

Efficient Ingest of Datasets in a Two-Stage Archival Process:
Easy-Store
Rutger Kramer and Laurents Sesink; Data Archiving and Networked Services; The Hague, The Netherlands

Abstract
The recently founded organization Data Archiving and

Networked Services, based in The Hague, the Netherlands, has
been given two basic responsibilities: storing datasets resulting
from humanities and social sciences research, and improving the
data infrastructure for these two fields. From the start it was
decided that for DANS to be able to take on these responsibilities,
a new approach to data archiving should be developed. This paper
outlines this new approach, which is based on a two stage archival
process, and will highlight one component of this approach which
we nicknamed Easy-Store.

Introduction
In September 2005 a new data archiving institute has been

founded in the Netherlands called Data Archiving and Networked
Services (DANS)[1]. DANS is the national organization
responsible for storing and providing permanent access to research
data from the humanities and social sciences. DANS is a joint
initiative of the Royal Netherlands Academy of Arts and Sciences
(KNAW)[2] and the Netherlands Organization for Scientific
Research (NWO)[3]. By 2004, these organisations had recognized
the impending backlog in the storage and dissemination of digital
research data from the humanities and social sciences, despite the
rapid progress offered by fast-growing electronic facilities. Such
progress is vital as it facilitates both the reuse of data and the
possibility to verify publications based upon these datasets.

Reliability
The main goal of digital archives is to underwrite the access

to the digital information stored in the archive. Another important
role of the archive is to give users an indication of the quality of
the stored data. Although there are thousands of digital archives in
all kinds of settings, there is until the present no common strategy
for the long term preservation of digital data. Thereby is it
impossible for archivists to benchmark the quality of the digital
data in the archive. DANS will fulfil its remit in a way that
satisfies certain criteria of quality and permanent accessibility to
the data. For this purpose DANS is developing a seal of approval.
The DANS seal of approval sets minimum requirements, which
guarantees that data sets are: of a reliable quality, permanently
traceable, accessable and useable. These requirements are
consistent with international standards and guidelines for digital
archiving, such as OAIS (the Open Archival Information System),
and the standards for Trusted Digital Repositories of the RLG
and NARA (Research Libraries Group and National Archives and
Records Administration) in the United States, and Germany’s
NESTOR (Network of Expertise in Long-term STOrage of
Digital Resources - A Digital Preservation Initiative for Germany).

Challenge
It is expected that DANS will have to ingest and manage an

increasing number of datasets. It is thereby of particular
importance to ensure that deposited data meets a maximum
standard of quality, traceability, accessibility and usability.

If DANS were to hold on to the traditional process of data
archiving, i.e. having archivists enter extensive metadata for each
deposited dataset, it is likely that the throughput of data from
ingest to dissemination will clog due to the strain on personnel
entering the metadata.

Thus, it was clear that in order to enhance the efficiency of
the process, archivists would have to save time on acquiring and
entering metadata, checking the file format and structure and
converting it to a durable format. What also became clear was that
if you were to spend less time on these basic responsibilities, the
overall quality of the archive – metadata, retrievability, usability of
datasets – could be jeopardized.

DANS developed a suitable compromise that can serve as a
solution to the data-flood problem and can also eliminate the
quality vs. quantity dilemma.

Two-Stage Archiving
The archival process DANS is implementing consists of two

separate processes we nicknamed Easy-Store and Deep-Store.

Easy-Store
Every dataset that comes in will be handled according to the

steps defined by the Easy-Store process, which effectively means
that:
1. the depositor provides basic metadata according to an

application profile based on Qualified Dublin Core[4],
2. he or she uploads the metadata and the dataset files to DANS,
3. an archivist checks the metadata and the files using a

predefined workflow,
4. finally, if everything checks out, the dataset is published on

the DANS website.

