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Abstract 

Hyperspectral imaging has been widely and consistently applied in 

the field of Cultural Heritage for material identification. In the 

specific context of historical document analysis, it is frequently 

supported and complemented by additional analytical techniques. 

In this study, we propose a straightforward method for material 

identification that combines adaptive direct identification—using a 

reference library of visible and near-infrared spectral reflectance 

data for pigments—with a KNN classifier applied to an extended 

spectral range for inks and supports. The method has demonstrated 

a high degree of accuracy, successfully identifying materials present 

in both actual historical documents and mock-ups created following 

medieval techniques. Its performance is illustrated through three 

spectral image fragments extracted from the HYPERDOC project 

database. 

Introduction 

Hyperspectral Imaging (HSI) has been consistently applied 

over the past 30 years for material identification in Cultural 

Heritage [1–4], although its use has been comparatively less 

frequent in the analysis of historical documents [5–7]. For 

conservators and archivists, the ability to identify the 

materials used in the production of such documents is of 

considerable importance. HSI has emerged as a desirable 

technique in this context due to its capacity for on-site 

measurements (portability), its non-invasive nature and its 

relatively fast acquisition, especially when compared to 

point-based techniques [8]. The range of pigments, dyes, inks 

and supports found in historical documents is generally 

limited by practical constraints related to Illumination 

methods and the availability of materials at a given place and 

time. This means that material identification in this context is 

not expected to be as complex as in other Cultural Heritage 

domains. However, variations in the recipes used for material 

preparation and the natural ageing of the materials can cause 

significant changes in their spectral reflectance, potentially 

leading to misclassification [9], even when classifiers are 

trained with samples from actual historical documents. One 

of the main objectives of the HYPERDOC project, led by the 

Color Imaging Lab of the University of Granada, is to provide 

useful datasets and analysis tools for material identification 

in historical documents based on HSI data. A first step 

towards this goal has been the launch of the HYPERDOC 

Database in February 2025 [10], which includes 1681 

fragments of spectral images comprising over 1100 

fragments of mock-ups produced using medieval techniques 

on handcrafted supports, and more than 500 fragments from 

real historical documents preserved in the Archives of the 

Royal Chancellery of Granada, the Provincial Historical 

Archive of Granada and the Alhambra Archives. The dataset 

has been well received, with over 45 researchers granted 

access to date, and it can be used to train models for material 

classification, with promising results already obtained using 

Support Vector Machines and Deep Learning-based 

approaches [11]. However, handling such a large volume of 

data for model training can be complex or impractical in 

certain cases. In this work, we present a relatively simple 

strategy for material identification using visible and near-

infrared (VNIR) spectral reflectance data and a colour-based 

adaptive direct identification method relying on a reference 

library of spectra for various pigments, dyes, inks and 

supports. Since this method alone was not sufficient for 

accurate identification of inks and supports, it is 

complemented by a k-nearest neighbours (k-NN) classifier 

developed in [11] for inks and here extended to supports, 

using additional data from the short-wave infrared (SWIR) 

range. To demonstrate the potential of this combined method, 

three different fragments (minicubes) from the HYPERDOC 

database are analysed, and the method is able to correctly 

identify all materials present in each fragment in under one 

minute. A detailed description of the method, the results 

obtained and a discussion of its main limitations are presented 

in the following sections, and the method will be incorporated 

in the coming months into the analytical tool (HYPERDOC 

tool) that constitutes the second deliverable of the project.  

Materials and Methods 
 
Materials 
 

The hyperspectral image fragments analysed in this study 

have been extracted from the HYPERDOC project database 

[10] and correspond to two historical documents from the 

Archive of the Royal Chancellery of Granada (minicubes 1 

and 2), and one mock-up sample containing a superimposed 

mixture of materials (minicube 3). The two historical 

documents are Royal Executory Provisions of Nobility 

Status, dated 13th February 1539 and 24th September 1587, 
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respectively. False RGB images of the selected fragments are 

shown in Figure 1. 

