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Abstract 
The digitization of historical documents is vital for preserving 

cultural heritage, yet mainstream OCR (Optical Character 

Recognition) systems often fail to support minority languages due to 

limited training data and language-specific models. This study 

explores how open-source OCR frameworks can be adapted to 

overcome these limitations, focusing on Finnish and Swedish as 

case studies. We present a practical methodology for fine-tuning 

PaddleOCR using a combination of manually annotated and 

synthetically generated data, supported by high-performance 

computing infrastructure. Our enhanced model significantly 

outperforms both Tesseract and baseline PaddleOCR, particularly 

in recognizing handwritten and domain-specific texts. The results 

highlight the importance of domain adaptation, GPU acceleration, 

and open-source flexibility in building OCR systems tailored for 

under-resourced languages. This work offers a replicable blueprint 

for cultural institutions seeking locally deployable OCR solution. 

Motivation 
Optical Character Recognition technology plays an important role 

in the preservation, accessibility, and analysis of printed and 

handwritten texts within historical archives. OCR and its 

handwritten counterpart, HTR (Handwritten Text Recognition), 

have become essential tools for unlocking the contents of physical 

documents and integrating them into searchable, analyzable digital 

ecosystems.  

Agarwal and Anastasopoulos [1] emphasize the importance of data 

creation efforts and data-efficient algorithms. They highlight the 

challenges of digitizing image-based non-machine-readable 

documents, such as scanned dictionaries and linguistic field notes. 

Their recommendations include focusing on accurate layout 

detection and post-processing to make the extracted text usable for 

downstream NLP (Natural Language Processing) tasks. Compared 

to our approach, their study underscores the need for extensive data 

creation and preprocessing, which aligns with our methodology of 

using synthetic data generation and annotation [1].  

Another study by Ignat & all [4] introduces a novel dataset for 

evaluating OCR systems on low-resource languages, enriched with 

noise to simulate real-world conditions. The study evaluates state-

of-the-art OCR systems and analyzes common errors. Our approach 

goes further by fine-tuning PaddleOCR specifically for the Finnish 

and Swedish languages and leveraging high-performance hardware 

to optimize training time. There are also studies of enhancing other 

OCR engines to better meet minority languages. Microsoft Research 

[5] for example have introduced TrOCR, an end-to-end text

recognition approach using pre-trained Transformer models, which

also leverages large-scale synthetic data for pre-training and human-

labeled datasets for fine-tuning. Our approach is quite similar but 

uses PaddleOCR as the base OCR engine. 

The selection of PaddleOCR was guided by empirical 

experimentation using a set of various documents. While the choice 

reflects the current state of OCR technology, it is important to 

acknowledge the rapid advancement of AI. It is entirely possible that 

a different engine may prove more suitable in the near future as new 

models and frameworks emerge. 

The primary objective of this work is not to advocate for a single 

tool, but rather to investigate whether deep learning-based OCR 

models can meaningfully improve recognition accuracy, especially 

in case of underrepresented languages. 

Problem 

Despite the advancements in OCR and HTR, the mainstream OCR 

engines such as Tesseract remain heavily skewed toward high-

resource languages, where abundant training data and commercial 

interest have driven rapid enhancements. In contrast, minority and 

under-resourced languages such as Finnish and Swedish continue to 

be marginalized in this evolution. The main challenge lies in the lack 

of annotated training material and language-specific models, which 

are prerequisites for an accurate recognition system. 

The second challenge lies within the diverse structure of documents, 

even within the same group. This poses a challenge in generating 

sufficient training and ground truth data for AI model fine-tuning. 

Variations in fonts, backgrounds, and image quality further 

complicate the OCR process, requiring sophisticated processing 

techniques.  

Thirdly, training an OCR model demands significant computational 

capacity, necessitating appropriate hardware to ensure timely fine-

tuning. Additionally, multilingual support, especially for minority 

languages, requires extensive resources.  

Cloud based solutions, which are commonly offered by commercial 

providers, are suitable solutions for some users. However, the 

solution intended for the GLAM (Galleries, Libraries, Archives, 

Museums) sector, must often be locally installed to ensure data 

security and comply with regulations like GDPR [7]. Furthermore, 

this sector often needs to customize the solution and alter the output 

formats, language support etc. to fit into the existing workflows. 

These are aspects that can rarely be achieved with commercial or 

closed cloud-based solutions. 