Shifting the responsibility of the creation of metadata from

the archivist to the researcher is the key difference between the old
process and the new. Researchers used to be contacted whenever
the archivist needed help creating the metadata; in the new
situation the researchers themselves will be able to describe their
work. For ‘self archiving’ their data sets researchers must not be
confronted with a twenty page metadata entry form whenever they
want to upload their material. Entering some basic but very
necessary metadata must not take a lot of time. If researchers have
to spend too much time filling out a form, they are not likely to
upload more material in the near future. To make the ‘self
archiving’ process as smooth as possible this information has to be

retrieved automatically. Most of the contextual information which
can give an opinion of the quality of the datasets is stored in
administrative systems. Research information can be exchanged
for example by means of the Cerif standard (Common European
Research Information Format)[5] and information about
publications based upon the data sets can be retrieved by means of
the Open Access Initiative - Protocol for Metadata Harvesting
(OAI-PMH)[6].

The dataset files will be stored in their original format.
Periodically migrations will have to be performed, but this does
not guarantee easy access to the files in general. Although we are
not able to address this issue for each and every deposited dataset,
some datasets can be marked as exceptionally useful or important.
These datasets will go through the Deep-Store process.

Deep-Store
Design of the Deep-Store process is currently in a conceptual

phase. Although no explicit implementation plans have yet been
made, the following things are clear about the objectives of Deep-
Store:
• it should make datasets as easily accessible as possible,
• datasets should be accessible through the internet,
• it should be able to link datasets together or integrate with

existing dissemination systems.

As an example, we’re currently looking at the NESSTAR[7]

system as a possible Deep-Store solution for social science
datasets. NESSTAR enables end users to view metadata, perform
basic statistical analyses, and download the dataset in a number of
popular file formats.

Additionally, new systems can be built within externally
funded projects within the Thematic Development Programs of
DANS, in which we will cooperate with researchers to design
and/or improve a data-infrastructure within their field. One of the
components of such a data infrastructure can be elaborate
dissemination of relevant datasets.

Implementation
The basic functionality that is needed to support the core

activities of DANS is not new or innovative. Document
Management Systems already offer a good basis for ingest, storage
and retrieval of document like objects, which are exactly some of
the basic requirements of the Easy-Store system. The question
was, however, if there is a DMS solution available that can be
implemented according to all of the requirements set by DANS,
and that would fit into the two-stage archival strategy. To answer
this question, we first set out to get an overview of the actual
requirements our archivists will have when it comes to Document
Management Systems.

Apart from basic search and retrieval requirements, some
requirements turned out to be key characteristics that would
determine whether a proposed DMS would suit the needs of
DANS. Some of these requirements are listed below:
• the possibility for researchers to enter the metadata for a

dataset themselves, and upload the dataset through the
Internet,

• the possibility for (anonymous) users to download datasets for
reuse, and determine which users can download which dataset,

• the possibility to implement a workflow process that will be
applied by the archivists,

• support for persistent identifiers,
• support for authorization and authentication,
• linking and integration with other (3rd party) systems in the

future.

Especially the last requirement is of paramount importance;

integration with future implementations of Deep Store solutions
has to be possible.

Acquisition vs. In-House Development
A number of commercial and open source implementations

have been considered during the analysis. Unfortunately, and not
unexpectedly, none of them gave a 100% coverage of the
requirements set by DANS. This is not due to structural
shortcomings of the respective products, but rather due to the wide
range of implementation specific requirements set by DANS. We
estimated that if we were to choose one of the off-the-shelf
solutions and customize it to suit our needs, a substantial amount
of development would be needed to make the software fit into our
organization.

In order to get a better understanding of the implementation
issues posed by the requirements, we decided to start development
of a small proof-of-concept application. During the two weeks that
were reserved for this proof-of-concept, we came to realize that
instead of acquiring an off-the-shelf application and customizing
it, in-house development of a complete system could also be a
viable solution. Developing the application ourselves would cost a
lot of additional development – more that customization would
cost – but on the other hand could guarantee that the requirements
would be covered. Moreover, we would have complete control
over the source-code which would enable us to make integration
with, for now, unknown applications possible.

Proof of Concept
The proof-of-concept application that was developed

consisted of two separate components: a storage component and a
web-access component. The Open Archival Information System
(OAIS)[8] is used as a reference model for the archiving process.

