

A Framework for Object Preservation in Digital Repositories
Andrew Boyko, Babak Hamidzadeh, Justin Littman; Office of Strategic Initiatives, Library of Congress; Washington, DC, USA

Abstract
The term “digital repository” is used in disparate contexts, in

both in a formal sense to describe a complex and complete
preservation system and its policies, and in a more intuitive but
less clearly defined sense, often implying simply a robust storage
system, or a content management system. Lack of formalism in use
of this term can impede development of formal requirements for
building specific repository systems and, consequently, the
widespread use of such systems. On the other hand, the complexity
of a formal, system-wide view can impede understanding and
implementation in many environments.

To attempt to reconcile these concerns, we present a
pragmatic definition and scope for digital repositories (systems
whose primary function is the long-term preservation of digital
objects). Taking a “bottom-up” approach that builds abstractions
on top of reliable storage systems, we establish a minimal general
vocabulary for the expression of digital objects, independent of
policy, in the form of a low-level content model. We show that the
“primitives” supplied by this vocabulary can be used to express
the particular content and metadata models for several disparate
repository case studies.

Introduction
In complement with the comprehensive top-down system

perspective of the OAIS model [6] for a repository system,
Rosenthal [5] discusses the characteristics of a reliable storage
system, taking a “bottom-up” view of repository systems that
describes storage systems as the foundational layer of the
repository. Proceeding in this bottom-up path from a storage
system at the lowest layer, it is reasonable to define requirements
for a bit-preservation system, an abstraction atop a set of robust,
replicated storage systems meeting local needs. By bounding the
scope of this abstracted bit layer, charging it with ensuring long-
term fixity of bit-streams whose meaning is opaque to that layer,
we can separate those concerns from the requirements of a system
to manage the intellectual matter of digital objects (as distinct from
the bits that compose the objects).

The requirements for such an object preservation system can
then assume that a bit preservation system underlying it is trusted
to meet the requirements of fixity and security of that repository.
An object preservation system can remain conceptually unaware of
the characteristics of the bit preservation system’s storage layers,
such as the implementation technology, replication or validation
policies, or even the physical location and ownership of the
storage.

Definition
We define a digital preservation system as a set of layered

dependent systems, namely:
• storage systems,
• a bit preservation system, and
• an object preservation system.

These systems provide layers of technical infrastructure, atop
which repository instances may be implemented. A repository
instance comprises:
• named sets of deposited digital objects,
• a logical model that defines the digital objects held by the

repository instance,
• preservation policies and plans,
• designated sets of users, and
• policies and guidelines for the deposit and use of the objects

by each set of users.
A repository instance is a unit of curation and preservation,

and not of access or presentation; an exhibit may collect and
display objects from multiple repository instances.

The relationships between a preservation system, the
repository instances implemented within the system, and the
logical models defining those instances may be compared to the
case of a database system. Given a general-purpose database
engine, atop which specific databases are implemented, the
particular form of the content in these databases is defined by a set
of schemas, which describe the logical structure of the data.
Similarly, the repository system is a general-purpose preservation
tool, atop which specific instances are implemented; the forms of
the digital objects managed by an instance are completely
expressed by that instance’s logical model.

An object preservation system may be scoped as providing a
layer of abstraction over the bit-preservation system to manage and
preserve complex objects over time. In this layer, the content is
given identity, structure, description, and interrelationship, in order
to support the needs of preservation. An object preservation system
provides a language in which a logical model for a given
repository instance can be expressed. As such, it may be scoped to
be policy-neutral, relying on higher-level systems to provide
policy and behavior.

In this bottom-up approach to scoping repository system
components, the specific nature of the layers above the object
preservation system has been left unstated; it is reasonable to
assume that the users of the object preservation system will include
both humans (curators, content users) and systems (ingestion and
access systems, as well as systems implementing local repository
policy and structure atop this general framework).

In this paper we present a set of basic primitives for
constructing logical models that characterize and interrelate digital
objects within a repository instance. We also demonstrate the
applicability of the logical model primitives with two case studies.

