
 

Network Access to Parts of Archived Document Image Files

 

Martin Boliek and Michael J. Gormish, Ricoh Innovations, Inc., Menlo Park, California, USA

 

Abstract

 

Effective archive of large documents requires the ability to
retrieve and browse, process, distribute, and display and print at
high quality. To do so efficiently, it is desirable to access only por-
tions of a document file that pertain to any given task. For example,
retrieval might be facilitated by quick access to keywords, text, and
metadata. Browsing only requires portions of a document data for
viewing. High quality display and printing require different resolu-
tions and bit-rates. Such access is key for documents whether they
are stored in image form or in a page description language.

This paper presents the philosophy of progressive network
access for document images embodied in the JPEG 2000 family of
standards. A discussion of the partial document image data needs
for certain archive and retrieval tasks is discussed. Performance
measures compare JPEG against JPEG 2000 continuous-tone com-
pression with the JPM file format and the JPIP interactive protocol
for various client-sever document imaging tasks.

 

Progressive Access to Document Images

 

Even as the cost of storage falls, compression remains critical
for document image files. Network access and bandwidth costs are
still relatively high. Also, the analysis of a document image, per-
formed during compression, can yield valuable information about
that document.

To achieve reduced network bandwidth, the compressed image
data must be presented in such a way that the correct subset of the
coded data can be extracted, processed, transmitted, and decoded.
To send all of the document image data when it is not needed
wastes bandwidth. Furthermore, to reduce complexity at the docu-
ment archive server it is necessary to extract the correct compressed
document image data without complex transcoding or decoding of
the codestream. 

JPEG 2000 [1] is a progressive continuous-tone compression
system designed to enable access to different resolutions (thumb-
nails, display, or printing), scalable bit-rates all the way to lossless
(for appropriate pixel accuracy), and regions-of-interest (for pan-
ning and partial access). The companion JPIP interactive protocol
standard [2] provides a language for requesting and sending parts of
a JPEG 2000 codestream. Together, these two international stan-
dards offer access flexibility for continuous-tone imagery.

For document images, greater advantage for compression and
access is achieved with the JPM mixed raster content file format
[3]. JPM uses a layered object composite image model that enables
sharp edge image areas, such as text, to be separately compressed
with an efficient binary compressor, such as JBIG [4]. Objects and
portions of objects can be accessed separately using JPIP.

 

Document Images Versus Rendering Formats

 

Using images is the natural and obvious modality for docu-
ments that have been scanned. Although much effort has been

expended in analyzing the content and context of scanned docu-
ments, the imagery remains best for visualization and display. 

Documents that are created electronically and archived are
usually stored in a page description format such as PDF or Post-
Script. However, there are advantages to converting these to images
before archiving as well. In many cases, the document images can
be compressed to a smaller size than the original PDF (as reported
in [10]). Document images are easier to prepare for display (decode
versus render) and do not suffer from missing font information.

 

Progressive Image and Document Coding History

 

In the mid 1980s the ISO and ITU (then CCITT) collaborated
in a unique standardization effort called the Joint Photographic
Experts Group, or JPEG [5]. Their goal was to make a color image
compression standard and the result was one of the most successful
data interchange standards in modern history. The ever popular
JPEG Baseline mode compression is fast and relatively efficient.
However, in the interest of better compression, less memory usage,
and lower computation, the data for reconstructing different resolu-
tions, bit-rates, and regions is hopelessly commingled.

The original JPEG committee did anticipate the need for
sophisticated access into the coded data. A sequential ordering for
progressive bit-rate, a hierarchical ordering for progressive resolu-
tion, and a (completely incompatible) lossless mode are included.
For a number of different reasons, these modes are not popular. The
complexity of these orderings is high, the memory use is large, and
they are difficult to use together. Although a latter standard, JPEG
Part 3 [6], offered regional access with tiling, it only compounded
the complexity. JPEG Part 3 also included a file format, but did not
support pages, objects, layers, or offer a protocol for client-server
interaction. In all of these orderings, there was only one way to
access the data -- in the original order the data was encoded.

In the mid 1990s, Kodak, Microsoft, Hewlett Packard, and
others collaborated on a file format called Flashpix [7]. Flashpix
allows representing an image at different resolutions and regions. It
uses JPEG-like independently compressed streams for a redundant
array of image tiles at different resolutions. The redundancy, and
the lack of a progressive bit-rate mode, make this format less effi-
cient for compression than JPEG. However, paired with the Internet
Imaging Protocol [8] it enables network access to the right regions
and resolutions for different applications. Once again, there is no
support for pages, objects, or layers.

