

A System for Long-Term Document Preservation
Larry Masinter, Michael Welch; Adobe Systems Incorporated; San Jose, CA

Abstract
 This paper analyzes the requirements and describes a system
designed for retaining records and ensuring their legibility,
interpretability, availability, and provable authenticity over long
periods of time. In general, information preservation is
accomplished not by any one single technique, but by avoiding all
of the many possible events that might cause loss. The focus of the
system is on preservation in the 10 to 100 year time span—a long
enough period such that many difficult problems are known and
can be addressed, but not unimaginable in terms of the longevity of
computer systems and technology.
 The general approach focuses on eliminating single points of
failure - single elements whose failure would cause information
loss - combined with active detection and repair in the event of
failure. Techniques employed include secret sharing, aggressive
"preemptive" format conversion, metadata acquisition, active
monitoring, and using standard Internet storage services in a novel
way.

1. Introduction
Recorded history is a history of documents and records;

individuals and groups keep information in recorded form for later
retrieval. The documents and records are descriptions of events,
financial transactions, government activities, stories, opinions and
so forth. Often a single document is used both for managing a
transaction as well as recording the fact of the transaction for later
review. In the last 50 years, computer systems and information
automation have moved work processes and records online.
Electronic records, however, do not have the same longevity
properties as physical documents, and many unsolved problems
remain.

It is important, then, to be able to retain such records, and to
ensure their legibility, interpretability, availability, and provable
authenticity over very long periods of time. In general,
information preservation is accomplished not by any one single
technique, but by avoiding all of the many possible unfortunate
events that might interfere with preservation or cause loss. A
system for long-term storage and archiving must guard against all
of the problems which might cause inadvertent or unplanned loss.

The desired lifetime of personal and business records ranges
from weeks to months to years and, in some cases, to decades.
Thus, it is important to protect records against events that are
foreseeable in those time frames. However, the technical means
for information preservation for centuries or millennia are hard to
imagine. We therefore define “long-term” as a 10 to 100 year
span.

We begin our description of a system for long-term
preservation with a survey of the variety of events which may
affect documents over time, and we describe the approach we take
to protect documents against such events. The second part of the
paper gives an overview of a system we have designed and

prototyped which combines these approaches to provide for
guaranteed long-term archives of documents and information.
Finally, we conclude with an analysis of the system and a
comparison to related work.

2. Causes of Loss and How to Avoid Them
The general approach taken for reducing the risk of loss is to

acknowledge that loss is inevitable, but that overall reliability can
be improved using redundancy and active correction. That is, we
attempt to design a system in which there are no “single points of
failure”—single elements whose failure would cause information
loss—and combine this with active detection and repair of failure.
Avoiding single points of failure is a fundamental principle applied
to the design of reliable systems, and is essential in a system
designed to provide long-term access to archived documents.
Some single points of failure are easily recognized, such as using a
single physical device or single location. Other risks, such as file
formats, protocols, software implementations, or encryption
algorithms, are less obvious, but no less important.

This section describes different kinds of failures, and the
ways in which we try to guard against them.

2.1. Media Failure
Any practical digital media for recording data—disk, tape,

CD-ROM, and the like—will eventually fail. Failure of recording
media comes sooner than many imagine. Currently the technique
used for avoiding media failure is periodic media refresh—read in
the digital data, check for errors using error correction techniques,
and rewrite on new media. There are many variations on this
theme, including RAID [16] disks and backup strategies. We do
not rely on any single media copy for data safety.

2.2. Site Failure
A more serious cause of data loss can come when the physical

location for holding the media is somehow threatened. For
example, through earthquake, flood, electrical storm, or other
kinds of physical disasters, entire sites holding data may be in
jeopardy. Frequently the method employed for protecting against
site failure is to backup the data off-site. However, this approach
has limitations. Over time, backup media may fail undetectably.
The offsite backup storage location itself may be at risk. Our
approach is to use distributed multi-site redundant storage,
spreading information among multiple physical locations in
different geographic areas, and to include periodic checks of
storage integrity.

2.3. Organizational Failure
Even with multi-site redundant storage, if multiple sites are

controlled by a single institution, storage is at risk if the
organization fails—loses funding, goes bankrupt, or decides to
discontinue its business for data storage. In some cases – when an
organization is managing its own multi-site storage system –

organization failure isn’t a risk that needs to be guarded against,
because the need for long-term archives might also go away at the
same time as the storage. Some systems, such as LOCKSS [18],
employ multiple storage sites, each run by independent
organizations with separate financial backing. Our approach is to
use multiple independent storage providers.