Figure 1. False RGB images ([605, 535, 430] nm bands) of the 3 minicubes of 

the HYPERDOC database used in this study. Left: minicube 1; Capital letter 

and text from the document dated on 1539 (124x108 pixels); middle:minicube 

2; handwritten text from the document dated 1587 (111x65 pixels); right: 

minicube 3;  mock-up sample with mixture of two pigments by superposition 

(196x81 pixels). 

The support material for both historical document minicubes 
is parchment. In minicube 1, the main materials present are 
cinnabar and Verdigris/malachite in the capital letter, and 
iron gall ink in the body of the text. In minicube 2, the text is 
handwritten using iron gall ink. In minicube 3 (mock-up), a 
superimposed mixture of malachite and lead white bound 
with egg white has been deposited on a cotton–linen 
handcrafted paper support produced by the Paperlan 
company (Asturias, Spain). The materials in minicubes 1 and 
2 have been identified by X-Ray Fluorescence (for pigments 
and inks), with additional confirmation of the support 
material provided by a conservator’s expertise. 
 
Methods 

Spectral capture 

The line-scan camera Pika L (Resonon Ltd.) was used for 

spectral acquisition in the visible and near-infrared (VNIR) 

range, covering wavelengths from 400 to 1000 nm, with a 

spatial resolution of 900 pixels per line and a spectral 

resolution of 2.1 nm. Spectral binning was applied, and the 

resulting data were interpolated with a 5 nm sampling 

interval, yielding 121 spectral bands. The documents were 

placed on a motorized linear stage under halogen 

illumination, with a capture distance of 60 cm, which resulted 

in a spatial resolution of approximately 150 μm/pixel. As part 

of the HYPERDOC dataset, the images were also acquired 

using a Pika IR+ line-scan camera (Resonon Ltd.) operating 

in the short-wave infrared (SWIR) range, from 900 to 

1700 nm. The SWIR data are only used in the third step of 

the identification algorithm. 

 

Reference Library 

A reference spectral library consisting of 45 spectra was 

constructed using mock-up data available in the 

HYPERDOC database. The spectra were obtained by 

averaging the reflectance of a 30×30 pixel region of interest 

containing the material, in both the VNIR and SWIR ranges. 

The two spectral ranges were concatenated by low-level data 

fusion, after discarding the overlapping end of the VNIR 

range and the beginning of the SWIR range. This resulted in 

a unified reflectance spectrum for each material, composed 

of the first 111 bands of the VNIR range (400–950 nm) and 

the last 150 bands of the SWIR range (955–1700 nm). The 

reference library includes 32 pigments and dyes bound with 

either egg white and/or gum arabic on parchment support. 

The pigments and dyes are: azurite, buckthorn berry green, 

burnt umber, calcite white, carmine, cinnabar, gamboge, 

hematite red, indigo, imperial yellow ink, lapis lazuli, lead tin 

yellow, lead white, minium, malachite, yellow ochre, 

orpiment, saffron, smalt and verdigris. The buckthorn berry 

dye is included in liquid form without binder, and some 

colorants are bound with only one of the binders (mainly gum 

arabic). All pigments and dyes were sourced from Kremer 

Pigmente GmbH (Germany). Eight different inks on 

parchment support were also incorporated: sepia, lampblack, 

iron gall, bone black, ivory black, cherry black, grape black 

and bistre. In addition, five different supports were included: 

parchment from Römer Shop (Glasburg, Germany), cotton–

linen paper, linen paper, cotton paper from Paperlan (Gijón, 

Spain), and hemp paper from Wanderings Inc. The spectra in 

the reference library were grouped into seven subsets. Five of 

them contain only pigments and dyes and are categorized by 

perceived colour (BLUE, GREEN, RED, YELLOW, 

ORANGE). The remaining two subsets contain the ink (INK) 

and support (SUPPORT) samples, respectively. 

Material identification method 

The material identification method is structured in three 

steps: superpixel segmentation, adaptive colour group-based 

material voting by superpixel, and refinement of the results 

for inks and supports using a KNN-based classifier. 

 

The first step (superpixel segmentation) aims to reduce the 

number of spectra in the hyperspectral image by grouping 

similar pixels into spatial subsets called superpixels. 

