

Automated Workflow for the Ingest and Preservation of
Electronic Journals
Evan Owens; Portico; Princeton, New Jersey, USA

Abstract
Portico (http://www.portico.org) has developed an

automated workflow for ingest of publisher-supplied e-journal
source files into a preservation repository. The components of the
workflow include package disassembly, format identification and
verification, structure mapping, automated metadata harvesting,
rule-based format normalization, and support for quality control
and inspection.

Introduction
Portico is a new, not-for-profit electronic archiving service

established in response to the library community's need for a
robust, reliable means to preserve electronic scholarly journals.
Portico was initiated by JSTOR and has been developed with the
initial support of Ithaka, The Andrew W. Mellon Foundation, and
the Library of Congress. Portico's mission is to preserve scholarly
literature published in electronic form and to ensure that these
materials remain accessible to future scholars, researchers, and
students.

Portico takes a format-based migration approach to the long-
term preservation of electronic journals. Publishers supply their
electronic materials such as SGML or XML texts, page images,
graphics at various resolutions, media, data and other files for
archiving. These are the source materials for their print and web
products rather than the web rendition files and are thus less
dependent on current rendition technology. Portico normalizes
proprietary publisher XML and SGML DTD instances to the NLM
Archiving and Interchange DTD so as facilitate future rendition
and to reduce the number of formats for preservation and future
management. As part of that normalization, publisher-specific
business practices such as file naming conventions are resolved
and eliminated.

The technological roots of Portico are found in the work done
in the Andrew W. Mellon Foundation's E-Journal Archiving
Program (1999) [1]; in particular, the work of Harvard University
Library on an archival DTD [2] which in turn influenced the
National Library of Medicine’s Archiving and Interchange DTD
[3]. Also important in the design of the Portico workflow was the
organizing meetings for a Global Digital Format Registry (GDFR)
in 2002-2003 [4] and participation in the RLG/OCLC PREMIS
Working Group (Preservation Metadata Implementation
Strategies) in 2004-2005 [5]. Key technologies used include XML,
XML schema, Schematron [6] for XML semantic validation,
NOID [7] for accession IDs, METS [8], and JHOVE [9] for format
verification, as well as Documentum, Oracle, JMS, and LDAP.

System Overview
The Portico system is a set of applications, as shown in

Figure 1. Before publisher content can be ingested into the archive,
samples are received, analyzed, and any necessary publisher-

specific profiles or tools are developed, tested, and deployed. That
is represented by top row of boxes in Figure 1. The middle row of
boxes is the main operating systems which are the focus of this
discussion: the Content Preparation System and the Archive
Management System. The Portico Content Preparation application
consists of a Documentum repository and workflow, a java
application that controls the automated process described below,
and a set of registries that contain information about formats, tools,
and other enterprise-level information. The system is described in
more detail elsewhere [10].

The Portico Archive is, strictly speaking, dark: all content is
visible only through a separate delivery application run on our
behalf by our sister organization, JSTOR [11]; this leverages
JSTOR’s experience with public web sites and delivery
infrastructure and allows Portico to concentrate on archiving and
content management.

Process Overview
At the highest level all data processing workflows look pretty

much the same:
• Content receipt
• Batch creation
• Automated processing
• Quality control and problem resolution
• Content release

In our process all these steps are essentially a “pre-processor”
that leads to archival ingest and are part of the Content Preparation
System. The inputs to content preparation workflow are arbitrary,
publisher-specific collections of data with proprietary file and
directory naming conventions often minimally documented and
sometimes inconsistently applied. The output of the workflow is
normalized content with complete descriptive, technical, and events
metadata packaged in Portico METS files ready for ingest into the
archive.