2.4. Software Failure
Another kind of difficulty occurs when there are bugs, errors

or security flaws in software. If each storage site is running the
same software, there is the possibility that a single flaw in the
software will put the integrity of multiple sites at risk. For this
reason, we propose using standards-based protocols for access to
data storage, where different storage sites are running different
implementations of the storage software, so that the integrity and
reliability of stored data does not depend on the integrity and
reliability of any single implementation.

2.5. Malicious Modification or Destruction
For any of a number of reasons, long-term archives may be

subject to attack. It is insufficient to rely on multiple copies
without mechanisms for ensuring that a concerted attack on
storage sites will not cause information to be destroyed or
changed. We focus on increasing the number of sites which must
be simultaneously attacked, and obscuring the identity of those
sites for a particular document [8], as a way of reducing the risk of
malicious modification or destruction [3].

2.6. Loss of Interpretability
Because the goal is to keep retrievable records of human

activities, and not just sequences of bits, it is important to ensure
that the data stored can be interpreted in the future. Thus, a long-
term archive needs to be concerned with the data formats used and
not just bit sequences. The relatively brief history of computer-
based document processing is full of document formats for which
interpreters are difficult to find or are unreliable. While others
have imagined using “virtual machines” to store interpreters for
individual file formats [15] [10], these themselves may be
considered “single points of failure.” Rather, we propose storing
multiple representations of the same document at the time of
creation of the archive. In addition, we propose that as many of
those renditions as possible be “archival quality.” What is an
“archival quality” file format? It is one for which there are
multiple interpreters, written in different languages, running on
different operating systems, and for which there is a specification
precise enough that it is possible to build a credible interpreter
based solely on reading the specification.

 Planning to migrate documents to new formats in the future,
when the stored file formats are “almost obsolete,” is not a
practical solution. Delayed migration risks the possibility that, if
information about a format is lost, it will be too late to migrate!
Thus we emphasize early conversion, at time of archive, to one or
more formats of archival quality.

2.7. Loss of Context
In a large archive of data, each document must be specifically

identified and its context supplied; the context includes
information such as the source of the document, its intended
distribution, whether it is a draft or a final report, and other kinds

of contextual information that, in conjunction with the document
content, turn a document into a record.

Often, in day-to-day use of documents and content, this kind
of contextual information is implicit—not explicitly represented
and therefore at risk of being later forgotten. Thus, we include
explicit acquisition of contextual (descriptive) metadata as an
integral part of an archival record. For example, descriptive
metadata for a text document might include the author, topic,
creation date, distribution, and version of the work. Descriptive
metadata for a photograph might include information about the
subject, the date the photograph was taken, and the photographer.

Metadata also may suffer from “loss of interpretability”; thus
it is important that metadata be stored in a format of archival
quality.

2.8. Loss of Guarantee of Authenticity
Records of transactions may be subject to manipulation. For

physical documents, while the technology for forgery may
improve, the technology for detecting forgery also improves, to the
point where it is frequently possible to be assured of the
authenticity of a physical document.

However, the situation is more complicated for electronic
records; simple maintenance processes or media refresh may cause
loss of clues about document origins or dates and interfere with
processes to manage physical custody of records which might
otherwise be used to determine authenticity. Our approach to long-
term guarantees of authenticity is to request that the storage
services that are holding individual pieces of data also act as
“notary” services, maintaining timestamps of receipt, possibly
validating the authenticity of the document at the time of receipt,
and individually guaranteeing the storage service’s records of such
facts. We propose that each original record have multiple notary
services which individually attest to data authenticity, avoiding a
single point of failure.

2.9. Authorization Failure
There are situations where multiple data storage locations

might still be subject to centralized regulation, legal intervention,
or other events affecting archived data even though the effects
(such as data change or destruction) might be contrary to the
original wishes of the principal creating the archive. For this
reason, it is useful to consider the possibility of ensuring that the
storage repositories are held under multiple legal jurisdictions,
such that a legal intervention in a small subset of locations will
still not cause the archived information to be lost, modified,
destroyed, or revealed in ways inconsistent with the archiver’s
intent.

2.10. Loss of Privacy
While many individuals and organizations may have records

or information that are not particularly sensitive or private, almost
every organization has some records that are private. There are
many different approaches to trying to guarantee privacy in storage
systems, through both technical and operational means. Most of
these systems, however, have a “single point of failure” because
they rely on operational integrity of the storage system. In some
systems, the data is stored encrypted, using a symmetric-key based
encryption scheme, such as DES or AES, which uses random (or
pseudorandom) encryption keys. The security of such key-based

encryption relies on the inability of a polynomial time adversary to
successfully recover the key and on the assumption that a
particular underlying mathematical problem, such as factoring
large prime numbers or determining quadratic residues, is “hard”
and will remain so. Recent history has shown that algorithm
security is relatively fragile [20].