Superpixel segmentation is widely used in image processing, 

and in this work the algorithm proposed by Achanta et al. [12] 

is applied. The over-segmentation is performed on the false-

colour RGB image and then transferred to the hyperspectral 

image. The number of superpixels generated ranges from 

5995 to 6820 per fragment, with an initial superpixel number 

set to 7000 in the algorithm parameters. After segmentation, 

the spectra of all pixels within each superpixel are averaged 

to reduce data volume. 

 

The second step (adaptive colour group-based material 

voting) consists of two sub-procedures: colour group 

assignment and adaptive material voting. The colour group 

assignment requires a predefined number of colour groups in 

the image and a representative spectrum for each group. 

These groups are defined by visual inspection of the images, 

and a 3×3 pixel region of interest is manually selected and 

averaged to obtain the representative spectrum for each 

group. These spectra are then compared to the average 

spectrum of each superpixel, and the colour group is assigned 

based on the representative with the minimum distance. The 

distance metric is a combination of three components: the 
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CIEDE00 colour difference [13], the root mean square error 

(RMSE), and the complementary Goodness-of-Fit 

Coefficient cGFC=1−GFC [14], as defined in equation (1).  

 

𝐶𝑀1 = ΔE00 + 0.25 ∙ 𝑅𝑀𝑆𝐸 + 0.25 ∙ 𝑐𝐺𝐹𝐶    (1) 

 
As an example, four colour groups are considered for 
minicube 1: RED, GREEN, INK and SUPPORT. For 
minicube 2, only INK and SUPPORT are present, while 
minicube 3 includes GREEN, WHITE and SUPPORT. 
 
The second procedure within this step is adaptive material 
voting. Each superpixel votes for a candidate material among 
the reference spectra contained in its assigned colour group 
(adaptive voting). The selected material is the one that 
minimises the combined distance according to the metric 
defined in equation (2), as introduced in Valero et al. (2023) 
[4]. 
 

CM2 = 0.02 ∙  ΔE00 + RMSE + 0.5 ∙ cGFC    (2) 

Eqs. (1) and (2) differ in the weights assigned to each metric. 
In the colour group assignation, more weight is given to the 
color difference metric, while for material identification, 
more weight is given to the spectral metrics. The second step 
allows for the generation of voting maps to visually 
summarise the results. In these maps (see Figure 3), 
superpixels that voted for a given colour group or material are 
displayed in their corresponding RGB value, while the 
remaining areas of the image are shown in white 
[255,255,255]. 

The third and final step is the refinement of the ink and 
support classification using two k-NN-based classifiers, each 
relying on an extensive reference dataset of ink and substrate 
spectra extracted from the HYPERDOC database. These 
reference spectra include the short-wave infrared (SWIR) 
range from 900 to 1700 nm, which is known to be particularly 
relevant for ink and support identification [11]. The k-NN 
classifier for inks uses 751267 reference spectra and applies 
the cosine distance metric to distinguish among three ink 
classes: metallo-gallate pure, carbon-containing, and non-
carbon-containing. The k-NN classifier for substrates 
differentiates between parchment, cotton–linen, linen and 
cotton papers, using a total of 2038511 reference spectra and 
the cityblock distance metric, which worked better than 
cosine distance according to preliminary trials. Both use k=1 
as number of neighbours. This final step is necessary because 
we observed that the results from adaptive material 
identification were generally less accurate for the INK and 
SUPPORT groups. This is due to the considerable variability 
in the spectral characteristics of inks and supports, influenced 
by differences in manufacturing conditions, recipes and 
natural ageing processes. As a result, using only one 
representative instance per material was insufficient for these 
two categories, whereas it was typically effective for pigment 
identification. Figure 2 illustrates the main steps of the 
proposed method. 

Figure 2. Workflow illustrating the steps of the proposed method.  

Results 

First step: superpixel segmentation 
The superpixel segmentation yielded a total of 6424 
superpixels for minicube 1, 5914 for minicube 2 and 5802 for 
minicube 3. The corresponding reduction in the number of 
spectra ranged from 18.03% to 65.45%, with most 
superpixels comprising only one or two pixels. Despite the 
relatively small size of many superpixels, this reduction is 
significant as it contributes to a noticeable decrease in 
computation time during the subsequent processing steps. 
 
