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Abstract

The digitization of historical documents is vital for preserving
cultural heritage, yet mainstream OCR (Optical Character
Recognition) systems often fail to support minority languages due to
limited training data and language-specific models. This study
explores how open-source OCR frameworks can be adapted to
overcome these limitations, focusing on Finnish and Swedish as
case studies. We present a practical methodology for fine-tuning
PaddleOCR using a combination of manually annotated and
synthetically generated data, supported by high-performance
computing infrastructure. QOur enhanced model significantly
outperforms both Tesseract and baseline PaddleOCR, particularly
in recognizing handwritten and domain-specific texts. The results
highlight the importance of domain adaptation, GPU acceleration,
and open-source flexibility in building OCR systems tailored for
under-resourced languages. This work offers a replicable blueprint
Sfor cultural institutions seeking locally deployable OCR solution.

Motivation

Optical Character Recognition technology plays an important role
in the preservation, accessibility, and analysis of printed and
handwritten texts within historical archives. OCR and its
handwritten counterpart, HTR (Handwritten Text Recognition),
have become essential tools for unlocking the contents of physical
documents and integrating them into searchable, analyzable digital
ecosystems.

Agarwal and Anastasopoulos [1] emphasize the importance of data
creation efforts and data-efficient algorithms. They highlight the
challenges of digitizing image-based non-machine-readable
documents, such as scanned dictionaries and linguistic field notes.
Their recommendations include focusing on accurate layout
detection and post-processing to make the extracted text usable for
downstream NLP (Natural Language Processing) tasks. Compared
to our approach, their study underscores the need for extensive data
creation and preprocessing, which aligns with our methodology of
using synthetic data generation and annotation [1].

Another study by Ignat & all [4] introduces a novel dataset for
evaluating OCR systems on low-resource languages, enriched with
noise to simulate real-world conditions. The study evaluates state-
of-the-art OCR systems and analyzes common errors. Our approach
goes further by fine-tuning PaddleOCR specifically for the Finnish
and Swedish languages and leveraging high-performance hardware
to optimize training time. There are also studies of enhancing other
OCR engines to better meet minority languages. Microsoft Research
[5] for example have introduced TrOCR, an end-to-end text
recognition approach using pre-trained Transformer models, which
also leverages large-scale synthetic data for pre-training and human-

labeled datasets for fine-tuning. Our approach is quite similar but
uses PaddleOCR as the base OCR engine.

The selection of PaddleOCR was guided by empirical
experimentation using a set of various documents. While the choice
reflects the current state of OCR technology, it is important to
acknowledge the rapid advancement of Al It is entirely possible that
a different engine may prove more suitable in the near future as new
models and frameworks emerge.

The primary objective of this work is not to advocate for a single
tool, but rather to investigate whether deep learning-based OCR
models can meaningfully improve recognition accuracy, especially
in case of underrepresented languages.

Problem

Despite the advancements in OCR and HTR, the mainstream OCR
engines such as Tesseract remain heavily skewed toward high-
resource languages, where abundant training data and commercial
interest have driven rapid enhancements. In contrast, minority and
under-resourced languages such as Finnish and Swedish continue to
be marginalized in this evolution. The main challenge lies in the lack
of annotated training material and language-specific models, which
are prerequisites for an accurate recognition system.

The second challenge lies within the diverse structure of documents,
even within the same group. This poses a challenge in generating
sufficient training and ground truth data for Al model fine-tuning.
Variations in fonts, backgrounds, and image quality further
complicate the OCR process, requiring sophisticated processing
techniques.

Thirdly, training an OCR model demands significant computational
capacity, necessitating appropriate hardware to ensure timely fine-
tuning. Additionally, multilingual support, especially for minority
languages, requires extensive resources.

Cloud based solutions, which are commonly offered by commercial
providers, are suitable solutions for some users. However, the
solution intended for the GLAM (Galleries, Libraries, Archives,
Museums) sector, must often be locally installed to ensure data
security and comply with regulations like GDPR [7]. Furthermore,
this sector often needs to customize the solution and alter the output
formats, language support etc. to fit into the existing workflows.
These are aspects that can rarely be achieved with commercial or
closed cloud-based solutions.

