

Emulation: To Be or Not To Be
Remco Verdegem; Nationaal Archief of the Netherlands; The Hague, The Netherlands
Jeffrey van der Hoeven; Koninklijke Bibliotheek; The Hague, The Netherlands

Abstract
Emulation is often looked upon with skepticism. Although it

may be the only way to render complex digital objects in the future
without affecting their authenticity and integrity, emulation is
considered to be too technically challenging and therefore too
expensive and time consuming. This line of thought has thus far
prevented emulation from being developed for digital preservation
purposes. The Nationaal Archief of the Netherlands and the
National Library of the Netherlands (KB) believe that a
preservation approach based on emulation is worthwhile and that
it needs further development and testing in order to establish its
true value. This paper presents an overview of emulation as a
preservation approach, a conceptual model of modular emulation,
experiment results and goals of the emulation project.

Introduction
Digital objects are fragile. The debate for the best means of

preserving digital objects over the long term has been under way
for many years and will no doubt continue for years to come.
Various theoretical solutions have been proposed, and research is
conducted around the world to identify ways in which digital
records can be authentically maintained whilst remaining
accessible and usable over the long term. This paper focuses on the
project of the Koninklijke Bibliotheek (National Library of the
Netherlands) and the Nationaal Archief of the Netherlands to
develop a preservation strategy based on emulation.

Digital Preservation
Digital Preservation is concerned with ensuring that digital

objects that are created electronically using today’s computer
systems and applications, will remain available, usable, reliable
and authentic in ten, to more than one hundred years, time. The
core of the problem of digital preservation is that hardware and
software, which were used to create and interpret the object, will
become obsolete in the near future. Digital preservation consists of
preserving more than just the object’s bit stream. We must also be
able to interpret the bit stream in order for the digital object to
survive. Without interpretation, the bit stream is nothing more than
a meaningless series of 0’s and 1’s. During preservation, the
object’s characteristics as defined by its context, content, structure,
appearance, and behavior must be taken into account. Behavior is
an aspect that is specific to digital objects and therefore requires
the necessary attention when it comes down to authentically
preserving the object over the long term.

There are a wide range of digital formats available and, to

make preservation more complicated, different digital objects have
different preservation requirements. These not only depend on
their technical aspects, but also on the reason the object is being
preserved, how long it needs to be preserved, the context and
history of the object. The Nationaal Archief of the Netherlands has

to execute the Dutch archival regulation [1], which stipulates what
needs to be preserved depends on the requirements of the business
process to which the record belongs. The Koninklijke Bibliotheek
has a similar interest, although not by legislation. It is responsible
for the cultural heritage of the Netherlands, which includes an
increasing amount of digital material. In 2003 the e-Depot [2], the
electronic repository of the KB, became operational, which at
present contains over five million electronic publications.

Digital Preservation has different meanings for each digital
object. Whilst it is often thought that digital preservation means
preserving the object so that it is identical to its original
representation, this is not always required. Not every aspect of a
digital object has to be preserved – this depends on the business
process in which the object played a role. In all cases however, the
object must be preserved in such a way that it retains its integrity
and its authenticity. This presents interesting challenges.

Digital objects are dependent on their environment. They rely

upon the hardware and software that was originally intended to
interpret them. When the environment becomes obsolete, perhaps
within the space of a few years, the problem of how to read that
object without its original hardware and software arises. It is
unlikely that different versions of a software application will
interpret the object in the same way, and this may well result in a
change in the interpreted object (the visible or available view of
the computer file(s)) that affects its (archival) integrity. Some data
may be lost altogether; in other areas, data may be gained. It is not
always possible or feasible to compare a new version with the
original, so changes may go unnoticed. Any changes to the digital
object may affect its authenticity and integrity, which in turn may
affect its (archival and legal) status. Depending on the nature of
the object and its use, this can cause problems, not least that of
losing or misrepresenting history.

The main preservation strategies currently are: technology

preservation; migration (backward compatibility; interoperability;
conversion into standard formats); the use of XML, encapsulation;
virtual machine software (e.g. UVC) and emulation. Emulation is
the focus of this paper and is now discussed in more detail.

Emulation as a preservation strategy
The theory behind emulation is that the only way to ensure

the authenticity and integrity of the digital object over the long
term is to continue to provide access to it in its original
environment, i.e., its original hardware, operating system and
software application. Emulation does not focus on the digital
object, but on the environment in which the object is created and
rendered. This is achieved by recreating an environment in which
the digital object can be rendered in its authentic form.