Second step: subset-based adaptive material voting 
The first part of this step is the color group assignation. As 
explained in the previous section, each pixel is assigned to a 
color group depending on its spectral and color proximity to 
a manually extracted set of representative spectra. There is 
one representative spectrum for each of the a priori 
determined color groups present in the minicube. Once the 
assignment is completed, presence maps can be generated to 
visualise the distribution of each colour group. In these maps, 
pixels not belonging to the selected group are displayed in 
white [255,255,255], facilitating the interpretation of the 
results (see Figure 3). 
The colour group assignment generally produced reasonable 
results, with two notable exceptions. In minicube 1, some ink 
pixels were incorrectly assigned to the GREEN group, while 
in minicube 2, some ink pixels were classified as SUPPORT. 
The first anomaly can be explained by the spectral influence 
of the parchment support at the edges of the ink strokes, 
which appear lighter than the central parts. As the GREEN 
representative was extracted from the dark green capital 
letter, these lighter ink-edge pixels appear more similar to the 
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dark pigment than to the ink. The second anomaly has a 
similar cause: the ink representative in minicube 2 was 
extracted from the centre of a stroke, while the lighter border 
pixels were spectrally closer to the SUPPORT representative 
than to the ink.  

Figure 3. Presence maps of the color groups pre-defined for each of the three 

minicubes used in the study 
 
In the second part of this step, adaptive material identification 
is carried out by allowing each superpixel to vote for a 
candidate material within its assigned colour group. The 
selected material corresponds to the spectrum in the group 
with the minimum combined distance, according to the 
metric defined in equation (2) [4]. Presence maps for the most 
voted materials are shown in Figure 4, together with the 
percentage of total votes associated with each material. 
 
The pigments were correctly identified in all cases for 
minicubes 1 and 3. However, misclassifications occurred in 
the case of inks and supports in minicubes 1 and 2, which are 
historical documents. In both, the ink was iron gall but was 
misidentified as ivory black, and the support, which is 
parchment, was misclassified as linen. In contrast, the support 
in minicube 3 (cotton-linen paper) was nearly correctly 
identified as linen instead of cotton-linen paper. 
 
These misclassifications are mainly due to the spectral 
limitations of the VNIR range used for distance computation 
in this step. Ink spectra in the VNIR tend to be flat, with low 
reflectance and few distinctive features, which limits the 
method’s discriminative power for inks. In contrast, pigments 
typically show clearer spectral differences in this range. 
 
The results were not unanimous within the color groups, with 
the exception of the INK color group for minicube 2. In 
minicube 1, the GREEN group showed similar percentage of 
votes to the ML2 pigment for buckthorn berry dye. A small 

Figure 4. Presence maps for the most voted materials within each color group 

of the three minicubes used in the study after step 2. 
 
number of pixels in the INK group voted for iron gall, and 
12.08% of SUPPORT pixels voted for parchment. In 
minicube 2, the SUPPORT results registered a 28.95% of 
superpixels voting for parchment (mostly the ink pixels 
wrongly assigned to this group), while residual amounts 
voted for cotton, cotton-linen and hemp. In minicube 3, only 
residual amounts of votes were casted for calcite white and 
LW2 in the WHITE group and parchment in the SUPPORT 
color group, indicating clearer identification.  
 
Third step: refinement for ink and support pixels 
As previously explained, this final step refines the 
classification of inks and supports using KNN-based 
classifiers that operate on concatenated VNIR and SWIR 
spectra. When applied to the average spectra of the 
SUPPORT colour groups, the method correctly identified 
parchment for minicubes 1 and 2, and cotton-linen paper for 
minicube 3. 
Regarding inks, the classifier correctly identified pure iron 
gall ink in both minicubes 1 and 2. When the KNN classifier 
is applied on a pixel-by-pixel basis with majority voting for 
decision-making, the same results are obtained. However, 
approximately 30% of the SUPPORT group pixels in 
minicube 3 were identified as parchment, particularly on the 
right side of the image. In minicube 1, while the text was 
correctly classified as iron gall, some edge pixels in the 
capital letter were misclassified as non-carbon-containing 
ink. Only one pixel of the support was misclassified as linen 
paper. 
Overall, the use of average spectra appears more practical for 
classification in this context. However, pixel-based 
classification provides valuable insights into the internal 
variability of spectral features within each minicube. 
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Pixel-based hit rate evaluation 
The presence maps resulting from Step 3 were compared with 
Ground Truth (GT) images from the HYPERDOC database 
to evaluate classification accuracy at the pixel level.  
The GT images are color-coded according to the material 
present in each pixel, and they can be converted into binary 
presence maps for each material. In these binary maps, the 
pixels containing the material are shown in white, and the rest 
of the pixels in black. Comparing the GT binary maps with 
the results of the pixel-based classification similarly 
expressed in the form of binary maps (where the pixels 
classified as containing the material are shown in white and 
the rest of the pixels in black), the Accuracy, False Positives 
(FP) and False Negatives (FN) can be obtained.  
Table 1 shows the results of this evaluation for the three 
minicubes analyzed.   
 