Finally, LLMs (Large Language Models) have revolutionized NLP
by enabling machines to understand, generate, and manipulate
human language at an unprecedented scale. However, LLMs operate
on digital text, limiting their ability to process information from
non-digital sources such as scanned documents, handwritten notes,
or images containing text. OCR bridges this gap by converting
visual text into structured, machine-readable input, thereby
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expanding the applicability of LLMs. The effectiveness of this
transition is highly dependent on the quality of OCR output.
Recognition errors propagate through downstream tasks such as
information retrieval, summarization, and question answering, this
could lead to degraded performance or even misinformation.

Approach

The ground truth was produced by the NAF (National Archives of
Finland) and Central Archives for Finnish Business Records'
(ELKA) within an AIDA project which had limited number of
human resources available. This manual work was conducted with
an open-source Label Studio tool [2]. Due to limited resources, also
synthetic data was generated to provide more training material for
the finetuning process. There are various tools available for creating
synthetic data but for this case, TRDG
(TextRecognitionDataGenerator) was chosen without any specific
approval process. The tool was utilized to vary fonts, text form and
the background of texts. Figure 1 shows an example of the synthetic
content created for the Finnish language. Texts for the synthetic data
generation were harvested from Project Gutenberg free eBooks.

ma olivat poliittisesti turvallisia aihei-

||K ”é" : iaet Mpanin s
Ylld", sanoi Ebba lujast], Mina luulen, etts sing olet tehnyt

Perjantal-aamuna tulivatsuureen sygnmaan kylzén,Jossa matk? ol

allisu i syvad, etta sen aarimmalset olsat hipoivat irkasta

Figure 1. Sample of the generated Finnish synthetic data

Tesseract was chosen as a baseline reference for this study, as it
continues to serve as a de facto standard among open-source OCR
engines. Table 1 presents a comparative overview of Tesseract and
the selected PaddleOCR framework and deeper differences are
presented under the table. While Tesseract offers broad language
support and a long-standing development history, it was ultimately
not chosen for fine-tuning due to some limitations.

Table 1. Comparison of Tesseract and PaddleOCR

Easy of use Simple CLI, | More setup required
Python APIL

Accuracy Good Excellent

(printed text )

Accuracy Poor Better with fine-tuning

(handwritten)

Fine-Tuning Harder Easier

Difficulty

In addition, Tesseract lacks native support for GPU acceleration,
which is a significant drawback given our access to one of Finland’s
most powerful GPU-enabled supercomputing environments. Also,
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the fine-tuning process for Tesseract is considerably more complex
and less flexible compared to modern deep learning-based OCR
frameworks. Its architecture, while robust for general-purpose OCR,
is not optimized for rapid experimentation or adaptation to new
languages and scripts. In contrast, PaddleOCR emerged as a more
suitable candidate for our objectives. It offers built-in GPU support,
modular architecture, and out-of-the-box compatibility with over 80
languages. These features significantly reduce the overhead
associated with model customization and training. After evaluating
open-source OCR engines through a non-scientific test, PaddleOCR
was selected for fine-tuning due to its performance, extensibility,
and ease of integration into high-performance computing
workflows.
Previously we have explored the potential impact of image
preprocessing on OCR accuracy. The goal of this experiment was to
determine whether image preprocessing techniques such as
binarization, contrast adjustment or noise reductions could improve
recognition performance. The results of this investigation, which are
detailed in [3], indicated that preprocessing had no statistically
significant effect on overall OCR accuracy across our test datasets.
This is assumably due to inbuild pre-processing that is conducted
within the OCR engines. Therefore, we opted not to incorporate
preprocessing steps in the current study. Instead, our focus was in
enhancing the OCR model itself, as this approach showed greater
potential for improving recognition quality, particularly in the
context of under-resourced languages.
A step-by-step guide in our case is as follows:
1. Collect data: Gather text images in target language
2. Preprocess data: Annotate images and use synthetic data
generation. Separate training and evaluation sets. Prepare
unseen data, to measure results.
3. Prepare data for fine-tuning: Set the data to the correct
format
4. Fine-tune model
5. Evaluate and validate model performance
6. Integrate the model into the application

This general workflow is model- and language-agnostic, making it
adaptable to a wide range of OCR scenarios. While the fastest way
to initiate fine-tuning is by leveraging only synthetic data, this yields
only preliminary results due to the domain gap between synthetic
and authentic documents. Our work began with manually annotated
real-world data, which provided a more accurate foundation for
training and evaluation. This choice was driven by the availability
of high-quality labeled datasets which were created within earlier
projects [3, 8].