Using the definition of the Digital Preservation Testbed [3],

emulation is a program that runs on one computer and thereby

virtually recreates a different computer. In this definition the word
‘virtual’ denotes that the computer functions like the original
computer, but physically is not. The original computer is called the
target platform; the computer that executes the emulator is called
the host platform. The program that recreates the target platform
on the host platform is called the emulator.

The term "simulation" is often confused with – and
sometimes even used as a synonym for – emulation, but we
distinguish between the two terms here by noting that simulation
describes what some other thing would do or how it would act,
whereas emulation actually does what that thing would do. For
example, an airplane simulator does not actually fly. That is,
simulation generally involves the use of a model to understand,
predict or design the behavior of a system rather than the practical
recreation of that system's capabilities. In contrast, emulation is
generally used to create a surrogate for the system being emulated.

A similar misunderstanding exists between emulation and

virtualization. Although both techniques are capable of recreating
a virtual environment on a host computer, virtualization is more
limited in the freedom of choice of its target platform.
Virtualization uses so called instruction interpretation and is
thereby dependent on the underlying host platform. If, for
example, an x86 host platform is used for virtualization, the target
environment should support this same x86 architecture. This
limitation is not present in emulation, thus making emulation both
more flexible and platform independent.

Outside the context of digital longevity, emulation has proved

to be useful and reliable. In previous computer systems, both IBM
and Apple used emulation to make their newer hardware
compatible with older software [4][5]. During the nineties
emulation became the key to run nostalgic computer games, which
were no longer accessible without the original hardware.
Nowadays, emulators like MS Virtual PC [6], QEMU [7] and
Bochs [8], and virtualization techniques used in VMware [9] have
become very advanced and complex, capable of running complete
operating systems like Microsoft Windows, Apple’s MacOS or
Linux with a wide support of device peripherals.

Emulation levels
Emulation is stated as a technique to create a virtual

environment on top of an existing environment. However, this
creation can take place at three different levels: at application
software level, at system software (operating system) level and at
hardware level [3].

Emulation at the application software level consists of writing

one application program to do what another application program
does. In the preservation context, this is essentially the "viewer"
approach, in which new programs are written in the future to
render obsolete digital formats. Instead of writing a single
emulator for a hardware platform, the viewer approach requires
writing a new program (or adding a significant new piece to an
existing viewer program) for every distinct digital format. Because
many formats are proprietary, this entails reverse engineering each
such digital format. Such an approach is taken by the Multivalent
browser [10]. Although it is possible to use the browser for
opening various kinds of digital documents in a platform

independent way, authenticity is not taken into account. This
results in slight differences between the Multivalent view and the
authentic representation.

The idea behind emulation at system software level is to

recreate the operating system (OS) that is used by rendering
programs for various digital formats. This requires a significant
amount of reverse engineering, but even so, the result is not a
program that can run other programs, since this is not what system
software does. It merely provides facilities (user interfaces, file
systems, interprocess communication, networking, etc.) that are
used by programs when they run, and it allows invoking programs
to be run (e.g., by double-clicking on their icons). This means that
a program still requires a particular hardware platform, besides the
OS.

Emulation at hardware level takes place by mimicking the

hardware architecture. Software is used to emulate computer
hardware on which original rendering software can run. We refer
to this as the "software-emulation-of-hardware" approach, not to
be confused with emulation using hardware whereby the emulator
itself is a piece of hardware. From a preservation perspective, this
latter approach is a short term solution, because physical hardware
is still part of the rendering process.

To emulate a particular level correctly, knowledge is required

of its design and implementation. Due to the fact that application
and system software are complex and often proprietary, emulating
one of these levels is difficult. Furthermore, emulation of each
software application separately requires many specific emulators.

Although the "software-emulation-of-hardware" approach can

be quite complicated, it has more straightforward behavior than
emulating higher levels. Because hardware specifications are well
defined and are usually available, this behavior is easier to
reproduce than that of system or application software. Moreover,
this approach retains the original OS, applications, drivers and
configuration, which secures authenticity of the original software
environment.

Henceforth, the software-emulation-of-hardware approach is
defined as ‘emulation of hardware by means of software, running
on top of an operating system that itself runs on a hardware
platform’.