The noteworthy aspects of the workflow are all contained in
the automated processing phase shown in Figure 2. Some detail is
omitted for clarity; the actual implementation includes many more
steps. The entire process is driven by profiles and by the format and

Figure 1 Portico System Overview

tools registries. A profile is a set of policies and rules that apply to a
specific set of content. One profile might contain the file naming
rules for Publisher ABC; another rules for Publisher XYZ. In some
cases a single publisher has production processes and data streams
that are so different that we maintain multiple profiles. The profile
used for processing a given batch is captured as part of the events
metadata.

Automated Processing Steps
The automated workflow is designed so that every file in a

batch completes the first step before any file begins the second
step. Although it is theoretically possible to do parallel processing,
because of the dependencies between the article text and the
referenced graphics and other files it is much easier to solve
problems and keep the metadata in order if we proceed one step at
a time. Therefore all the files in the batch must successfully
complete one step before any can move on to the next step. That
means that in some cases a batch will stop for human problem
resolution and then continue processing.

Virus Check
The first step for all content is virus checking. We use

ClamAV [12], an open-source virus scanning software. An
important part of our event metadata is that the exact version of
each tool used is captured and recorded; for ClamAV the event
record includes the software version and virus signature file used
as well as the date and time run.

Verify Checksums
Verifying checksums is straightforward. At present only one

of our publisher participants currently provides checksums or any
sort of reliable fixity check to verify the transmission and integrity
of the data. We hope that the publishing community will move to
adopt more robust processes in the future.

 Apply Exclusion Rules
Exclusion rules specify that for a given content provider

(publisher), certain classes of files should not be ingested into the
archive. Ideally files that are not to be archived would not be sent
to the archive at all. However some publishers have pre-existing
content distribution systems and pre-defined content packages that
we must accept for business reasons. Some examples of instances
of exclusion would be when the file to be excluded represents an
intermediate rather than final form or when the object is supplied
in more than one format or resolution and only one format or
resolution is to be archived. In one case a publisher has told us that

none of their encapsulated PostScript files can be verified because
they reference non-embedded, non-supplied fonts; they
recommend that we preserve only the rasterized equivalents.

Remove Layer
“Layer” is the term used in PREMIS for both packaging, such

as zip or tar, and encodings or encryption. Our automated
workflow supports profile-driven expansion or removal of layers.
The resulting new files have to go through the previous steps of
virus check and checksum verification. In practice ClamAV and
other virus checking software are capable of opening up some
kinds of layers such as zip and tar and checking the contents. We
ignore that capability and do virus checking separately for each
file that resulted from the layer removal. This gives us more
flexibility and cleaner metadata at the cost of some redundant
processing. As our volume increases we will likely have to
optimize this process.

Verify Format
Format verification combines identification and verification.

A key decision in thinking about format is what to do when a file
is damaged, not a fully valid instance of its purported format. We
find it more useful to record that a file is, e.g., a “damaged” PDF
than to record that it is a valid byte-stream. This makes format
verification and identification a bit more complicated for us
because JHOVE, our primary tool, can either verify whether a file
is a valid instance of a given format or identify to what format a
file does conform. That doesn’t help with the “damaged PDF”
problem or the wrong extension or MIME type problem, so we use
JHOVE in combination with BSD file (a standard UNIX utility) in
a multi-step process:
• Verify purported format based on MIME type using JHOVE
• If verification succeeds, record format and capture technical

metadata
• If verification fails, attempt identification with BSD file
• If identified format is the same as purported format, the file is

bad
• If identified format is not the same as the purported format, it

might be mislabeled so verify the identified format again with
JHOVE; if that fails again, the file is bad

This process is discussed in more detail in [10].

Establish Unit Identity
In the absence of any publishing industry standard for file

naming and packaging for content distribution or exchange, each
publisher has developed its own proprietary system. At this point
in the workflow the original file names and paths are run through a
regular-expression rules engine to identify which files go together
to form an article. In the easiest case, content is organized in one
directory per article:

\journalName\volumeX\issueY\article1
\journalName\volumeX\issueY\article2
…

Some publishers group files together by file format or function or
combine hierarchical organization of the XML text files with
communal directories for graphics. All of this is sorted out based
on the rules in the profile for each publisher and the content
reorganized into units by article or other unit of content (e.g., front
matter or covers).