Minicube Material Accuracy FP  FN 

1 Cinnabar 0.9174 0.0001 0.0824 

1 Malaquite 0.9443 0.0000 0.0557 

1 Iron Gall 
Ink 

0.8604 0.0156 0.1240 

1 Parchment 0.9040 0.0952 0.0007 

2 Iron Gall 
Ink 

0.7214 0.0000 0.2786 

2 Parchment 0.7310 0.2689 0.0001 

3 Malaquite 0.9449 0.0002 0.00549 

3 Lead 
White 

0.9346 0.0630 0.0025 

3 Cotton-
linen paper 

0.7955 0.0026 0.2018 

Table 1. Results of the comparison of the pixel-based 

classification results with the GT image.   

 

These results confirm that the method is largely consistent 

with the ground truth data. Variability is mainly introduced 

during colour group assignment and by the accuracy of the 

KNN classifiers. For example, the 12% FN rate for iron gall 

ink in minicube 1 is due to some edge pixels being assigned 

to the GREEN or SUPPORT groups. Similarly, the 27% FN 

for iron gall ink in minicube 2 corresponds to strokes 

incorrectly labelled as SUPPORT, which contributes to an 

increased FP rate in the parchment class. In minicube 3, 

around 20% of the pixels were incorrectly classified as 

parchment by the pixel-based KNN classifier, highlighting 

limitations of the third step. 

 

Despite these shortcomings, applying a simple majority 

voting rule to the classification results led to the correct 

identification of all materials in the three analysed 

minicubes..   

Conclusions 

In this study, selected samples from the HYPERDOC 
Database have been used to demonstrate the performance of 
a material identification algorithm based on reducing the 

number of candidate spectra in the reference library by 
assigning each superpixel in the document fragment to a 
predefined colour group. This simple method provides a 
preliminary material identification in under one minute. 
Using only VNIR spectral data, it was able to correctly 
identify the pigments present in the fragments, although it 
failed to accurately classify inks and supports. However, after 
a refinement step incorporating the SWIR portion of the 
spectra and using the average spectra of the superpixels 
assigned to the INK and SUPPORT groups, all materials 
present in the three analysed minicubes were correctly 
identified. These results highlight the potential of combining 
adaptive strategies with straightforward methodologies.  

Even if similar results could be obtained by comparing each 
superpixel to the entire reference library, a properly 
implemented adaptive approach will always reduce 
computation time significantly by limiting the number of 
comparisons per pixel, at the cost of requiring prior labelling 
of the reference spectra by colour group. The effectiveness of 
the method relies on accurate colour group assignment based 
on manually extracted representative spectra. Although this 
step is critical and errors in group assignment may 
compromise later results, the method has shown some 
tolerance, as demonstrated by the performance on minicube 
2, which exhibited the lowest accuracy in group assignment. 
Future improvements may include automating the extraction 
and identification of colour groups directly from the spectral 
image, thereby reducing manual intervention and enabling 
the analysis of a greater number of samples within reasonable 
time frames.  

A main limitation of the proposed method is its inability to 
detect pigment or dye mixtures unless specific mixture 
instances are already included in the reference library. 
However, this limitation could be addressed by integrating 
spectral unmixing techniques using automatically extracted 
endmembers to identify regions containing material 
mixtures, which represents a promising direction for future 
development. 
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