Preserving the emulator
The use of emulation in the field of digital preservation has

been limited. However, over the years several research studies
have been performed which concerns the issue of keeping the
emulator itself accessible. That is: how can we get our emulator
programs to run correctly on each generation of future computer?

In principle, three strategies to this problem have been
proposed: chaining (also called stacked or layered emulation),
rehosting (or migrated emulation) and the use of a so called
Emulation Virtual Machine (EVM).

Chaining is an approach which allows each emulator of one

computer to run indefinitely once it has been implemented on only
one other (successor) computer. If the successor computer is
emulated on its own successor computer, any previous emulator

can be run under a chain of emulators, as illustrated in figure 1.
Although this approach will probably work well initially, a new
emulator needs to be created each time a new platform becomes
current. Furthermore, the expanding chain of emulators will
introduce an increasing risk of unsupported functionality and
unstable behavior.

Figure 1. Chaining

As an alternative to chaining, emulators can be rehosted on

successive future platforms. To do this, an emulator is written for a
current computer platform. The source code of the emulator needs
to be compiled (using a compiler), into an executable program for
that platform. When this platform becomes obsolete, the emulator
needs to be recompiled for a newer platform. Recompilation
requires the original source code and a compiler that is able to
operate on the new platform. This process is depicted in figure 2.
The advantage is that the emulator is not dependent on previous
emulators. On the other hand, it requires a compiler that should be
capable of linking the required emulation functionality with the
underlying host platform.

Figure 2. Migrated emulation

between 1999 and 2003 the CAMiLEON project (Creative

Archiving at Michigan and Leeds: Emulating the Old and the
New) [11] conducted research into migrated emulation and took
into practice a subset of the programming language C, called C--.
The idea of using this subset was that it would be fairly easy to
maintain a compiler that is capable of translating C--code into
platform dependent code in the future. Based on this knowledge
they created an emulated version of the almost forgotten ICL1900
system. This implementation showed the potentiality of emulation,
but still required functionality that was outside the scope of C--.

Therefore it remains uncertain whether the emulator will remain
accessible over time.

According to Jeff Rothenberg, a strong advocate of

emulation-based preservation, this uncertainty can be avoided by
using an "Emulation Virtual Machine" (EVM) [12]. This EVM
will operate as intermediate layer between the host platform and
the emulator. By offering a standard interface towards the
emulator no matter which host platform is running underneath, the
emulator becomes platform independent. In order to do this it is
required that each emulator has to be written to run on the EVM.
A very successful implementation of this approach is the Java
Virtual Machine (JVM) [13], which makes Java programs portable
across many different host platforms. A disadvantage of an extra
layer is its complexity. Therefore, careful consideration is needed
to decide what should be implemented in the EVM and what not.

Modular emulation
During 2004 and 2005 the Koninklijke Bibliotheek conducted

preliminary research into emulation-based preservation. In
cooperation with Jeff Rothenberg, a new emulation strategy has
been developed called modular emulation [14]. The principles of
this strategy are based on earlier ideas about the EVM of Jeff
Rothenberg and the Universal Virtual Computer (UVC)-based
preservation method of Raymond Lorie [15].

The modular emulation strategy stays close to the basic

architecture of today’s hardware, known as the Von Neumann
architecture [16]. Modular emulation can be defined as:

“Emulation of a hardware environment by emulating the
components of the hardware architecture as individual emulators
and interconnecting them in order to create a full emulation
process. In this, each distinct module is a small emulator that
reproduces the functional behavior of its related hardware
component, forming part of the total emulation process.”

In figure 3 the conceptual model of this strategy is shown.
Key features are its flexibility and platform independency, which
will be outlined hereafter.

The modular emulation model consists of the following parts:
• Universal Virtual Machine
• Modular emulator
• Component Library
• Controller
• Emulator specification document

Universal Virtual Machine
The Universal Virtual Machine (UVM) is the base of the

model. It is a platform- and time-independent layer on top of the
underlying future host platform. This ensures that programs that
are developed for the UVM will continue to work even if the host
platform changes. The UVM can be seen as an advanced version
of the UVC. It not only consists of a general purpose processor and
memory, but also offers additional functionality for input and
output (I/O) communication with peripheral devices (like

Figure 3. Modular emulation model

keyboard, storage, graphics, networking) between host and

target platform. This will be provided by the interface layer.