Key-based encryption in a long-term archive suffers from two
major drawbacks. First, the privacy of the document is based on
the inability of an adversary to break the encryption within the
time period during which the document must remain private.
Clearly, if a document that must remain private indefinitely is
archived, there is a problem, because an adversary would have an
indefinite amount of time to break the key. Second, key-based
encryption requires remembering an additional piece of
information: the key. If the key is lost, so is the ability to decrypt
the document. If the keys are stored online, they must be kept
securely for the same duration as the document. Merely
encrypting the key with another key does not reduce the
complexity of the problem. Using key-based encryption may
result in the use of non-random keys, such as keys based on a
typed password. The minimal amount of entropy possible in
passwords that can also be easily remembered leads to easily
successful dictionary attacks.

To avoid the difficulties inherent in key-based encryption, we
turn to “secret sharing” [19] [4], which provides for (N, K)
threshold storage. An adversary who obtains fewer than K
“shares” is unable to learn any information about the document, no
matter how much compute power is applied. Threshold secret
sharing does not require an encryption key, resulting in one less
piece of data that must be remembered over the lifetime of the
document.

3. System for Long-Term Archives
We now discuss the design and implementation of a system

which provides for long-term archive and data preservation, based
on the principles outlined above. The system design is discussed
by reference to the functional steps used to perform the major
operations.

3.1. Select Content to be Archived
Any system for long-term archives needs a mechanism for

selecting the content to be archived. There are a wide range of
possibilities, because archiving might be an automatic part of any
kind of record transaction system, or might be initiated by a
manual process. In our initial implementation, selection is a
manual process, but other kinds of automatic selection are easy to
imagine.

3.2. Prepare for Archive
There are several steps involved in preparing material for

storage in an archival repository, independent of the manner in
which storage is guaranteed.

3.2.1. Gather Descriptive Metadata
For an archive to be useful over the long term, it must include

descriptive metadata. The process for gathering descriptive
metadata is somewhat application-dependent, and might be
integrated as part of some other process, or might be manually
gathered and verified.

In our prototype, we gather simple descriptive metadata
(author, date created, date archived); the system guesses and the
user confirms the information in a dialog window. Other more
complex processes for automatically gathering metadata are the
area of active research [17].

We represent metadata using an XML data structure, Adobe’s
Extensible Metadata Platform [2]. XMP is a published standard
which is of “archival quality”—there are multiple implementations
on multiple platforms and the specification is explicit. XMP is
used to embed metadata directly into a file.

3.2.2. Convert Content to Multiple Archival Formats
To protect against format obsolescence, we propose

converting data from its original form into one or more “archival
formats”, such as PDF/A [13], XHTML [25], or DNG [1]. By
archiving the same document in multiple formats, each document
becomes its own virtual “Rosetta stone,” aiding future
interpretability and mitigating the chances of loss due to format
obsolescence.

3.2.3. Package Together the Original, Conversions, and
Metadata

There is some risk that documents, conversions and metadata
will become separated, if stored separately. While there are many
ways of linking multiple components, we have taken the
straightforward approach of creating a single file which contains
the original document, the metadata, and the converted (archival
format) documents. Once metadata is gathered and the document
is converted into appropriate formats, we maintain the relationship
between them by bundling them together and storing them as a
single “archival package.”

3.3. Distribute to Remote Sites
Having prepared the material in a form suitable for archiving,

we must now store the resulting package in a way that will
guarantee its availability and integrity over a long period of time.
This process involves several components. The basic principle
that links these steps is the use of “secret sharing” [19] [4], in
which we use an (efficient) implementation for creating N “shares”
of data (where each “share” is (nearly) the same size as the original
bundle), for distribution to N sites, any K of which are necessary
and sufficient for reconstructing the original package.

3.3.1. Select Sites for Distribution
Secret sharing involves distributing packages of data to N

sites, where any K of the sites’ data are necessary to reconstruct
the original. The larger K is, the more impervious the system is to
malicious attacks on data privacy. The larger N-K is, the more
impervious the system is to inadvertent or intentional data loss.
The larger N is, the more costly data storage is; the larger K is, the
more costly data retrieval will be. If privacy is not a requirement,
we can use K=1, meaning every “share” is really just a copy of the
original data.

Many of the threats facing long term storage, such as site
failure, organizational failure, authorization failure, and malicious
loss, are addressed by distributing copies of the archival data to
numerous distinct remote locations. We must select remote sites
such that the probability of loss due to geographic, organizational,
economic or political failure is mitigated. This process involves

some amount of evaluation of the qualities of the sites: Are they in
the same geographic location? Do they share the same risks for
political instability? Are they controlled by the same financial
institution?