Finally, LLMs (Large Language Models) have revolutionized NLP 

by enabling machines to understand, generate, and manipulate 

human language at an unprecedented scale. However, LLMs operate 

on digital text, limiting their ability to process information from 

non-digital sources such as scanned documents, handwritten notes, 

or images containing text. OCR bridges this gap by converting 

visual text into structured, machine-readable input, thereby 
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expanding the applicability of LLMs. The effectiveness of this 

transition is highly dependent on the quality of OCR output. 

Recognition errors propagate through downstream tasks such as 

information retrieval, summarization, and question answering, this 

could lead to degraded performance or even misinformation. 

Approach 
The ground truth was produced by the NAF (National Archives of 

Finland) and Central Archives for Finnish Business Records' 

(ELKA) within an AIDA project which had limited number of 

human resources available. This manual work was conducted with 

an open-source Label Studio tool [2]. Due to limited resources, also 

synthetic data was generated to provide more training material for 

the finetuning process. There are various tools available for creating 

synthetic data but for this case, TRDG 

(TextRecognitionDataGenerator) was chosen without any specific 

approval process. The tool was utilized to vary fonts, text form and 

the background of texts. Figure 1 shows an example of the synthetic 

content created for the Finnish language. Texts for the synthetic data 

generation were harvested from Project Gutenberg free eBooks. 

Tesseract was chosen as a baseline reference for this study, as it 

continues to serve as a de facto standard among open-source OCR 

engines. Table 1 presents a comparative overview of Tesseract and 

the selected PaddleOCR framework and deeper differences are 

presented under the table. While Tesseract offers broad language 

support and a long-standing development history, it was ultimately 

not chosen for fine-tuning due to some limitations. 

Table 1. Comparison of Tesseract and PaddleOCR 

 

In addition, Tesseract lacks native support for GPU acceleration, 

which is a significant drawback given our access to one of Finland’s 

most powerful GPU-enabled supercomputing environments. Also, 

the fine-tuning process for Tesseract is considerably more complex 

and less flexible compared to modern deep learning-based OCR 

frameworks. Its architecture, while robust for general-purpose OCR, 

is not optimized for rapid experimentation or adaptation to new 

languages and scripts. In contrast, PaddleOCR emerged as a more 

suitable candidate for our objectives. It offers built-in GPU support, 

modular architecture, and out-of-the-box compatibility with over 80 

languages. These features significantly reduce the overhead 

associated with model customization and training. After evaluating 

open-source OCR engines through a non-scientific test, PaddleOCR 

was selected for fine-tuning due to its performance, extensibility, 

and ease of integration into high-performance computing 

workflows. 

Previously we have explored the potential impact of image 

preprocessing on OCR accuracy. The goal of this experiment was to 

determine whether image preprocessing techniques such as 

binarization, contrast adjustment or noise reductions could improve 

recognition performance. The results of this investigation, which are 

detailed in [3], indicated that preprocessing had no statistically 

significant effect on overall OCR accuracy across our test datasets. 

This is assumably due to inbuild pre-processing that is conducted 

within the OCR engines. Therefore, we opted not to incorporate 

preprocessing steps in the current study. Instead, our focus was in 

enhancing the OCR model itself, as this approach showed greater 

potential for improving recognition quality, particularly in the 

context of under-resourced languages.  

A step-by-step guide in our case is as follows:  

1. Collect data: Gather text images in target language 

2. Preprocess data: Annotate images and use synthetic data 

generation. Separate training and evaluation sets. Prepare 

unseen data, to measure results. 

3. Prepare data for fine-tuning: Set the data to the correct 

format 

4. Fine-tune model  

5. Evaluate and validate model performance 

6. Integrate the model into the application 

This general workflow is model- and language-agnostic, making it 

adaptable to a wide range of OCR scenarios. While the fastest way 

to initiate fine-tuning is by leveraging only synthetic data, this yields 

only preliminary results due to the domain gap between synthetic 

and authentic documents. Our work began with manually annotated 

real-world data, which provided a more accurate foundation for 

training and evaluation. This choice was driven by the availability 

of high-quality labeled datasets which were created within earlier 

projects [3, 8]. 

Results 
Collect data: The data was sourced from ELKA’s archive, ensuring 

a diverse range of materials. These included letters, company 

reports, and forms from the 20th century. Additionally, we 

annotated materials from the National Archives of Finland, which 

comprised of public documents collected from various sources, 

primarily governmental and archival records. 