The storage component should ensure reliable storage of

deposited datasets and its metadata. In order to do this, a
distributed storage system will be implemented that will keep
redundant copies of every dataset dispersed over two or more
servers. The idea for this redundant storage is based on the Lots of
Copies Keeps Stuff Safe (LOCKSS)[9] concept. Every data object
that comes in will be stored on two or more autonomous storage
servers. If, at some time, one of the servers is not available, the
other server should still be able to deliver the data object when
requested. Moreover, as soon as the ‘back-up’ server detects that
another server holding a copy of one of its data-objects is off-line,
it will try to mirror its copy at another available server.

Data-objects are stored on the server along with their
metadata. If the data-object consists of multiple individual files,
each file can have specific metadata associated with it, as well as
inherit general metadata that is descriptive for the entire data-
object. It doesn’t matter which metadata format is used to describe
the objects: although the server stores the metadata and generates

full-text indices, it doesn’t try to interpret the metadata in any way.
The only requirement to the metadata is that it is formatted as
XML.

The storage servers can be contacted by using a simple, but

specific API. The API contains all of the commands that can be
issued for the server, e.g.
• CreateAip, Create a new storage container for a data-object
• AddCategory, Create a new category that can contain data-

objects
• AddAipToCategory, Place a reference to a data-object into a

category
• GetCategoryContents, Retrieve a list of data-objects contained

in a category

Figure 1. Internal Storage Structure of the Archival Information Package
(AIP)

• GetMetadata, Retrieve the metadata of a data-object, or of an
individual file inside a data-object

• QueryMetadata, Full-text search the available metadata and
return a list of data-objects that correspond to the query.

These are just a number of commands that can be issued and
by no means represent the full functionality of the system.

The RPC mechanism for issuing commands is based on

simple TCP-IP socket communication. Every command is atomic
in nature, in that it performs exactly one operation at a time.

Applying a distributed architecture to this storage layer offers
more advantages than redundant storage. Since the servers are
implemented as autonomous entities, adding new servers is as
simple as starting up a new instance, and telling that instance
where it can find other servers. Furthermore, queries over large
amounts of metadata can be forked over all the servers, which can
significantly speed up search result retrieval time.

Internal Storage
Every data-object will be stored as-is on the server’s

underlying file-system. For each data-object, a folder is created
named after the data-objects identifier. This folder will contain
three subfolders (see also fig. 1):
• metadata, containing the XML metadata documents,
• filedata, containing all of the individual files contained in the

data-object.
• Mgmdata, containing managementdata used by the server

system itself.

The metadata folder can be subdivided into folders for each

metadataformat used by the client. Underneath each format-folder,
one general metadata document is maintained describing the
contents of the entire data-object. Apart from that, a metadata
document is maintained for each individual file in the data-object.
The organization of the metadata document follows the internal
organization of the data-object.

The filedata folder contains all of the individual files and can
be organized in a folder tree-structure, just like common file-
system implementations. It is this internal organization that is
mirrored in the metadata folder for each metadata format.

The managementdata holds information about the data-object

itself, such as creation and modification dates, operations
performed on the data-object, and membership of categories. It can
also contain client-specific information, such as workflow
information.

Categories can be used to categorize the data-objects. Every

data-object is always part of the so-called ‘root’ category, and any
data-object can be added to every category. This means that data-
objects can be a member of several categories. The categories
themselves are organized as a simple tree structure. One category
can contain several subcategories, and subcategories will always
have exactly one parent.

As was said before, the implementation of the storage system

is to be as generic as possible. Interpretation of the metadata or any
other kind of intelligence should be implemented by the client,
following the data and services model.

User Interface: Web Application
The client we are developing at the moment will be the core

application of DANS. It will contain some specific workflow and

management functionality that may or may not be applicable to
other organizations. However, we wanted the webapplication to be
available for reuse as well. In order to address this, we decided to
implement the webapplication as Open Source Software and
based on a plug-in framework; in our case the Eclipse Plug-in
Framework.