Results

Collect data: The data was sourced from ELKA’s archive, ensuring
a diverse range of materials. These included letters, company
reports, and forms from the 20th century. Additionally, we
annotated materials from the National Archives of Finland, which
comprised of public documents collected from various sources,
primarily governmental and archival records.

Preprocess data: Annotation was performed using Label Studio
software. Every line of text was annotated, though not all were used
in training. Especially, handwritten texts had some lines that were
difficult to read and were therefore excluded from training. After



annotation, we had approximately 30,000 annotated line images for
our model training. With synthetic generation, we ended up with
roughly 160,000 images used for training, of which only about 8,300
were handwritten.

Prepare data for fine tuning: To prepare the dataset for fine-
tuning, we developed custom Python script to convert annotated line
images from the Label Studio format into the format required by
PaddleOCR. This transformation step was essential to ensure
compatibility with the training pipeline and to preserve the integrity
of the annotations. The dataset was then partitioned into training,
validation, and test subsets using a 70% / 15% / 15% split. For the
primary test set, we used an unseen dataset comprising
approximately 4,300 line images, on which we computed the CER
(Character Error Rate) to evaluate model performance. In addition
to this internal test set, two external datasets provided by the NAF
were also used to further assess the generalizability of the fine-tuned
model across different document types and sources.

Fine-tune model: We used PaddleOCR’s Latin-PPOCR-v3 model
as our base, which provided all the necessary fonts directly. Our
hardware setup included an NVIDIA DGX A100 with 8x A100
GPUs, 640 GB GPU memory, and 2x AMD EPYC 7742 CPUs. We
conducted performance comparisons using this hardware. Initially,
we created a virtual machine like a standard laptop and found that
the estimated training time would have been about 240 days (Paddle
provides an approximation of training time). In a virtual machine
with two A100 GPUs, full training took about one day. However,
using all eight GPUs on the bare metal DGX system, the training
time was reduced to approximately two hours. This highlights the
importance of hardware and its utilization. Memory usage was
around 40 GB per card, and average GPU performance was about
80%, demonstrating that PaddleOCR can efficiently utilize available
GPU capacity.

In PaddleOCR training it is also possible to adjust the
hyperparameters to reach the optimum performance with the
available hardware. A hyperparameter search for number of epochs
and learning rate was conducted with grid search. Our search
indicated that the PaddleOCR’s latin-PPOCR-v3 model’s original
hyperparameters were optimal, but the best results could be
achieved with 25 epochs of training. Additionally, data
augmentation techniques were searched in separate search. Four
augmentations were selected out of the PaddleOCR’s augmentation
techniques. These include reverse, noise, blur and hsv_aug. Reverse
inverts all the colors in the image, noise adds gaussian noise to the
image, blur applies blur to the image and hsv_aug changes the colors
of the image slightly. Every one of these augmentations has a 25 %
change of being applied.

Evaluate and validate model: We used datasets from two different
organizations, NAF and ELKA, as test data to evaluate the retrained
PaddleOCR. These are the same datasets that were originally
introduced in [3,8]. Despite the versatility of our training material,
we wanted to ensure that the test data was entirely unseen during
training. Once the model is trained, its validation is lightweight and
can be performed on a standard laptop, unless it deals with a large
volume of data. Character Error Rate was used as the evaluation
metric, as it provides a rigorous and widely accepted measure of
OCR accuracy. The CER results are summarized in Table 2 and
Table 3.

Table 2. CER results from the OCR test

Tesseract 4,6 % 2,7%
PaddleOCR 6,7 % 3,9%
Enhanced 2,0% 1,2 %
PaddleOCR
Table 3. CER results from the OCR test

Tesseract 4.4 % 79,3%
PaddleOCR 6,8 % 50,2%
Enhanced 2,3 % 20,7%
PaddleOCR

As demonstrated by the results, fine-tuning the PaddleOCR model
led to a substantial improvement in recognition performance across
both datasets, highlighting the effectiveness of domain-specific
adaptation.

‘While CER is the most used metric in OCR evaluation, other useful
alternatives exist depending on the specific goals of the project.
WER (Word Error Rate) is often preferred for applications where
word-level accuracy affects usability, such as search or language
processing. Exact match accuracy provides a stricter measure,
counting only fully correct lines or words, making it suitable for
structured data or form recognition. Edit distance (Levenshtein
distance) can also be reported as a raw error count for simpler
comparisons. Additionally, some evaluations use precision, recall,
and F1 scores, especially in post-OCR correction or entity
recognition contexts—to capture how well meaningful content is
recovered. Choosing the right metric depends on the intended use of
the OCR output and the granularity of required accuracy. In this
work our focus is on developing OCR engine itself.