Preprocess data: Annotation was performed using Label Studio 

software. Every line of text was annotated, though not all were used 

in training. Especially, handwritten texts had some lines that were 

difficult to read and were therefore excluded from training. After 

Feature Tesseract PaddleOCR 

Easy of use Simple CLI, 

Python API 

More setup required 

Accuracy 

(printed text ) 

Good Excellent 

Accuracy 

(handwritten) 

Poor Better with fine-tuning 

Fine-Tuning 

Difficulty 

Harder Easier 

Figure 1. Sample of the generated Finnish synthetic data 

ARCHIVING 2025 FINAL PROGRAM AND PROCEEDINGS 141



 

 

annotation, we had approximately 30,000 annotated line images for 

our model training. With synthetic generation, we ended up with 

roughly 160,000 images used for training, of which only about 8,300 

were handwritten. 

Prepare data for fine tuning: To prepare the dataset for fine-

tuning, we developed custom Python script to convert annotated line 

images from the Label Studio format into the format required by 

PaddleOCR. This transformation step was essential to ensure 

compatibility with the training pipeline and to preserve the integrity 

of the annotations. The dataset was then partitioned into training, 

validation, and test subsets using a 70% / 15% / 15% split. For the 

primary test set, we used an unseen dataset comprising 

approximately 4,300 line images, on which we computed the CER 

(Character Error Rate) to evaluate model performance. In addition 

to this internal test set, two external datasets provided by the NAF 

were also used to further assess the generalizability of the fine-tuned 

model across different document types and sources. 

Fine-tune model: We used PaddleOCR’s Latin-PPOCR-v3 model 

as our base, which provided all the necessary fonts directly. Our 

hardware setup included an NVIDIA DGX A100 with 8x A100 

GPUs, 640 GB GPU memory, and 2x AMD EPYC 7742 CPUs. We 

conducted performance comparisons using this hardware. Initially, 

we created a virtual machine like a standard laptop and found that 

the estimated training time would have been about 240 days (Paddle 

provides an approximation of training time). In a virtual machine 

with two A100 GPUs, full training took about one day. However, 

using all eight GPUs on the bare metal DGX system, the training 

time was reduced to approximately two hours. This highlights the 

importance of hardware and its utilization. Memory usage was 

around 40 GB per card, and average GPU performance was about 

80%, demonstrating that PaddleOCR can efficiently utilize available 

GPU capacity.  
In PaddleOCR training it is also possible to adjust the 

hyperparameters to reach the optimum performance with the 

available hardware. A hyperparameter search for number of epochs 

and learning rate was conducted with grid search. Our search 

indicated that the PaddleOCR’s latin-PPOCR-v3 model’s original 

hyperparameters were optimal, but the best results could be 

achieved with 25 epochs of training. Additionally, data 

augmentation techniques were searched in separate search. Four 

augmentations were selected out of the PaddleOCR’s augmentation 

techniques. These include reverse, noise, blur and hsv_aug. Reverse 

inverts all the colors in the image, noise adds gaussian noise to the 

image, blur applies blur to the image and hsv_aug changes the colors 

of the image slightly. Every one of these augmentations has a 25 % 

change of being applied.  

Evaluate and validate model: We used datasets from two different 

organizations, NAF and ELKA, as test data to evaluate the retrained 

PaddleOCR. These are the same datasets that were originally 

introduced in [3,8]. Despite the versatility of our training material, 

we wanted to ensure that the test data was entirely unseen during 

training. Once the model is trained, its validation is lightweight and 

can be performed on a standard laptop, unless it deals with a large 

volume of data. Character Error Rate was used as the evaluation 

metric, as it provides a rigorous and widely accepted measure of 

OCR accuracy. The CER results are summarized in Table 2 and 

Table 3.  

Table 2. CER results from the OCR test 

Table 3. CER results from the OCR test 

As demonstrated by the results, fine-tuning the PaddleOCR model 

led to a substantial improvement in recognition performance across  

both datasets, highlighting the effectiveness of domain-specific 

adaptation. 

While CER is the most used metric in OCR evaluation, other useful 

alternatives exist depending on the specific goals of the project. 

