved and 
horizontal CC groups: 
1) If the group height, denoted by Hg, is greater than the height 

of the tallest CC member, Hc, in the group by a certain ratio, 
then this is a curved CC group.  

2) If the standard deviation of the baselines of a group of CCs is 
greater than a threshold, then this is a curved CC group. 

 

                     
 

Figure 3. A typical local character group that belongs to a curved string (left) 
and a horizontal string (right). For a curved string, the group height (Hg) is 
significantly higher than the height of the tallest member CC of the group (Hc). 

Separation of the lines of multi-line curved strings 
As mentioned before, the curved text strings on a record label 

are usually organized as concentric circles with the center being 
the label center, the location of which was determined during the 
CC analysis. We calculate the polar coordinates of all the CCs of 
the curved CC groups with the label center as the origin. Then by 
grouping the CCs that share a similar radius, we find the CCs that 
belong to the same concentric circle, i.e., the same line of curved 
strings. The azimuths of the CCs can be used to determine the 
parameters for the straightening process later.  

Straightening the curved strings 
Curved text strings need to be straightened into horizontal 

line for a successful OCR. The straightening involves two steps. 
First the CCs are rotated to their upright positions according to 
their azimuths. Then the inter-character spaces are calculated and 
applied to the rotated CCs. Note that a curved string can be 
arranged with the bottom of a character pointing to or away from 
the center depending on whether the curve is part of an upper 
circle or a lower circle. This was taken into account in the rotation 
step to avoid an inverted line. 

Let α denote the azimuth of a CC. The rotation angle θ is 
calculated as follows, with counter-clockwise being the positive 
direction: 

α α [0, π/2)

π α α (π/2, π]
θ =

α π   α (π, 3π/2)

2π α     α (3π/2, 2π]

⎧ − ∈
⎪  − ∈⎪
⎨

 − ∈⎪
⎪ − ∈⎩

 (3) 

The rotation angles on the positions π / 2 and 3π / 2 are 
determined by whether the CCs at these positions belong to a 
group of an upper circle or a lower circle. 

The inter-character space between two adjacent CCs in a 
straightened curved string, CCn and CCn+1, is calculated by: 

1
, 1 1

r r
D α α

2
n n

n n n n
+

+ +

+
−= ⋅  (4) 

where ( rn , αn ) and ( 1rn+ , 1αn+ ) are respectively the original 
polar coordinates of CCn and CCn+1 before being straightened.  

OCR 
OCR was performed by using commercial software ABBYY 

FineReader 8.0 [16].  The test dataset included 4 LP record label 
images from our collection scanned at 1200dpi. The character 
recognition performance is shown in Table 2, where accuracy is 
the ratio of correctly recognized characters and the total number of 
characters in a category. Note that after straightening, the 
recognition rate for the curved characters increased significantly.  

Table 2. OCR accuracies (H: horizontal characters, C: curved 
characters, C1: non-straightened curved characters, C2: 
straightened curved characters, #: number of characters, Acc.: 
OCR character recognition rate) 

 
 # of H # of C Acc. of 

H (%) 
Acc. of 
C1 (%) 

Acc. of 
C2 (%) 

Label 1 204 20 99.02 0 100 
Label 2 322 29 100 10.34 82.76 
Label 3 259 162 100 0 99.38 
Label 4 598 180 99.00 10.00 93.89 

Automatic Derivative Creation 
For the creation of media derivatives to be used for the web 

delivery, we use cross-platform, open-source software tools that 
are command-line based and can perform batch processing easily. 
We use ImageMagick [17] for image format conversion and 
libsndfile [18], SoX [19], and LAME [20] for audio format 
conversion. The conversion workflow is written in Unix Shell 
scripts and monitored remotely through SSH. A processing log 
was created and maintained in the digitization database to monitor 
the workflow. 

Conclusions and future work 
Several technical issues have been described concerning the 

digitization of large online collections of phonograph records. Our 
machine learning-based automatic track segmentation approach 
achieved better results than its peer tools. Our rule-based approach 
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to automatic metadata extraction from record labels was also 
effective. 

Currently the feature used for our automatic track 
segmentation includes only RMS. It would be interesting to 
experiment with different features for the same task using a larger 
and varied collection of LPs. Also, an improvement should be 
made to our current label segmentation scheme, which assumes 
that there is only one foreground and one background color present 
in the image. The next major step in this endeavor is to 
automatically extract metadata and full text from album covers and 
liner notes using sophisticated document analysis techniques. 
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