In our current implementation, we manually configure the
selection of remote sites, but selection might be automated.
Selection should take into consideration the geographical location
and control of the site, in addition to the perceived trustworthiness,
reliability and availability of the providers. Reliability ratings may
be measured based on past observations [5]. Sites with a long
history of availability or that are operated by well established
organizations may be considered more likely to survive in the long
term. We also consider other characteristics of the organization
that operates a site. To reduce the risks of malicious loss, selecting
sites operated by industry competitors might be a good choice, as
they might be less likely to collude.

Sites could also be chosen based on existing contractual
relationships. Parties interested in archiving their documents may
enter into a contract, in which each party agrees to store data from
the other. Techniques such as auctions and bidding for storage
space [6] are also possible.

Based on the selection of sites for distribution and the
evaluation of the reliability and risks associated with those sites,
we can choose the variables N (number of shares) and K (threshold
of shares to reconstruct).

Determining the number of shares to generate and the
threshold for recovery involves a tradeoff between preserving the
document and protecting privacy [24]. Our system provides
flexibility by allowing the user to configure their desire for privacy
versus document preservation. Support for public documents is
provided by using a threshold of one, in which case each “share” is
simply a copy of the original archival package.

3.3.2. Use Secret Sharing to Create Distribution
Given N and K established above, we use a novel and

efficient algorithm for secret sharing to produce shares of the
archival package. Shamir-style secret sharing requires generating
random numbers (to be used as coefficients of polynomials) and
doing arithmetic (multiplication, addition and division) on integers
modulo a prime. The key insight that leads to improved
performance was the use of 257 as the prime number, on a 32-bit
processor. Each byte of the original document is treated as an
individual “secret.” This allows for efficient generation of multiple
random numbers at a time (as a string of K random bytes), the use
of a pre-computed lookup table to eliminate modulo division
operations and 32-bit arithmetic with CPU-supported modulo
operators to compute the polynomial value for each of the N
shares. The results pack into vectors of 8-bit numbers, with a
separate “overflow” bit-vector for those cases where the
polynomial value equals 256 exactly. Each “share” is thus 12.5%
larger than the original data.

3.3.3. Send Shares to Remote Sites
Once shares of the data have been generated, they must be

sent to remote sites for storage. One of the evaluation criteria for
site selection can be whether the sites are based on different
operating systems and different storage system implementations, to
protect against simultaneous loss of information. In order to
increase the likelihood of finding such different, independent

services, we have chosen to focus on storage sites where storage
and access can be obtained using standard Internet services. Our
implementation uses email. We select storage providers among
Internet service providers (ISPs) around the world. We use SMTP
to transmit shares to the ISPs, and POP or IMAP to retrieve,
enumerate, or test the shares provided. We index the shares at a
storage provider using additional headers and/or message subject.

This system can easily be extended to use web hosting (with
WebDAV for storage and HTTP for access), FTP-based services,
or other standards-based storage services.

3.4. Manage Archives
At this stage, the documents originally archived have each

been shared and stored in multiple repositories. Now we must
ensure that the data will persist unaltered for the desired lifetime of
the document. Guaranteeing that data remains available and
consistent is a difficult problem.

The lifetime of traditional archiving media, such as paper,
may likely be maximized using a hands-off approach. Because
physical paper media may be damaged by excessive handling, the
content may be inspected for authenticity, and then placed in a
physically secured location, such as a bank vault, and guarded
from access. The archiver is generally confident that media placed
in the safe will remain intact for a long period of time.

Digital media is susceptible to a wide range of situations that
may jeopardize its integrity. Physical media for digital data, such
as magnetic or optical disks, are fragile and subject to loss, ranging
from random bit errors to entire disk crashes. Unlike paper media,
the lifetime of digital media is much less predictable. We
therefore take the position that digital media requires a form of
active management: a periodic process that verifies the integrity of
the digital data and performs any necessary recovery steps as the
result of a detected failure. The following steps are necessary for
active management of the archived material.

3.4.1. Organize Records of Content
We envision the management of records about archived data,

searching the archives, and organizing the index of archived data
to be a separate function from the archival storage itself. To
support this, we create “proxy” files for each archived file, where
the proxy itself contains a record of the identity of the services
where the individual shares are stored, as well as a copy of its
metadata. We have chosen a simple XML representation for this
information. Such records can be searched, shared, displayed, and
used as the material for indexing records on the local disk.

Part of the reason for separating archiving from archive
management is that the technology and requirements for search
and retrieval, indexing, and so forth are likely to change more
rapidly than the archives themselves.

3.4.2. Store Data for a Long Time
Given that we are using commercial Internet Service

Providers with email storage banks, this part of the system is not
specifically a part of our prototype implementation. However,
commercial storage services tend to use standard industry
techniques for ensuring long-term data storage and integrity. Most
utilize offsite backup; many use RAID storage and other storage
network techniques for improving the reliability of their service.