Modular emulator
To execute the target system and application software on the

UVM, an emulator is needed. The task of the emulator is to
virtually recreate the hardware of the target platform in such a way
that the target software can run on it as it did originally. Because
of the versatility of hardware, system software and applications,
the emulator needs to be flexible in its recreation of a particular
environment. This can be achieved by designing the emulator in a
modular structure. Each module emulates a specific hardware
component. A recreation of the target platform can then be
realized by combining all necessary modules. Changing the target
platform can simply be done by changing the configuration of the
modules. As technology moves forward, new modules can be
created based on their analogy with actual hardware components.

Component Library
Building a modular emulator requires several modules. To

keep track of the set of modules, a component library will be used.
The library is the manager of all modules and will store and
retrieve them with additional metadata. Organization can be done
by type of component, such as: CPU, memory, storage, graphics,
etc. It also should offer some kind of version control, so that
modules can be enhanced over time.

The level of detail at which a module is implemented is left

up to the programmer. However, each module aims to recreate the
functional behaviour of the actual hardware component as
faithfully as possible. All modules are written in UVM language so
they can run on the UVM platform. The library should offer a

minimum set of modules to create at least one target platform, but
can be expanded with more modules over time.

Emulator Specification Document
To define which modules are required to create a modular

emulator, a description of its configuration is needed. This will be
stated in an Emulator Specification Document (ESD). It describes
the target platform’s components and significant properties.

Controller
Finally, the controller will interconnect all parts in the model.

It starts the UVM on the host platform and builds a bridge between
the I/O handling of the host platform and UVM. The specifics are
left up to the future programmer, because they depend on host
platform characteristics. Subsequently, the controller interprets the
ESD and starts the emulator, loaded with the required modules and
settings.

Project modular emulation
The choice for emulation as a preservation strategy is not

undisputed, even though its possibilities are recognized. Whatever
the different views may be, one fact remains: emulation has never
been actually developed and tested within an operational digital
archiving environment. The Nationaal Archief of the Netherlands
and the Koninklijke Bibliotheek are convinced that emulation is
possibly the only option for future access to specific digital objects
without affecting their authenticity and integrity. They agree that
this strategy has to be developed and tested first, before its
potential and limitations can be assessed.

As a result, the Nationaal Archief and the Koninklijke

Bibliotheek have started a project to develop a preservation
strategy that is based on emulation. The objective of this project is
to develop an emulator that is modular and portable, following the
conceptual model of modular emulation strategy. Modularity will
help to minimize the effort required in emulating a new target

machine, as it allows existing modules to be re-used or new
modules to be added. Portability will be realized by using an
intermediate layer, for which the Java Virtual Machine (JVM) has
been chosen. Although the JVM itself is a complex layer, it is
widely used and supported for a large number of different host
platforms. Performance in Java is a point of concern, but with
long-term preservation in mind portability is given higher priority
than speed of execution, due to the fact that future computers will
be much faster.

Emulation experiments
To explore the capabilities of existing emulators and

virtualization software, a number of experiments have been
performed using the Digital Preservation Testbed [17]. Four tools
have been tested: VMware, MS Virtual PC, QEMU and Bochs.
The test set consisted of three different types of digital objects:
PDF documents, interactive multimedia publications on CD-ROM,
and database systems. The test criteria were based on the five types
of significant properties: structure, content, context, appearance
and behavior. The results differed greatly. Whereas VMware is the
only virtualization suite, it scored best overall on all aspects. Using
emulators, hardly any difference was measured during experiments
with PDF. However, the results with multimedia publications and
databases varied a lot. MS Virtual PC performed well with
multimedia, but disappointed during database experiments,
whereas QEMU showed just the opposite. Bochs was less powerful
in all fields, but was more reliable than QEMU.

Design & Development
Based on the test results a list of requirements has been

defined. In cooperation with Tessella Support Services plc. and
Jeff Rothenberg initial design has taken place. Development of the
emulator will be done using prototyping. First, a core emulator
will be developed, running a basic x86 instruction set and memory
model. Subsequent steps will include interrupt handling, memory-
mapping, display and sound, I/O-handling from keyboard and
mouse, disk access, BIOS and implementing the boot sequence.

Besides the emulator, attention will be paid to the component
library, controller and Emulator Specification Document (ESD).
Depending on the available time, these parts will be implemented
as well.