The Open Prepress Interface (OPI) [9], developed by Aldus
(now Adobe Systems, Inc.) allows for representing an image within
a document in two ways. For viewing and editing, the included
image can be a low resolution, low quality version. For printing, the
image is replaced with a print resolution version stored somewhere
else, like a central server. The actual imagery is usually in the TIFF
format and can be used by any document layout or word processing
format. This system is designed for high quality print production



 

and is rather complicated for archive applications.
DjVu [10] is a compression system and file format similar to

JPM. Developed by AT&T, DjVu enables layered images to be
compressed by different coders. While DjVu supports layers and
resolutions, it does not support objects, it is proprietary, and does
not have a communication protocol.

Linearized PDF [11] is a method of ordering PDF files so that
access to individual pages can be performed before all of the data
has been transmitted. The data is ordered according to usage and
there are hint tables that provide the composite instructions at the
beginning of the file rather than the end. This approach can cer-
tainly be used on image-based PDF files, as well as rendered files.
However, the access is only on a page level. There is no support for
editing. Any change to the file alters the linearization characteristic.

 

Archive and Retrieval Tasks

 

Several different archive-related tasks require partial data from
document images. Retrieval requires attribute indices and text from
documents. Browsing requires partial imagery from the document
for a reduced resolution or SmartNail presentation [12] (a technique
that automatically displays the most prominent parts of a page at
recognizable scale). Display on a computer requires modest resolu-
tion but high pixel precision. For reading, high resolution portions
of a document may be displayed. Printing requires the highest reso-
lution, especially for text regions, but possibly not as high pixel
precision.

JPEG 2000, JBIG, JPIP, and JPM allow organization and pro-
gressive extraction and communication of document images in
many different dimensions simultaneously, including by resolution,
bit-rate, tile, component, layout object (including mask and image),
page, and page collection. With this array of ways to describe an
image, many, if not most, of the document image archive tasks can
be easily supported.

 

New Metrics for Image Compression

 

The classic rate-distortion metric for image compression only
measures the performance of a single preset task. The same com-
pression system that may perform adequately for one task, such as
compression for storage, may be unacceptable for another task,

such as progressive rendering to a limited display client.
To measure the performance in a system that serves several

devices and performs many tasks, an ensemble of performance
measures should be used. Consider the types of interaction and
interchange needed for a given application. What types of visualiza-
tion are needed, icons or thumbnails for browsing, full screen for
identification, zoom and pan for reading, high resolution printing?
What is the environment, stand-alone PC, client-sever network, low
bandwidth network (e.g. cell phone)? What are the time, bandwidth,
display, computation, and memory considerations? Armed with
these application-specific parameters and constraints, it is possible
to come up with an array of performance metrics. (This paper
describes only a few of the results that might be used.)

 

Performance Example Experiment

 

To illustrate the differences in performance between JPEG
2000, JPM, and JPIP versus the original JPEG standard, consider
specific tasks such as browsing, full screen display, zoom and pan-
ning, editing, and printing. Figure 1 shows these tasks which are
described below.

 

Browsing

 

Visualization of representative document thumbnails or icons
is an important aspect in browsing. The most common visualiza-
tions are simple thumbnails. Many image archive systems redun-
dantly store thumbnails for this purpose. Often, however, the size of
the thumbnail is user selectable. In this case it is necessary to scale
down the original (or have a larger redundant thumbnail). 

The proposed system (JPEG 2000, JBIG, JPM, JPIP) has the
ability to extract thumbnail size versions efficiently without redun-
dant storage. More interesting is the ability to extract parts of the
document image, possibly at different resolutions. This can support
the creation of SmartNails with readable tiles and text for a given
size display. Since the SmartNail adaptively selects the resolution
based on the user selected display size, it is a great advantage to
have access into portions of the document imagery.

 

Full Screen Display

 

Most LCD and CRT displays for computers have a pitch

 

Figure 1.  Example client-server task interactions

Document
Server

Document client

a) Browsing task b) Full screen display task c) Zoom and pan task

d) Editing task e) Printing task

Training



 

between 72 and 100 dpi. The aspect ratio differs but most are land-
scape and most are not 11 inches high. Thus, to display a full docu-
ment image page, resolution less than the pitch of the display is
required. Once again, because of the variability in pitch, screen
size, and application, the amount of data required to display the full
page varies, but is almost always much less than that available in
the source document image.

 

Zoom and Pan

 

A full page display of a document on most computer screens is
not readable. In order to read the document on the computer screen
it is necessary to zoom into the document image, showing only a
portion of the screen. To continue reading, the user will want to pan
around the image. Because the pattern of zooming and panning is
user selectable, the data needed and the order in which it is needed
varies.

 

Editing

 

Often the user will want to perform various editing, annota-
tion, and data entry functions on a document. Organization into
objects can offer logical locations for this editing. Objects can be
altered, obscured, and/or replaced independently. Handling only
objects at screen resolution not only reduces the editing computa-
tions, but significantly reduces the bandwidth for the download and
upload operations.