Routine hardware maintenance and upgrades add additional
storage space into the system and provide media refresh to further
reduce the chances of media failure.

3.4.3. Monitor Stored Material for Loss or Modification
Simply distributing shares of a document to various locations

is not enough to guarantee that the data will remain available for a
long period of time. It is inevitable that data stored on digital
storage media will eventually suffer from loss or corruption.
Shares may be intentionally deleted or modified by a malicious
site or user. Corruption may not be realized until the data is read
as part of an attempted retrieval operation, when it may already be
too late to recover from the damage. We therefore take a proactive
approach, and periodically monitor the availability and integrity of
archived shares.

Accidental loss may result from media or hardware failure,
site or organizational failure, or operational errors such as
accidental deletion. We also must consider malicious sites, which
may intentionally destroy or alter a share while claiming it is
available or unmodified. Our monitoring process will detect any
loss or modification, regardless of the cause.

To protect against the threat of loss, we periodically query
storage sites for the availability of shares. The data may be
retrieved to guarantee that it is, in fact, accessible. Protecting
against corruption or integrity failure requires more than verifying
availability: we must also ensure that the contents are unaltered.

Verifying the integrity of a share does not require
remembering the share data. Instead, we must only know small
facts about the data, which are significantly smaller in size. We
use a question and answer style of verification, where the question
is such that only an unmodified copy of the data could answer the
question correctly. The questions must be unknown to the storage
provider prior to being asked. For example, a question may be a
secure hash algorithm and a random nonce, and the correct answer
is the result of hashing the share data with the nonce. Without
prior knowledge of the nonce and algorithm, a malicious site
cannot predetermine the hash result or attempt to find collisions.
Many such information-theoretically secure questions can be
imagined, such as computing an arithmetic or logical function on
some subset of bytes.

We have implemented monitoring as a self-serve process,
where users are responsible for monitoring their own archived
data. Any party given the share location and question and answer
sets, however, may perform the monitoring process. As
monitoring does not require knowledge of the data, we envision
supplementing self-monitoring with the use of independent third-
party monitors to perform periodic checks and notify the owners
upon detection of loss.

3.4.4. Repair When Data Loss Occurs
When a share is determined to be corrupt, we can take

corrective action to repair the damage. Given at least the threshold
number of the shares, we can recover the polynomials used to
produce the shares, and an individual share may be reconstructed.
This regenerated share is then resubmitted to the original site or
distributed to a new site. If users themselves detect loss, they may
retrieve and regenerate shares. Independent monitors may be
authorized to initiate a repair process by using protocols for
dynamically generating additional shares or changing the threshold

of an encryption without requiring the reconstruction of the
original data [23].

3.4.5. Recover Archived Content Records
Shares of archived documents are dispersed amongst a wide

range of Internet accessible services. Location information is
stored in a simple “proxy” record on the user's local system.
Knowing the share locations is required to retrieve a document
from the archive, so we must guarantee that the proxy records
survive as long as the archived data.

We have implemented a simple process of recreating the
proxy records of archived content from the archives themselves as
a mechanism for disaster recovery. This is a fairly time
consuming process (since it requires enumerating all of the
archived content), but we have demonstrated the ability to
reconstruct the index using only the archived content. It is
possible to periodically archive the index of archived content itself
as a way of speeding this recovery.

It is worth noting that as long as a sufficient number of shares
of the data remain available in the network, their corresponding
proxy record can be reconstructed, and so our monitoring and
recovery of share data protects the proxy records as well.

3.5. Retrieve Data From Archive
Archived data must remain accessible regardless of the state

of the document submission system. The retrieval process is
independent, requiring only the ability to communicate with the
remote sites holding shares of a document, using standard Internet
protocols such as POP, IMAP, FTP, or HTTP. At archive time,
authorized document retrievers are given proxy records containing
all of the information necessary to locate and obtain shares to
recover the original archival package, including the identity of
each remote site, their last known location, and the necessary
handles to retrieve a share. Access control to archived documents
is controlled by knowledge of the share locations and handles.
Given the vast potential space of share locations and handles, only
users who have been given the proxy record can successfully
locate enough shares of a given document.

To recover a document from the archive, a user issues a
retrieval request with a particular proxy record. At least the
threshold K number of the identified shares are retrieved and
verified for authenticity. We then use Lagrangian polynomial
interpolation to reconstruct the contents of the original package,
which contains the original document and metadata. We have
implemented retrieval as an automatic process given a proxy
record. In the absence of such a process, these steps may be
performed manually.