Logical Model
The essential notion of digital objects as collected, described,

and identified sets of bit-streams [1] has been enhanced by the
addition of inter-object relations as primary aspects of a digital
library collection [3]. Using these general concepts as background,
we propose that the abstractions necessary to provide a means of
expressing digital objects atop a robust bit-storage layer consist of
identification and relation, and the familiar forms of common

digital object schemes can be expressed by combining these
primitives. We delineate here the characteristics of a notional
object preservation system beginning from this bottom-up
perspective.

We may define an object in the context of an object
preservation system simply as a unique, stable identifier that may
either be associated with a bit-stream of fixed content, or with no
content at all, in which case the object simply represents a concept
to be related to other objects in the repository instance. The
identifier bears no meaning to the object preservation system itself.
The object preservation system maintains the identifier, and the
binding between the identifier and the content, stably and for the
long term, just as the bit preservation maintains the content itself
reliably in the long term.

With similar minimality, a relationship between two objects
in a particular repository instance may be defined as an expression
of some directed conceptual connection, analogous to an RDF
statement [4]. Given two objects a and b, a particular relationship
R(a,b) expresses the sentence “a R b” (as grammatical subject,
verb, and object). A relationship is not an object; it is simply a fact
managed by the object preservation system, and again is assumed
to be reliably recorded for the long term, presumably by the bit
preservation system.

Beginning with the abilities to create and identify objects, to
associate them with stable bit-streams, and to relate them to one
another, we consider the task of defining a core set of relationships
sufficient to express the breadth and complexity of rich digital
content. Using the above syntax R(a,b) to depict these
relationships, a reasonable set might comprise:
• Descriptive relation D: D(a,b) indicates that the content of

object b describes the content of object a.
• Typing relation T: T(a,b) indicates that object b represents the

type of object a.
• Versioning relation V: V(a,b) indicates that the content of

object b is a newer version of the content of object a.
• Containment relation C: C(a,b) indicates that object a

contains object b, thus supporting complex structure as well
as aggregation.

• Fragment relation F: F(a,b) indicates that the content of
object b is logically a fragment, or a part of the whole, of the
content of object a.

This core set is not intended to be closed, nor can it be considered
provably complete, but these relationships express particular
concepts that apply broadly to content across a variety of domains.
In order to extend the set of relationships to express domain-
specific concepts, an object preservation system may provide a
means for extending this set:
• Local relationships: an relationship R(a,b), defined within a

particular repository instance, indicates a fact that the object
preservation system can record about objects a and b.

Given the ability to create simple objects and relate them in these
specific ways, we believe we are able to build a vocabulary of
primitives that can be used to represent real, existing content sets
of varied structure, format, and policy, without requiring
transformation, or decomposition of the content being stored into a
particular normalized format. By remaining neutral to the form of
the content at the bit level, and providing an overlay of intellectual
structure atop the content, we increase the likelihood of adoption,

and ease the implementation, of such an object preservation system
in a new repository instance.

Functional Areas
To clarify the implications of the scoping of object

preservation systems as described above, we describe in more
detail what typical repository services can be implemented in
terms of the above primitives.

Identification
By ensuring that the identifiers used by the object

preservation system are opaque to it, the local identifier policy for
a given repository instance can be supported, whether the
identifiers bear meaning to the repository’s users or not. For
example, a particular repository instance may desire to assign
identifiers with some semantic meaning for certain types of object,
while automatically assigning identifiers to other objects, perhaps
those considered descriptive or otherwise auxiliary. Such policy
decisions may be expressed at this layer, but at the same time are
not meaningful to it.

Object contents
The object model primitives presented here do not prescribe,

or even point toward, a particular approach for structuring or
storing the content in a repository instance. Rather than
encouraging any particular policy, these primitives merely provide
a common way to describe the internal structure of a digital
collection, at whatever level of content understanding is deemed
necessary for curation.

The conceptual contents of an object may be any combination
of components of digital data, or other objects within the instance;
thus, the definition of object intentionally encompasses both a
single intellectual work and complex, nested collections and
aggregations.

Descriptive relations
By generalizing description as an object-to-object relationship

without obliging a particular form or structure, this model equally
supports unstructured descriptive elements, such as the binding of
arbitrary facts to a given object, and highly structured metadata
formats, such as a PREMIS [7] document containing preservation
metadata for an object. Enforcement of a particular descriptive
policy or format is external to the scope of the object preservation
system as we describe it here.