The possibility to share intermediate results with others, will

allow the KB and the Nationaal Archief to gather support for this
strategy while also utilizing new insights along the way. At the
start of 2007 a working prototype of the modular emulator can be
expected. The project will end April 2007.

References
[1] Regeling Geordende en toegankelijke staat archiefbescheiden

(Regulation on the Arrangement and Accessibility of Records),
(February 2002). Available at:
http://www.nationaalarchief.nl/images/3_2563.pdf

[2] e-Depot, Koninklijke Bibliotheek, The Hague, The Netherlands
(2006). Available at: http://www.kb.nl/dnp/e-depot/e-depot-en.html
(accessed 10 March 2006).

[3] Emulation: context and current status. Digital Preservation Testbed,
The Hague, The Netherlands (2003).

[4] IBM 7000 series, Wikipedia.org (2006). Available at:
http://en.wikipedia.org/wiki/IBM_700/7000_series (accessed 10
March 2006).

[5] J. Hoskins, Exploring the PowerPC Revolution! 2nd edition (1995).
[6] Microsoft Virtual PC 2004 (2006). Available at:

http://www.microsoft.com/windows/virtualpc/ (accessed 10 March
2006).

[7] QEMU (2006). Available at: http://fabrice.bellard.free.fr/qemu/
(accessed 10 March 2006).

[8] Bochs (2006). Available at: http://bochs.sourceforge.net/ (accessed 10
March 2006).

[9] VMware (2006). Available at: http://www.vmware.com/ (accessed 10
March 2006).

[10] T.A. Phelps, P.B. Watry, A No-Compromises Architecture for Digital
Document Preservation (ECDL2005, Vienna, Austria, 2005) pg. 266.

[11] CAMiLEON project (2006). Available at:
http://www.si.umich.edu/CAMILEON/ (accessed 10 March 2006).

[12] J. Rothenberg, An experiment in using emulation to preserve digital
publications, Koninklijke Bibliotheek, The Hague, The Netherlands ,
pg. 8. (2000).

[13] Java Virtual Machine (JVM, 2006). Available at: http://java.sun.com
(accessed 10 March 2006).

[14] J.R. van der Hoeven, H.N. van Wijngaarden, Modular emulation as a
long-term preservation strategy for digital objects (IWAW, Vienna,
Austria, 2005). Available at: http://www.iwaw.net/05/papers/iwaw05-
hoeven.pdf (accessed 10 March 2006).

[15] R.A. Lorie, Long-term archiving of digital information, IBM Research
report, IBM Almaden Research Center, San Jose, Almaden (2000).

[16] Von Neumann computer architecture (2006). Available at:
http://en.wikipedia.org/wiki/Von_Neumann_architecture (accessed 10
March 2006).

[17] Digital Preservation Testbed (2006). Available at:
http://www.digitaleduurzaamheid.nl (accessed 10 March 2006).

Acknowledgements
We would like to thank Bram Lohman (Tessella Support

Services plc.) for reviewing this article.

Author Biography
Remco Verdegem began his professional career in the area of

information technology in 1989. In October 1998, he joined the Dutch State
Archives’ Service, where he was among other things responsible for the
functional maintenance of the archival system for paper records. From
October 2000 till July 2003 he was the project manager of the Digital
Preservation Testbed project. In July 2003 the Nationaal Archief of the
Netherlands adopted the Digital Preservation Testbed. Since April 2005
Remco is working as Senior Advisor Digital Longevity at the Nationaal
Archief.

Jeffrey van der Hoeven started his work in the field of digital
preservation during his graduation assignment on the Universal Virtual
Computer (UVC) at IBM Netherlands N.V. in 2003. In 2004 he obtained his
master degree in Computer Engineering at Delft University of Technology
and started his career at the Digital Preservation Department of the
Koninklijke Bibliotheek. He conducted research into emulation-based
preservation and joined the emulation project in 2005.

	33616
	33617
	33618
	33619
	33620
	33621
	33622
	33623
	33624
	33625
	33626
	33627
	33628
	33629
	33631
	33632
	33630
	33633
	33634
	33635
	33636
	33637
	33638
	33639
	33640
	33641
	33642
	33643
	33644
	33645
	33646
	33647
	33648
	33649
	33650
	33651
	33652
	33653
	33654
	33655
	33657
	33658
	33659
	33660
	33661
	33662
	33663
	33666
	33667
	33668
	33669
	33670
	33671
	33672
	33673