3.6 Delete Archived Data
To delete a document from the archive, it is necessary to

convince a sufficient number of shareholders to delete their shares.
Of course, the ability to delete a document introduces the risk that
a document will be deleted inadvertently or maliciously. Thus, the
access control for deletion must be controlled carefully.

4. Evaluation
In this section, we evaluate our prototype system, particularly

in the context of design decisions made during implementation and
deployment. We discuss the challenges and practical problems

faced which were previously overlooked and only realized by
actually attempting to build such a system.

4.1. Efficient Secret Sharing
Public key and threshold encryption are often considered too

time-consuming for use on large pieces of data. To better quantify
the efficiency of our modified Shamir secret sharing algorithm,
described in section 3.3.2, we have taken timing measurements and
compared our implementation to the open source secret sharing
implementation from the Crypto++ library [7]. Our results show
considerable improvement in both the time to produce shares and
to recover a document from shares.

All measurements were taken on an Intel Pentium 4 1.8GHz
processor machine with 1 GB of RAM running the Linux 2.6.7
kernel. The Crypto++ source code was modified to measure and
report timing information and compiled with GCC 3.3.3. Our
algorithm is implemented in Java and executed using the 1.5.0_05
compiler and virtual machine distributed by Sun Microsystems.
For each experiment, we set the number of shares N = 10, and we
vary the threshold K from 2 to 10.

Figure 1 shows the performance comparison of Crypto++ and
our algorithm “SecretShare” for generating 10 shares of a 14KB
source file as we vary the threshold K from 2 to 10. Figure 2 plots
the time required to reconstruct shares with threshold K. The
timing information for both of these figures is the average of 1000
runs. Figures 3 and 4 show the results of repeating the experiment
using a 2MB source file, as the average of 100 runs.

Our algorithm outperforms Crypto++ in all four tests. As
expected, the data shows that total computation time scales linearly
with the threshold of encryption. In addition to higher
performance, SecretShare scales better, particularly during
reconstruction. Figure 4 shows that for the 2 MB file, Crypto++
scales linearly with the threshold, requiring an additional 1.1
seconds per increase in K, while SecretShare requires roughly 0.25
seconds per increase in K. Assuming a 10 Mbps Internet
connection, reconstruction takes approximately one tenth of the
time as retrieval. We currently retrieve shares and validate them
before reconstructing, but this process could be pipelined to
produce an overall improvement in speed.

We note that the performance of our implementation likely
suffers additional delay as a result of running in the Java
environment. A native code implementation of our algorithm may
even further outperform the Crypto++ C++ implementation.

4.2. The Benefits of Standard Protocols
Our initial implementation contained a “shareholder” service,

which communicated with a simple protocol and remote method
calls to submit, store, and retrieve shares. This design, while fully
functional, suffered a serious flaw: survivability! It is important to
remember that not only the data must survive, but also access to it.
With a single implementation, any flaw in the code or underlying
runtime system may cause permanent loss. If the specification for
the “shareholder” service or protocol were lost, the shares would
no longer be retrievable. We also considered the difficulty we
would face trying to widely deploy such a service in a short period
of time.

With these issues in mind, we redesigned our system to rely
only on readily accessible Internet services based on standard
protocols. Using protocols such as SMTP, POP, and IMAP offer
numerous advantages: they are ubiquitous, deployed on servers
throughout the globe; they have numerous implementations in
different programming languages and on different operating
platforms; and, their specifications are readily available as well
published standards. These traits enable us to easily and quickly
deploy an archiving system, and protect us against software and
operating system flaws that might otherwise jeopardize archived
data.

4.3. Recoverability
In our design we strive to eliminate single points of failure

using techniques such as replication, distribution, threshold
encryption, and format conversion. Despite such emphasis, we
must also accept that eventual failures are inevitable. As a result,
we must ensure that whatever is lost can be recovered.

Active monitoring allows us to detect errors at remote sites
and recover from them by reconstructing the lost share. Equally as
important, and initially overlooked in our design, is the ability to
recover proxy records. Proxy records are likely not distributed and
not replicated, resulting in a single point of failure. To facilitate
their recovery, we must ensure that archived content contains
sufficient information to reconstruct the proxy record. This leads
us to an interesting trade-off. If share data contains sufficient
information to reconstruct a proxy record, locating a single share
may enable locating all of the other shares. The security of
archived documents from malicious parties is enhanced by the
anonymity of share locations.