In this model, objects that describe others via this relationship
are not inherently different than objects bearing primary content.;
for example, descriptions may themselves be described. The object
preservation system records the fact that a given object may
represent metadata about another, without otherwise treating it
differently.

These relationships may also be used to relate content to
contextual or behavioral information, which might specify actions
and functions that can be applied to an object, in order to
understand the object and to interact with it in a useful manner.

Typing
Providing the ability to relate objects to an object defining a

type is analogous to description, but specifically provides a way to
document the kind of multiple objects in accord with local

repository instance policy. By providing the type relation
primitive, the object preservation system gains the ability to
express, in essence, metadata at the level of the repository
instance, describing the types and structure of the content therein,
as well as allowing types themselves to be related or described as
needed.

The meaning of “type” in this context is unstated, and applies
with equal validity to digital formats, to metadata container
formats, or merely to general intellectual categories; in this, as in
other cases, the object preservation system provides a means of
expression without requiring a particular policy.

Versioning
By providing versioning primitives, the change in a piece of

content over time can be managed, without obliging a bit
preservation system to allow updates to content. With this
primitive, the historical sequence representing an object’s lifespan
can be expressed as required by local policy. A repository instance
may thus choose to represent an object’s change over time since
creation as individual objects, or perhaps to record only the
previous version, or to allow no change at all.

Containment
Expressing containment as an object-to-object relationship

supports a range of content models, allowing the expression of a
containment structure (analogous to directories or folders in a bit
preservation system, but less rigidly expressive) while not
precluding an instance from preferring to express containment
internally to the object content itself (as in the case of a structured
metadata document, or a ZIP-format archive). Expressed as a
relationship, containment can thus support objects representing
arbitrarily nested containers, each container in turn able to be
described, typed, or versioned in the same way as any other object.

Fragments (Part of whole)
Fragment relations allow an object to refer to a portion of

another object, with the assumption that the contents of the portion
in question are referred to, rather than replicated entirely. An
object preservation system is thus able to represent objects whose
content is physically a sub-component of the content of other
existing objects, without requiring objects to be disassembled to
the level of the desired fragments. How to express a reference to a
portion of an object (e.g. a region of an image, or a page of a
document, or a portion of an audio recording) is necessarily
dependent on the format of the object, and cannot be expressed
solely in the primitives of the object preservation system.
However, typing relations can be used to bind a fragment object to
appropriate format or algorithm descriptions, so that the actual
extraction of the fragment’s data can be performed at
dissemination time, by a system with understanding of the
particular expression.

For example, a fragment object representing a particular
region of a large image might be expressed, in its content, in terms
of a set of coordinates within that image. For an object
preservation system to be able to actually extract the relevant
region of the image based on that fragment’s description as
coordinates would require some indication of the type of the
fragment object, as well as requiring a client with specific
understanding of that type to also understand how to interpret the

fragment’s contents in order to extract the bits representing the
desired region from the original image file.

Local relations
Local relations provide a way to define, in the context of a

particular repository instance, a relationship that is descriptive of a
state between two objects, without being logically part of either
object. This extends the expressiveness of the core set of relations
to domain-specific relations, supporting fine semantic distinctions.

While, for simplicity, the relation language is limited to
unidirectional binary relations, more complex relationships can be
expressed as objects themselves, and related to their participating
objects as required.

Case Studies
In this section, we describe the logical models for two digital

collections, in order to demonstrate the generality and sufficiency
of the concepts and definitions discussed above.

Prokudin-Gorskii Photo Archive
The Library of Congress’s Prokudin-Gorskii photographic

collection [8] contains full-color digitally composited images,
created in the digital domain from scans of early 20th century glass
plate negatives. This collection presents a more complex scenario
than the general case of a collection of digital images, for each
composite image is generated from superimposed scans of a plate
containing three filtered images, corresponding to the red, green,
and blue channels of the composite.