 

Printing

 

For high quality, the highest resolution is required for printing.
A connection directly between the server and the printer can
reduced the number of times the total document is transmitted. It is
transmitted directly to the printer rather than to the client computer
and then the printer. This savings is possible if the entire image has
not already been sent to the client computer.

 

Experimental Setup

 

Four different encodings are compared:

1. A scanned version of the document page is separated into fore-
ground, background, and mask images that span the entire
page. The foreground and background are compressed with
JPEG 2000 and the mask is compressed with JBIG.

2. A scanned version of the document page is compressed with
JPEG baseline at a quantization that provides a similar quality
(measured in SNR) to (

 

1

 

).
3. A rendered (noiseless source document image) version of the

document page encoded as in (

 

1

 

).
4. A rendered version of the document page is compressed with

JPEG baseline at a quantization that provides a similar quality
(measured in SNR) to (

 

3

 

).

Five measures are reported for each encoding type and image.

a. Total size, 300dpi, letter size. This is the size of the file that is
stored on the server and provides the best printed output.

b. Signal to Noise Ratio, comparing the full resolution com-
pressed version to the original (scanned or rendered) version.

c. Number of bytes used needed to render the image at 75 dpi. 
For the JPM files this includes all of the �header information�
about the layout of the page, the type of compression used, and
the location of the codestreams in the file. It also includes the
complete codestreams for the JBIG compressed data, however,

JPEG 2000 objects are sent at a reduced resolution appropriate
for the screen. 
For the JPEG encoding it is necessary to send the entire file, or
decode the entire file, and recompress a low resolution version
and send it.

d. The user is assumed to zoom in on the upper right quarter of
the page and request full resolution data (300 dpi).
For the JPM files, the user already has the high resolution
masks (JBIG codestreams), but the high resolution data for the
JPEG 2000 codestreams is now sent. However, because JPEG
2000 allows regions access only data that intersects the upper
right hand corned is needed. 
For the JPEG encoding the user is assumed to˚ have received
all the data in the previous step.

e. Adding an object (e.g. annotation marks) is an example of an
editing operation. 
For the JPM image it is possible to create an entirely new file,
that references the codestreams on the server. Thus the number
of bytes required is just the size of the header of this new file,
plus the size of the annotation image. 
For the JPEG case the annotation is added, and the image is
recompressed with JPEG and sent back to the server.

Two images are used. These are shown in Figure 2. Uncom-
pressed, these images have 2550 x 3296 = 8,404,800 pixels. 

* Compound image with text, graphics, and imagery shown in
Table 1.

* Text image with different fonts and mathematical equations
shown in Table 2.

 

Results and Observations

 

In all cases, the JPM compression performs better than the
JPEG file (

 

rows a 

 

and

 

 b

 

 in Table 1 and Table 2). The savings is
more significant on the text image because the JBIG compressor is
far more efficient on binary data. Notice that, for the rendered
(noiseless source) image, JPEG requires a lot more data to approach
the JPM file distortion. This distortion is really close to lossless.

On the compound image scan comparison (

 

row b, col 1, 2

 

) the
SNR does not tell the whole story. The bit allocation between the
sharp text and imagery is excellent and the JPM and the image is
quite acceptable. The JPEG image, however, is unacceptable with
color contouring, block noise, and a blotchy mosaic.

In the case of the full screen display (

 

row c

 

) between 50% and
75% of the whole page file for the JPM file. This includes all of the
bytes in the file for the low resolution rendering, but ignores the fact

Figure 2.  Image used for testing



 

that the image can be satisfactorily displayed long before all the
bytes are received.˚ Much of the extra low resolution data is only
needed for higher resolution display. For the same full screen dis-
play the entire JPEG file must be transmitted. For the text image,
the entire rendered JPM file (

 

row c, col 3

 

) is transmitted because all
of the data is in the compressed with JBIG. This implementation
does not use the resolution reduction feature of JBIG.

To zoom into the image only requires a small amount of new
data (

 

row d

 

), given the entire page has already been sent at low res-
olution. Note that, because of the high quality of the low resolution
image sent (

 

row c

 

) the initial zoomed display is quite good even
before the additional data is received.

Note that this particular steps also did not make use of JPIP�s
ability to send only a subset of the set of masks. Because initial
transmission was the full page, requiring all the masks be sent,
there is data that would not have been sent if the zoomed image
were first.

To add an annotation to the file (

 

row e

 

) a small binary image is
created. For JPM, this new object, and the updated header informa-
tion, requires little data be transferred back to the server. The new
document image contains the new image and (if no other action is
taken) the �undo� image. The JPEG image was completely decom-
pressed, the new object was (irrevocably) merged with the original
image, and the new image recompressed with additional loss (even
in the unedited regions).