Although the Eclipse Plug-in Framework[10] is generally

used as a basis for stand-alone application development, e.g. the
Eclipse IDE, it can also be used for web-applications provided that
you follow a few simple guidelines. The plug-in framework is
based on OSGI Bundles, which defines bundles as individual
functional components. A bundle-developer can define which parts
of the implementation can be ‘enhanced’ by others by providing an
extensionpoint. This extensionpoint provides, among other things,
an Interface that the enhancing developer should implement. When
the extension has been written, it can be hooked into the plug-in
registry, which will make it immediately available to underlying
plug-ins and applications.

Every part of the webapplication that can be enhanced, or
could require an organization- or process-dependent
implementation will be built as an extensionpoint. When a third
party adopts the webapplication for its own use, customization can
be achieved by providing suitable extensions; this means
implementing actual classes in Java. Although programming
knowledge is required to customize the webapplication, this
approach offers a wide range of flexibility to anyone interested in
using our application.

Of course, anyone could implement an entirely different

(web)application that communicates with the storage-system. The
API will make it possible for anyone to use the functionality of the
storage-system.

Conclusion
The amount of time an archivist has to spend to prepare a

deposit for archiving can cause clogging of the ingest processes
which will either stall or eliminate the possibility of reuse of
datasets. In order to guarantee that deposited datasets will be
disseminated even though the amount of datasets that will be
deposited exceeds the normal processing capacity of DANS, some
fundamental changes are needed in the archival process.

The Two-Stage archival process can prove to be a good
compromise:
• datasets can be archived and republished relatively quickly
• a subset of datasets will be archived extensively

We are working on the implementation of an information
system that will enable researchers to deposit and download
research data and enable archivists to work more efficiently.

Although there are still some uncertainties, such as the
implementation of DeepStore solutions, we feel that we have made
a good start with the implementation of the EasyStore system. It is

based on some of the best practices from the archiving field, and
will be scalable to future needs.

Future Work
We have scheduled our first release of the system for August

2006. After the first release, DANS will begin using it for its daily
work. We are anticipating additional development work to
implement additional wishes and requirements that will arise when
archivists and researchers will actually start using it.

The first release will be made available under an Open Source
license, and we would like to encourage other organizations to try
it, provide us with feedback, and possibly join us in future
enhancement of the software.

The DeepStore concept will become more concrete during the
following months. Issues like the selection process for datasets that
are eligible for DeepStore dissemination must be tackled, and
projects will be started to actually disseminate selected datasets for
instance through the NESSTAR system.

References
[1] Data Archiving and Networked Services Website,

http://www.dans.knaw.nl/nl/ (2006-03-09).
[2] Royal Netherlands Academy of Arts and Sciences Website,

http://www.knaw.nl/ (2006-03-09).
[3] Netherlands Organization for Scientific Research Website,

http://www.nwo.nl/nwohome.nsf/pages/SPPD_5R2QE7_Eng (2006-
03-09).

[4] Dublin Core Qualifiers,
http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/,
2006-03-09

[5] euroCRIS, http://www.eurocris.org/en/taskgroups/cerif/
[6] Open Archives Initiative, http://www.openarchives.org/
[7] NESSTAR Ltd. Website, http://www.nesstar.com (2006-03-09).
[8] ISO Archiving Standards, http://nost.gsfc.nasa.gov/isoas/
[9] LOCKSS Program Home, http://www.lockss.org/index.html (2006-

03-09).
[10] Eclipse, http://www.eclipse.org/

Author Biography
Rutger Kramer received his MSc in Information Technology from the

Technical University of Delft (2004). At that time, he was employed as a
Technical Scientific Researcher at the Netherlands Institute for Scientific
Information Services. He is currently working for Data Archiving and
Networked Services as an Information Scientist. In this capacity he is
responsible for the development of the EasyStore system, as well as
carrying out several R&D related projects.

Laurents Sesink studied history at the University of Utrecht and
historical information science at the University of Leiden. He worked
during 1995-2002 at the Netherlands Institute for Scientific Information
Services on different large scale Research & Development projects as
senior specialist digitisation services, technical scientific programmer and
coordinator of a software development group. During the period 2003-2006
he was worked as a senior policy advisor at the Dutch Academy of Sciences
within the subject of scientific and administrative information.
He is currently employed as an Information Scientist at DANS and his focus
is on fundamental issues regarding accessibility to digital scientific data.

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