The digital representation of an image in this collection might
be represented as discrete files at the bit storage layer,
corresponding to the components:
• Master images for each color channel, produced by scanning

the negative.
• The digitally composited full-color image.
• Derivatives (lower-resolution, compressed renditions) of the

composited image, such as a thumbnail image for access.
Given these artifacts of interest, one possible use of the primitives
would construct an object model containing, for a given image:
• Objects created to provide an identity for each of the image

files stored in the bit preservation system (the scanned
negatives, the composite, and the derivatives). In this example,
we might identify these image objects as:

Ired-channel-scan-master
Iblue-channel-scan-master
Igreen-channel-scan-master
Idigital-composite-master
Idigital-composite-derivative-thumbnail

• Local relations declared to represent the derivative relationship
between the composite master and the derivatives produced
from it. Expressed in the syntax given earlier:

is-derived-from(Icomposite-master , Icomposite-derivative-thumbnail)
• Local relations defined to represent the relationship between

the monochromatic color channel images and the composited
full-color work:

is-composited-from(Icomposite-master , Ired-channel-scan-master)
is-composited-from(Icomposite-master , Igreen-channel-scan-master)
is-composited-from(Icomposite-master , Iblue-channel-scan-master)

• Objects bearing technical metadata for each image file, and a
descriptive relation binding each metadata object to the

appropriate image object. With the technical metadata for a
given composite master identified by TMcomposite-master, the
core descriptive relation D(a,b) is used:

D(Icomposite-master , TMcomposite-master)
 which can be read as:
 The object TMcomposite-master describes object Icomposite-master.
• A “primary” object representing the actual physical

photographic negative, with no bit-stream content of its own,
and relationships between this primary object and the various
objects described above that represent it partially or
completely. Identifying this primary object as Iphysical-negative,
these relationships may be expressed as, for example:

is-represented-by(Iphysical-negative, Icomposite-master)
 How to define the particular local relationships of a repository

instance is curatorial policy; the object preservation system is
agnostic regarding the semantics of these relationships.

These objects and relations thus convey a reasonable

approximation of the intellectual relations between the physical
work and the digital representations, and are stated as a conceptual
overlay atop the digital data that make up the collection.

Web Archive
The Library of Congress’s collections of content harvested

from the World Wide Web consist of approximately forty
terabytes of material, comprising content harvested within the
institution, content harvested by contractors, and donated content.
This content varies widely in essentially every characteristic –
content type, original source, complexity – other than having been
published on the Web at some point. Each item in the collection
was delivered in a Hypertext Transfer Protocol (HTTP) response,
consisting of two parts, an HTTP-specific preamble (header
information) and a message body.

A Web harvesting tool might, when collecting a site, store
each harvested resource in a file, containing the complete HTTP
message retrieved from the Web server. A mapping of this content
to the object system primitives would include:
• An object providing identification for the HTTP message that

was received from the Web server and stored in the bit
preservation system.

• Objects representing the HTTP header preamble and the
message body. A fragment relation between these objects
would relate them to the object containing the HTTP message;
rather than repeating the content of the message, the content
of these objects would express a reference to the relevant
portion of the HTTP message. Note that the language in which
this reference would be expressed would depend on the kind
of content, and thus would require logic external to a generic
object preservation system to interpret when the fragment is to
be retrieved.

These individual items, each originally addressable by its own
URL when retrieved from the Web, are highly dependent on one
another for actual use. The Web depends on a rich variety of
expressions of interrelationships between content; without
expressing these in the repository, the content is not completely
usable. A Web page is actually composed of potentially dozens of
individual items, including a containing HTML document and
logically embedded but physically distinct images, subdocuments,

and media objects. The object preservation system can express
these relationships, in order to make these dependencies explicit.

The constitution of a page, a single intellectual item in the
user’s view but made up in actuality of many repository objects,
might be expressed by defining a local relationship:

is-embedded-in(Oembedded-item , Oembedding-item)
which expresses the logical sentence:

Oembedded-item is embedded in Oembedding-item.
 or, more generally,

Oembedding-item depends on Oembedded-item in order to be usable.
Given an HTML document, and an image (such as a logo graphic,
or an advertisement), this relationship definition allows us to
express the nature of their dependency. We choose these local
relationships, instead of expressing this dependency as the core
containment relationship, because the nature of the embedding
relationship is a referential one; an HTML document may embed
any other item by naming its URL, without having secured any
intellectual rights to that object, nor any commitment that the
named item actually exists. Thus the fact of an actual embedding
relationship between two particular items in a repository is a
separate piece of information from any information within the
items themselves, which is precisely the reason for having
distinguished relationships as inherently external to objects.