Figure 2 Automated Processing Steps

Normalize Files
Normalization of publisher-specific DTD instances to the

NLM Archiving and Interchange DTD is done as early as possible
in the automated processing so that subsequent steps which rely on
the XML header or full-text file have only a single format to
process. Although we do not currently do any graphics conversion,
the same infrastructure would support converting other types of
files during the automated processing.

Conversion of publisher DTDs to an industry-standard DTD
is a complex process. Accordingly, the human portion of our
process includes random sampling to detect problems that were not
identified during the initial testing and programming. Also, a
publisher DTD is likely to change over time driven by the
publisher’s business requirements. We therefore expect to have to
update the conversion tools with some frequency. As with all tools
used in the system, we track version numbers in the events
metadata so that if a problem is discovered later it on, all the
potentially affected content can be identified and corrected as
necessary. The importance of this cannot be over emphasized. It
has already proved invaluable to us in practice.

Extract / Resolve File References
Once the article texts have been normalized, we extract any

references to external files (e.g., graphics) and try to locate the
referenced files in the batch. This process is driven by another set
of rules defined in the profile as each publisher may have a
different way to do this and hidden business rules are common. In
the best case filename references are complete and explicit; in
some cases, however, considerable indirection may be involved.
For example, the markup <dformula id=”df27”> requires locating
a file named “df27.gif”; <graphic filename=”fig7”> may point to
three graphics in three different directories: “fig7_thumb.gif”
“fig7_mres.jpeg” and “fig7.eps”. The task is to map from one
reference to many and replace all the references with the correct
archival accession IDs. We write the accession IDs directly into
the normalized XML rather than maintain that information as a
separate mapping table.

Generate Descriptive Metadata
One of the interesting characteristics of e-journal content is

that descriptive metadata is abundant; in some cases there is too
much metadata. E-journal articles supplied in marked-up SGML or
XML (either full text or headers) normally have all the descriptive
metadata clearly identified: author, title, journal, volume, issue,
date, etc. In some cases publishers even include extra metadata not
used directly in the article such as previous titles by which the
journal was known or the identity of the copy editor or the date on
which the proofs were mailed to the author. Some of this
additional metadata is really the publisher’s own business process
data, not part of the published article. After consultation with the
publisher we will remove that non-content information during
conversion.

The descriptive metadata that goes into the Portico METS
files is extracted from the NLM DTD article instances. It is then
run through a light-weight automated curation process in which it
is checked for required values such as ISSN and date of
publication and ISSN and journal titles are validated against the
master list of journals for which we have archiving agreements.
This assures us that we are archiving only content for which we

have a contract and also identifies cases where a title change has
occurred if we have not already been notified of that by the
publisher.

Release to Archive
The automated processing is followed by human inspection

and problem resolution. After all problems have been successfully
resolved, the content is packaged for release to the archive: new
checksums are calculated, Portico METS files are created, one per
article or equivalent, and are validated.

Archive Ingest
The content that has gone through the Content Preparation

System “pre-processor” is loaded into the archive in the process
shown in Figure 3.

Check Agreement ID
We have a business requirement that we only archive content

for which we have appropriate archival rights, usually in the form
of a signed contract with the rights holder or agent. Every file in
the archive is traceable to an agreement; we even have a
placeholder agreement to identify the rights in documents that we
have created ourselves or which are in the public domain. In our
current implementation, the contract or agreement constitutes the
rights metadata for the archive. We expect that a more elaborate
implementation of rights metadata tracking will be necessary in the
future.

Check Format and Preservation Level
Every file in the archive is assigned a format name that points

to an entry in the format registry. Every file is also assigned a
preservation level: fully supported with promise of migration,
supported with reasonable efforts only, or byte-preserved with no
promise of migration. The preservation level is determined first
from the format validity: a defective file cannot be fully supported;
at best we can promise only reasonable efforts. Only a fully valid
file can be fully supported.