We therefore chose to use a hash, which is stored with each
share, to perform proxy record recovery, and we require the user to

2 3 4 5 6 7 8 9 10

100

150

200

250

300

350

400

450

500

550

600

650

700

Crypto++
SecretShare

Threshold

T
im

e
(m

s)

Figure 2. Reconstructing a 14KB source file

2 3 4 5 6 7 8 9 10

100

150

200

250

300

350

400

450

500

550

600

650

700

Crypto++
SecretShare

Threshold

T
im

e
(m

s)

Figure 1. Generating 10 Shares from a 14KB source file

remember the possible locations of their shares (in this case, the
email providers with whom they have accounts). By itself, this
hash does not provide any information about other share locations.
Only by enumerating the shares from several locations can we
connect shares together and reconstruct a proxy record.

5. Related Work
The idea of achieving long-term preservation through

redundancy and coding or information dispersal techniques has
been investigated by others. OceanStore [14] is concerned with
providing highly-available persistent storage through replication
and caching. They offer “deep archival storage” as a side effect of
versioning and replication. More recently, Silverback [22] uses a
peer-to-peer overlay network with erasure coding and secure
hashing to provide distributed “archival” versioning. Both systems
use self-verifying GUIDs [21] as means for guaranteeing
authenticity of data. Neither of these systems, however, addresses
all of the potential threats necessary in a digital archiving system
(privacy, context, interpretability).

Other digital library or archiving systems, such as LOCKSS
[18], also use a form of periodic document integrity checking.
Repositories in LOCKSS occasionally hold votes, where a
repository poses a question about a document, and the others all
publicly respond with their calculated answer. Repositories who
vote in the majority are considered to have a valid document, and
those who vote “incorrectly” refresh their copy from a valid
source. Our system provides a similar function, but differs
significantly in the requirements. We can perform share
verification without any knowledge of the nature of the documents
being checked. This feature makes possible the use of independent
storage auditing. The system is limited to public documents.

Archival Intermemory [11] [12] uses distribution and erasure
coding, modeling storage as persistent, write-once RAM.
Intermemory provides long-term storage of bits but does not
address archival issues such as security, authenticity, or
interpretability.

DSpace [9] is a digital repository for preservation of scientific
journals and other research materials, organized by communities
and collections, including facilities for search. It is possible to
archive data as a bundle which contains metadata and multiple
representations of the document. DSpace does not effectively
support document privacy, and as a single implementation, does
not leverage standards based protocols to avoid failures due to
software defects. The system may also be susceptible to malicious

destruction or disruption by adversaries as the set of available
DSpace servers is widely known (and even linked to on their
website).

6. Future Work
The system outlined in section 3 attempts to address the

issues outlined in section 2, by providing a total system which
guards against many of the kinds of loss that might occur when
storing records and documents for a long time. There are
additional qualities and features which are desirable that we have
not addressed fully.

First, there is the problem of identification and location of the
actual services for storage of data over a long time -- what happens
when storage services move? This problem is serious for long-
term archives. Few data storage services have the same network
address today that they did 20 years ago.

Secondly, there are some features for guaranteeing data
integrity that we have considered but not implemented. It should
be possible to combine a reliable and auditable data storage system
with digital signatures, with the idea that a validated signature that
is archived would carry along its validity for the lifetime of the
archive. This would be a significant advantage over current
timestamp systems in which the timestamp of the signature is only
valid for the lifetime of the certificate of the timestamp authority,
or else requires a process of periodic revalidation, which itself can
introduce error and unreliability. In our current implementation, if
the ISPs email storage service has no way for a user to modify the
date of receipt, the email timestamp itself becomes a validator of
the time of archive of the original data.

Some significant difficulties with access control over the long
term also exist, both for the ability to read the documents in the
future, but also for the control over the ability to delete documents.
In our current implementation, access to archived data is
controlled by access to multiple ISPs storage systems. These
identities – typically controlled by username/password pairs – may
not have a long enough lifetime to be useful for 10-100 year
archives. For this reason, we believe long-term access control will
require a combination of capability and role-based systems rather
than identity-based access control. Such a system may also greatly
simplify the discovery and reconstruction of lost proxy records by
enabling a secure way for users to “remember” information about
their share locations.

2 3 4 5 6 7 8 9 10

10000

20000

30000

40000

50000

60000

70000

80000

90000

Crypto++
SecretShare

Threshold

T
im

e
(m

s)

Figure 3. Generating 10 shares of a 2MB source file

2 3 4 5 6 7 8 9 10

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Crypto++
SecretShare

Threshold

T
im

e
(m

s)

Figure 4. Reconstructing a 2MB source file

7. Conclusion
One problem to be solved before individuals and businesses

will be comfortable with using all-digital documents, photographs
and other electronic media is to provide assurances that the content
is as safe, or safer, than their physical counterparts. We believe our
work makes significant steps towards addressing major problems
of long-term digital records by using a multi-faceted approach to
guard against the many problems which might otherwise arise.