WER (Word Error Rate) is often preferred for applications where 

word-level accuracy affects usability, such as search or language 

processing. Exact match accuracy provides a stricter measure, 

counting only fully correct lines or words, making it suitable for 

structured data or form recognition. Edit distance (Levenshtein 

distance) can also be reported as a raw error count for simpler 

comparisons. Additionally, some evaluations use precision, recall, 

and F1 scores, especially in post-OCR correction or entity 

recognition contexts—to capture how well meaningful content is 

recovered. Choosing the right metric depends on the intended use of 

the OCR output and the granularity of required accuracy. In this 

work our focus is on developing OCR engine itself. 

Figure 2 presents an example PoC (Proof of Concept) with a simple 

Gradio UI. This same version is up and running on 

https://memorylab.fi/AIDA/extended-paddle-demo/. The UI is in 

Finnish, but the basic utilization should be clear enough. Upload an 

image, press the button and wait for the results to appear. The 

training material used for this task is shared openly via   

https://huggingface.co/datasets/Kansallisarkisto/AIDA_ocr_trainin

g_data and the trained model can be found 

https://github.com/project-AIDA/Finnish_PaddleOCR/tree/main. 

Finally, the dockerized codes behind the public demo can be 

Model ELKA test (4273 

row pictures) 

NAF1 test (3475 row 

pictures) 

Tesseract 4,6 % 2,7% 

PaddleOCR 6,7 % 3,9% 

Enhanced 

PaddleOCR 

2,0 % 1,2 % 

Model NAF2 test (3247 

row pictures) 

ELKA test handwritten 

(714 row pictures) 

Tesseract 4,4 % 79,3% 

PaddleOCR 6,8 % 50,2% 

Enhanced 

PaddleOCR 

2,3 % 20,7% 
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accessed via GitHub https://github.com/xamkfi/digitalia-aida-

extended-paddle-demo.  

Conclusions 
This study demonstrates that mainstream open-source OCR engines 

can be effectively adapted to support minority languages through 

targeted fine-tuning, synthetic data generation, and the use of high-

performance computing resources. By leveraging PaddleOCR and 

enhancing it with domain-specific training data, both real and 

synthetic, we achieved significant improvements in recognition 

accuracy, particularly for Finnish and Swedish texts. The enhanced 

model outperformed both the baseline PaddleOCR and Tesseract, 

especially in challenging handwritten scenarios. 

Our results underscore the importance of localized, open-source 

solutions for the GLAM sector, where data privacy, customization, 

and integration into existing workflows are critical. The approach 

outlined in this work is scalable and adaptable, offering a replicable 

framework for other under-resourced languages and archival 

contexts.  

Looking forward, further improvements in handwritten text 

recognition, integration with language models for post-processing, 

and semi-automated annotation pipelines could push the boundaries 

of OCR performance even further. 

Further development 
While the enhanced PaddleOCR model demonstrated significant 

improvements in recognizing printed and some handwritten texts in 

Finnish and Swedish, several avenues remain for future 

enhancement: 

Improving Handwritten Text Recognition: Despite notable gains, 

the model's performance on handwritten documents, especially 

those with cursive or degraded writing, remains limited. Future 

work could focus on expanding the volume and diversity of 

handwritten training data, particularly from regional archives. 

Exploring hybrid models or integrating architectures like TrOCR, 

known for their superior handwritten text recognition, could also be 

beneficial, albeit with higher computational costs. 

Post-OCR Structuring and Enrichment: OCR outputs are 

currently unstructured, consisting mainly of text and bounding 

boxes. A promising direction is to enrich these outputs by 

identifying and linking key-value pairs, especially in structured 

documents like forms. Leveraging large language models (LLMs) 

for semantic understanding and layout-aware parsing could 

significantly enhance the usability of OCR results in downstream 

applications. 

Semi-Automated Annotation Pipelines: Manual annotation is 

resource intensive. Implementing active learning strategies, where 

the model suggests uncertain samples for human review, could 

reduce annotation effort while maintaining quality. This would 

accelerate dataset expansion and model refinement. 

User-Friendly Deployment and Integration: To support adoption 

by smaller institutions, future work should focus on creating 

lightweight, containerized deployment packages with intuitive user 

interfaces. Enhancing the current Gradio-based demo into a more 

robust, multilingual platform could broaden accessibility and 

impact. 

Continuous Benchmarking and Model Updating: As new 

documents and OCR technologies emerge, periodic retraining and 

benchmarking will be essential. Establishing a continuous 

evaluation pipeline using diverse datasets will ensure the model 

remains effective and adaptable over time. 
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