Figure 2 presents an example PoC (Proof of Concept) with a simple
Gradio UL This same version is up and running on
https://memorylab.fi/AIDA/extended-paddle-demo/. The UI is in
Finnish, but the basic utilization should be clear enough. Upload an
image, press the button and wait for the results to appear. The
training material used for this task is shared openly via
https://huggingface.co/datasets/Kansallisarkisto/AIDA_ocr_trainin
g data and the trained model <can be  found
https://github.com/project-AIDA/Finnish_PaddleOCR/tree/main.
Finally, the dockerized codes behind the public demo can be
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accessed via GitHub https://github.com/xamkfi/digitalia-aida-
extended-paddle-demo.

AIDA projektin Paddle OCR demo - piirtda myos
boxit

Kayttaa AIDA projektissa jatko-opetettua PaddleOCR moottoria

Huom! Voit ladata vain yhden tiedoston kerrallaan ja tiedoston tulee olla yleinen kuvaformaatti

Kasittely
Uppaa tahan kuva x
Kuvalpng 1049 KB &
OCR-lue
Tulokset
OCR tulokset Tarkkuus
kallistui niin syvaan, etta sen aarimmaiset 929.09
oksat hipoivat kirkast %
Lataa tekstina
Kuval.png.txt 730Bi

%

Huom! Tarkkuus perustuu ainoastaan PaddleOCR:n omaan rivikohtaiseen arvioon tunnistuksen
tarkkuudesta.

Kuvassa punainen < 75%, oranssi 75-85%, keltainen 85-95% ja vihrea yli 95%

Laatikoitu kuva

ianmsoui i syviaan, etta sen aarimmlsef oksat hipoivat kirkastd

Figure 2. PaddleOCR running on Gradio Ul

Conclusions

This study demonstrates that mainstream open-source OCR engines
can be effectively adapted to support minority languages through
targeted fine-tuning, synthetic data generation, and the use of high-
performance computing resources. By leveraging PaddleOCR and
enhancing it with domain-specific training data, both real and
synthetic, we achieved significant improvements in recognition
accuracy, particularly for Finnish and Swedish texts. The enhanced
model outperformed both the baseline PaddleOCR and Tesseract,
especially in challenging handwritten scenarios.

Our results underscore the importance of localized, open-source
solutions for the GLAM sector, where data privacy, customization,
and integration into existing workflows are critical. The approach
outlined in this work is scalable and adaptable, offering a replicable
framework for other under-resourced languages and archival
contexts.

Looking forward, further improvements in handwritten text
recognition, integration with language models for post-processing,
and semi-automated annotation pipelines could push the boundaries
of OCR performance even further.

Further development

While the enhanced PaddleOCR model demonstrated significant
improvements in recognizing printed and some handwritten texts in
Finnish and Swedish, several avenues remain for future
enhancement:
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Improving Handwritten Text Recognition: Despite notable gains,
the model's performance on handwritten documents, especially
those with cursive or degraded writing, remains limited. Future
work could focus on expanding the volume and diversity of
handwritten training data, particularly from regional archives.
Exploring hybrid models or integrating architectures like TrOCR,
known for their superior handwritten text recognition, could also be
beneficial, albeit with higher computational costs.

Post-OCR Structuring and Enrichment: OCR outputs are
currently unstructured, consisting mainly of text and bounding
boxes. A promising direction is to enrich these outputs by
identifying and linking key-value pairs, especially in structured
documents like forms. Leveraging large language models (LLMs)
for semantic understanding and layout-aware parsing could
significantly enhance the usability of OCR results in downstream
applications.

Semi-Automated Annotation Pipelines: Manual annotation is
resource intensive. Implementing active learning strategies, where
the model suggests uncertain samples for human review, could
reduce annotation effort while maintaining quality. This would
accelerate dataset expansion and model refinement.

User-Friendly Deployment and Integration: To support adoption
by smaller institutions, future work should focus on creating
lightweight, containerized deployment packages with intuitive user
interfaces. Enhancing the current Gradio-based demo into a more
robust, multilingual platform could broaden accessibility and
impact.

Continuous Benchmarking and Model Updating: As new
documents and OCR technologies emerge, periodic retraining and
benchmarking will be essential. Establishing a continuous
evaluation pipeline using diverse datasets will ensure the model
remains effective and adaptable over time.
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