References
[1] Adobe Systems Incorporated, The Digital Negative (DNG),

http://www.adobe.com/products/dng/
[2] Adobe Systems Incorporated, Extensible Metadata Platform (XMP),

http://www.adobe.com/products/xmp/
[3] R. J. Anderson, The Eternity Service, Proceedings of Pragocrypt.

(1996).
[4] G.R. Blakley, Safeguarding Cryptographic Keys, Proceedings of the

National Computer Conference. (1979).
[5] B. Cooper, H. Garcia-Molina, “Peer-to-peer data trading to preserve

information” ACM Transactions on Information Systems 20, 2.
(2002).

[6] B. Cooper, H. Garcia-Molina, Bidding for storage space in a peer-to-
peer data preservation system, Proceedings of the 22nd International
Conference on Distributed Computing Systems. (2002).

[7] Crypto++ 5.2.1., http://sourceforge.net/projects/cryptopp/
[8] R. Dingledine, M. Freedman, D. Molnar, The Free Haven Project:

Distributed Anonymous Storage Service, Proceedings of the
Workshop on Design Issues in Anonymity and Unobservability.
(2000).

[9] DSpace Federation, http://www.dspace.org/
[10] H.M. Gladney, R.A. Lorie, “Trustworthy 100-Year Digital Objects”

ACM Transactions on Information Systems 22, 3. (2004).
[11] A. Goldberg, P. Yianilos, Towards an Archival Intermemory,

Proceedings of IEEE Advances in Digital Libraries. (1998).
[12] A. Goldberg, P. Yilanos, Y. Chen, J. Edler, A. Gottlieb, S. Sobti, A

Prototype Implementation of Archival Intermemory, Proceedings of
the Fourth ACM International Conference on Digital Libraries.
(1999).

[13] ISO 19005-1, Document management – Electronic document file
format for long-term preservation. (2005).

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, B. Zhao, OceanStore: An Architecture for Global-Scale
Persistent Storage, Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems. (2000).

[15] R. Lorie, Long Term Preservation of Digital Information, Proceedings
of the First ACM/IEEE Joint Conference on Digital Libraries. (2001).

[16] D. Patterson, G. Gibson, R. Katz, A Case for Redundant Arrays of
Inexpensive Disks (RAID), International Conference on Management
of Data. (1988).

[17] G. W. Paynter, Developing Practical Automatic Metadata Assignment
and Evaluation Tools for Internet Resources. Proceedings of the Fifth
ACM/IEEE Joint Conference on Digital Libraries. (2005).

[18] D. Rosenthal, V. Reich, Permanent Web Publishing, Proceedings of
FRENIX Track: 2000 USENIX Annual Technical Conference.
(2000).

[19] A. Shamir, “How to Share a Secret” Communications of the ACM 22,
11. (1979).

[20] X. Wang, Y.L. Yin, H. Yu, Finding Collisions in the Full SHA-1, The
25th Annual International Cryptology Conference. (2005).

[21] H. Weatherspoon, C. Wells, J. Kubiatowicz, Naming and Integrity:
Self-Verifying Data in Peer-to-Peer Systems, Proceedings of the
International Workshop on Future Directions in Distributed
Computing. (2002).

[22] H. Weatherspoon, C. Wells, P. Eaton, B. Zhao, J. Kubiatowicz,
“Silverback: A Global-Scale Archival System” U.C. Berkeley
Technical Report UCB//CSD-01-1139. (2001).

[23] T. Wong, C. Wang, J. Wing, Verifiable Secret Redistribution for
Archive Systems, Proceedings of the First International IEEE Security
in Storage Workshop. (2002).

[24] J. Wylie, G. Ganger, P. Khosla, M. Bakkaloglu, M. Bigrigg, G.
Goodson, S. Oguz, V. Pandurangan, C. A. N. Soules, J. Strunk,
“Survivable Information Storage Systems” DARPA Information
Survivability Conference and Exposition II, 2. (2001).

[25] W3C, XHTML 1.0: The Extensible HyperText Markup Language
(Second Edition), http://www.w3.org/TR/xhtml1/

Author Biography
Larry Masinter is a Principal Scientist at Adobe Systems, where his

work has focused on document processing, product interoperability and
architecture. He worked at Xerox PARC on topics including document
management, digital libraries, Internet service, and leading Internet and
Web standards efforts. He received his BA in Mathematics from Rice
University (1970) and his PhD in Computer Science from Stanford
University (1980). He received the ACM Software Systems Award and is an
ACM Fellow.

Michael Welch is a PhD student in Computer Science at the
University of California, Los Angeles. He received his BS in Computer
Science and Engineering (2003) and MS in Computer Science (2005) from
UCLA. His research efforts focus on secure, private, and customized data
storage and search.

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