During archival ingest we double check that the new content
as described in the Portico METS files does not contain formats
unknown to the archive’s format registry and that it does not make
preservation commitments that exceed the capabilities of the
archive. This check is not strictly necessary right now as we
control the “pre-processor” and the archive and keep them
synchronized. We expect that in the future content may be pre-
processed elsewhere or on other systems, in which case this check
would be essential to ensure that we are not making commitments
that we cannot fulfill.

Figure 3 Archive Ingest

Other Steps in Archival Ingest
The remaining steps in archival ingest are straight-forward:

verify that all the files mentioned in the Portico METS file are
present, verify that the checksums match, and finally update the
Portico METS file to include the ingest date and time. Accession
IDs were assigned in the Content Preparation System; in the future
it may be necessary to move that to this point when content is pre-
processed by other systems.

Future Directions
The Portico e-journal processing system was developed based

on test data provided by the ten partner publishers who
participated in the Portico pilot phase. Though the test data was
chosen to cover a variety of different e-journal publishing systems
and content delivery platforms, we expected that new problems
would arise as we encounter new publishers. That has indeed
proved to be the case. Among the enhancements now under
development are
• Generating minimal descriptive metadata when no XML file is

supplied (e.g., covers and front matter in PDF) by
“borrowing” issue-level metadata from sibling articles

• Extracting issue level metadata from external manifest files
• Automatic deletion of extraneous unreferenced GIF files (too

many GIFs)
• Shared directories of “library” GIF files referenced by many

articles (too few GIFs)
• Automatically lowering the preservation level of well-formed

but not valid PDF files to “Reasonable Effort”
• Automated repair for instances of formats with recognized and

fixable problems
• Format validity of “Not Determined” so that we can archive

content before all the necessary validation tools are available
We expect that this list will continue to grow for the next few
years. As with any new system, use engenders feature enhancement
requests.
 Although the workflow described here was developed to
process electronic journals, the underlying content model used to
describe and manage the archived content is not journal-specific.
All of the tools and many of the processing steps are sufficiently
generalized that we expect to be able to support the processing of
other content types on the same architecture. The details and
sequence of the automated processing steps would likely change,
however.

References
[1] Archiving Electronic Journals; Research Funded by the Andrew W.

Mellon Foundation (Digital Library Federation and Council on
Library and Information Resources, Washington, DC, 2003)
http://www.diglib.org/preserve/ejp.htm

[2] E-Journal Archive DTD Feasability Study Prepared for the Harvard
University Library Office for Information Systems E-Journal Archiving
Project by Inera™ Incorporated (December 5, 2001)
www.diglib.org/preserve/hadtdfs.pdf

[3] http://dtd.nlm.nih.gov/
[4] http://hul.harvard.edu/gdfr/
[5] http://www.loc.gov/standards/premis/
[6] http://www.schematron.com/
[7] www.cdlib.org/inside/diglib/ark/noid.pdf
[8] www.loc.gov/standards/mets
[9] http://hul.harvard.edu/jhove/

[10] Evan Owens et al., A Format-registry Based Automated Workflow for
the Ingest and Preservation of Electronic Journals, Digital Library
Federation Fall Forum 2005 http://www.diglib.org/forums/fall2005/ or
http://www.portico.org/about/Portico%20DLF%20Fall%202005.pdf

[11] http://www.jstor.org/
[12] http://www.clamav.net/

Author Biography
Evan Owens is Chief Technology Officer of Portico. Prior to joining

Portico in 2003 he worked for the University of Chicago Press for over
twenty years in various roles including IT Manager and Electronic
Publishing Manager of the Journals Division. He has been a frequent
speaker at conferences in the US and in Europe on publishing technology
topics including SGML/XML for journal publishing, SGML/XML editing
and typesetting workflows, and peer-review systems

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