Perhaps even more essential to the nature of the Web is a
linking relationship between web items; links provide the Web
with its entire form. While the actual expression of a link from one
document to another is similar to embedding (one object
references the name of another), the meaning is different, and so
we define a second local relationship, links-to(Osource-item ,
Odestination-item), which expresses the sentence:

 Osource-item contains a link to Odestination-item.
As with embedding, the information contained in a particular

links-to relationship expressed between two items in the repository
is distinct from the mere fact that a particular object contains a
link; it indicates something specific about the items of our
collection, rather than what the producer wished to express.

As an additional complication, most large-scale Web
archiving aggregates collected content in platform-neutral bulk
container files, typically in the ARC format [1]. In this approach,
there are no individual files for each HTTP message; messages are
compressed and concatenated in the container. The object
preservation system can continue to represent Web archive content
stored in this form at the bit preservation level, without requiring
the unpacking of these containers. The only necessary
modification to the conceptual object model described here is to
represent the individual HTTP messages not as objects directly
identifying a file in the bit preservation layer, but rather as
fragments, related to the object representing the ARC container.
The object representing the message would then refer to the
location of the message within that container, rather than holding
the content directly.

Conclusion
By treating a repository system as a stack of layered services,

a simple object preservation layer can be defined that provides:
• Independence from storage hardware and policies,

considering them a distinct layer “below” in the stack.

• A logical model, based on simple objects and a small set of
relations, which provides sufficient expressiveness to
neutrally support disparate content models and policies.

• Independence from content policy and meaning, considering
that a distinct layer “above” in the stack.

This paper discusses a logical model of this object preservation
system, and its primitives, in more detail. It also provides
examples that demonstrate how the model and its primitives can be
applied to several existing digital collections. Based on this
conceptual model, we are developing requirements for a system to
provide this object preservation function, in parallel with work on
bit preservation policy, and on the content policies for repository
instances implemented in terms of this object preservation system.

References
[1] M. Burner and B. Kahle, “Arc File Format”,

http://www.archive.org/web/researcher/ArcFileFormat.php, 1996
[2] R. Kahn and R. Wilensky, “A Framework for Distributed Digital

Object Services”, May 1995, http://www.cnri.reston.va.us/k-w.html
[3] C. Lagoze et al, “What Is a Digital Library Anymore, Anyway?

Beyond Search and Access in the NSDL”, D-Lib Magazine,
November 2005

[4] O. Lassila and R.R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, W3C,
February 1999.

[5] D.S.H. Rosenthal et al, “Requirements for Digital Preservation
Systems”, D-Lib Magazine, November 2005

[6] Reference Model for an Open Archival Information System (OAIS).
Blue Book. Issue 1. January 2002

[7] Preservation Metadata Maintenance Activity (PREMIS),
http://www.loc.gov/standards/premis/, 2006

[8] “The Empire That Was Russia: The Prokudin Gorskii Photographic
Record Recreated”, http://www.loc.gov/exhibits/empire/, 2003

Author Biographies
Andy Boyko is a digital media project coordinator at the Library of

Congress, working on digital repositories. His work encompasses general
repository and storage systems, and specific content repositories including
electronic journals and Web archives. He received a B.S. in computer
engineering from Virginia Polytechnic Institute and State University in
1994.

Babak Hamidzadeh received his Ph.D. degree in Computer Science
and Engineering from the University of Minnesota in 1993. From 1993 to
1996 he was an Assistant Professor of Computer Science and Computer
Engineering at the Hong Kong University of Science and Technology. He
then joined the Electrical and Computer Engineering Department of the
University of British Columbia and became an Associate Professor in that
department in 2000. From 2002 to 2004, he was Senior Manager of
Information Management and Collaborative Technologies Research at the
Mathematics and Computing Technology Center of the Boeing Company.
Presently, he is Chief Architect and Senior Advisor on Technology in the
Office of Strategic Initiatives of the Library of Congress.

Justin Littman is a digital media project coordinator at the Library of
Congress, working on digital repositories. His work focuses on digital
object representation and validation, including contributions to various
projects such as the National Digital Newspaper Project. He received a
B.A. in philosophy and economics from Amherst College in 1995 and an
M.L.I.S. from the University of Denver in 2002.

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