 

Conclusions and Future Work

 

This paper suggests, but does not offer, measures for docu-
ment image representation performance in an archival system. Such
metrics can be proposed, formulated, and tested.

Progressive network access to documents stored as images can
reduce the bandwidth, memory footprint, computation, and storage
required for a number of different archival tasks.

 

References

 

[1] JPEG 2000

 

, JPEG 2000 image coding system: Core coding system

 

, ISO/
IEC 15444-1:2004, www.iso.org.

[2] JPIP, 

 

JPEG 2000 image coding system: 

 

Interactivity tools, APIs and 
protocols, ISO/IEC 15444-9:2005, www.iso.org.

[3] JPM

 

, JPEG 2000 image coding system: Compound image file format

 

, 
ISO/IEC 15444-6:2003, www.iso.org.

[4] JBIG, 

 

Progressive bi-level image compression

 

, ISO/IEC 11544:1993, 
www.iso.org.

[5] W. B. Pennebaker, J. L. Mitchell, 

 

JPEG Still Image Data Compression 
Standard

 

, Van Nostrand Reinhold, New York, 1993.
[6] JPEG Part 3, 

 

Digital compression and coding of continuous-tone still 
images: Extensions

 

, ISO/IEC 10918-3:1997, www.iso.org.
[7]  International Imaging Industry Association, I3A, 

 

Flashpix

 

, http://
www.i3a.org/i_flashpix.html.

[8] International Imaging Industry Association, I3A, 

 

Internet Imaging 
Protocol

 

, http://www.i3a.org/i_iip.html.
[9] Aldus (Adobe), 

 

Open Prepress Interface

 

, partners.adobe.com/public/
developer/en/ps/5660_OPI_2_0.pdf.

[10]  L. Bottou, P. Haffner, P.G. Howard, et. al., 

 

High Quality Document 
Image Compression with DjVu

 

, http://www.djvuzone.org/djvu/
techpapers/jei/jei.ps.gz, 1998.

[11]Adobe Systems, 

 

PDF Reference, Fifth Edition, Version 1.6

 

, http://
partners.adobe.com/public/developer/pdf/index_reference.html#5, 2004.

[12]K. Berkner, E.L. Schwartz, C. Marle, 

 

SmartNails - Display and Image 
Dependent Thumbnails

 

, IS&T/SPIE Electronic Imaging Conf., San Jos�, 
January, 2004.

 

Martin Boliek

 

Martin Boliek is the leader of the Color Image Processing group at the
Ricoh Innovations, Inc. in Menlo Park, California. He was the original pro-
poser of the JPEG 2000 standardization effort and the editor of JPEG 2000
Part 1 and Part 2. He has received a BA in Physics from the University of
California, Santa Cruz, an MSEE from the University of California, Davis,
and an MBA from the University of San Francisco.

 

Michael J. Gormish

 

 Michael Gormish works on image and document processing at Ricoh
Innovations, Inc. He has BS degrees in Mathematics and EE from the Uni-
versity of Kansas and a MSEE and Ph.D. from Stanford University.˚ He
worked on JPEG 2000 Parts 1, 2, 4, 6, 8, and 9 dealing with compression,
compliance, compound image file format, security and interactive protocols.

 

 

 

Table 1:  Comparison of different encodings and formats for compound image

 

1) Scan JPM 2) Scan JPEG 3) Render JPM 4) Render JPEG
a) Full size, 300dpi 101,533 bytes 175,584 161,402 1,948,544
b) PSNR, full size 26.4 dB 25.5 41.4 41.4
c) 75 dpi, full screen 72,644 bytes 175,584 78,373 1,948,544
d) 300 dpi, zoom and pan, 
extra bytes, total bytes

+ 7,222 bytes
total 79,866 bytes

+ 0
175,584

+ 35,954
114,327

+ 0
1,948,544

e) Add object, bytes to server 1,755 bytes 288,888 4,661 2,160,084

 

Table 2:  Comparison of different encodings and formats for text image

 

1) Scan JPM 2) Scan JPEG 3) Render JPM 4) Render JPEG
a) Full size, 300dpi 83,932 bytes 158,236 29,714 1,496,431
b) PSNR, full size 27.0 dB 26.7 74.17 68.0
c) 75 dpi, full screen 37,525 bytes 158,236 29,714 1,496,431
d) 300 dpi, zoom and pan, 
extra bytes, total bytes

+ 11,602 bytes
total 49,127 bytes

+ 0
158,236

+ 0
29,714

+ 0
1,496,431

e) Add object, bytes to server 1,755 bytes 244,582 2,843 1,766,403


	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673



