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Abstract 
The 1QIsaa Scroll, one of the most significant manuscripts 

among the Dead Sea Scrolls, has long been the focus of debate over 
whether it was produced by a single hand or multiple scribes. In this 
study, we introduce a column-based writer-identification framework 
that combines unsupervised clustering, character-level verification, 
and cross-dataset evaluation, without assuming any fixed number of 
scribes. Benchmarking our hinge–feature–based approach against 
the widely recognized FIREMAKER dataset reveals its strengths 
and weaknesses. This exploratory analysis not only offers fresh 
insights into 1QIsaa’s scribal attribution but also underscores the 
need for richer or complementary features in future digital 
paleographic research. 

Introduction 
As one of the greatest archaeological discoveries of the 20th 

century, the 1QIsaa Scroll, discovered in Qumran Cave 1 in 1947, 
has attracted extensive scholarly interest across multiple disciplines. 
As the most complete and best-preserved biblical manuscript among 
the Dead Sea Scrolls, researchers have examined various aspects of 
the scroll, including its dating, textual composition, linguistic 
features, scribal practices, and historical significance. [1–4] Yet, one 
longstanding debate surrounding 1QIsaa concerns scribal 
attribution: did a single or multiple scribes copy the scroll?  

Tov [5] shows a discussion of two distinct scribal hands, while 
long scrolls (54 columns), with a noticeable shift at column XXVII, 
where Scribe A (SA) left three blank lines before Scribe B (SB) 
continued in column XXVIII. Some scholars accept this division 
based on paleographical differences, while others maintain that a 
single scribe may have simply changed his spelling habits midway, 
emphasizing that handwriting variability can stem from fatigue or 
stylistic adaptation rather than multiple scribal possibilities. 

The main challenge in the scribal attribution of 1QIsaa is the 
lack of an empirically validated method for determining the number 
of scribes involved in its production. Traditional paleographic 
analysis, which relies on expert evaluation of letterforms and scribal 
habits, has been invaluable in manuscript studies. However, 
distinguishing scribes in a long manuscript like 1QIsaa is 
challenging due to handwriting variability from writing conditions, 
stylistic shifts, and scribe adaptation. 

To address these complexities, Popović et al. [6] apply 
computational analysis to detect potential scribal divisions. By 
utilizing a hinge-based clustering technique, their analysis identified 
a division between two sets of columns, which they interpreted as 
evidence of two scribes. However, despite their contribution, a 
methodological concern remains. While their clustering method was 
unsupervised, the analysis framework inherently focused on 
validating a two-scribe hypothesis, potentially overlooking more 
nuanced divisions. To address these concerns, the present study 
retraces the column-based writer identification method in the 1QIsaa

Scroll, particularly in the absence of ground-truth scribal labels, and 
aims to: 

• Explore the reliability of hinge features for writer
identification in the 1QIsaa Scroll.

• Apply unsupervised hierarchical clustering to detect
potential scribal transitions across columns without
presupposing how many scribes contributed.

• Assess the outcome of clustering using character-level
verification, comparing classification performance
against the traditional two-scribe assumption.

• Use t-SNE and PCA visualizations to better understand
how hinge features behave in simpler (FIREMAKER 2-
writer versus column-based 1QIsaa) scenarios.

By combining unsupervised clustering, character-level 
verification, and cross-dataset feature evaluation, this study aims to 
provide a more critical and interpretable framework for hinge-based 
writer identification in the 1QIsaa Scroll, one that does not 
presuppose the number of scribes. 

Materials and Methods 
Dataset 

For this study, we assembled a unified dataset from three sub-
collections of images (see Fig. 1): FIREMAKER [7], the BiNet-
based 1QIsaa collection [8], and the character-level 1QIsaa 
collection. For each experiment, where clustering, verification, or 
dimensionality-reduction visualization is required, we select one or 
more of these sub-collections as needed, using them individually or 
in combination. 

FIREMAKER 
FIREMAKER was originally developed as a benchmark 

dataset for forensic writer identification. It comprises pages of 
handwritten text from 250 writers, in both Dutch and English, across 
four task-specific pages. In this study, we utilize only Page 1, where 
each writer copies the provided paragraphs in their natural 
handwriting style. The image collection can be accessed at the 
following link: https://zenodo.org/records/1194612. 

BiNet-Based 1QIsaa Images 
This collection is a set of black-and-white images of the 1QIsaa 

(Great Isaiah) Scroll, created using a deep learning tool called 
BiNet. The images preserve only the handwritten ink, removing the 
parchment background, which allows for clearer visual and 
computational analysis. Out of the scroll’s original 54 columns, this 
collection includes 52 columns; columns 16 and 46 are excluded due 
to the unavailability of digital images. The whole image collection 
is available at https://zenodo.org/records/4469996. 
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Character-Level-Based 1QIsaa Images 
This sub-collection contains isolated character images 

manually extracted from the Otsu-binarized 1QIsaa Scroll. The 
characters were segmented from the 52 BiNet-binarized column 
images using Otsu’s thresholding method to preserve the ink shape 
as faithfully as possible without introducing stroke distortions. Each 
character image is a binary (grayscale) patch containing a single 
Hebrew letter, drawn from 22 distinct letter classes. We have 566 
images per letter class (283 labeled SA and 283 labeled SB), except 
for tet and samekh, which are represented by fewer samples. 

The dataset was originally compiled for a prior study on 
character-based writer verification in ancient Hebrew square-script 
manuscripts [9], where edge-directional features were applied at the 
single-character level. This collection enables supervised learning 
experiments that test whether writer-specific stroke patterns can be 
detected even at the scale of individual characters, offering a 
complementary validation layer for the column-level clustering 
results. Full details of the character extraction and dataset design are 
available in the original publication. [10] 

Feature: Hinge 
To capture the subtle curves and junctions in ancient Hebrew 

script, we use the hinge [11] feature, which is essentially a compact 
fingerprint of local stroke directions. Imagine sliding a small 
window—here, a 9×9-pixel square (5-pixel length)—over a 28 x 28 
patch (see Fig. 2). Within each window, we look at every pixel 
where ink meets background and record the angle of the stroke as it 
“bends.” By tallying how often each pair of angles occurs, we build 
a histogram, the hinge features, for that patch. Repeating this over 
460 randomly chosen, non-overlapping patches per column (and 
later for each character) gives us a robust, 463-dimensional feature 
vector that encodes the scribe’s characteristic stroke patterns. For a 
non-technical reader, these histograms can be thought of as a 
“texture map” of handwriting, showing how the pen changes 
direction. For technical readers, they represent a concise distribution 
of stroke orientations, filtering out pixel-level noise to produce a 
stable signature. 

Writer Identification 
Our goal is to determine how many distinct scribes, or writing 

“hands”, were involved in copying 1QIsaa. To do this, our system 

performs two complementary tasks. First, it discovers groups of 
columns with similar hinge signatures via unsupervised clustering, 
without ever assuming a fixed number of scribes in advance. 
Second, it verifies those column-based groupings by testing whether 
individual letters can be reliably assigned back to their column 
clusters. In practice, that means we extract every character of 22 
letter types, represent each with the same 464-bin hinge feature, and 
use a simple classification pipeline to ask: if these letters truly come 
from separate scribes? We then visualize the hinge distributions, 
comparing the column-based 1QIsaa results against our 
FIREMAKER ground-truth data, using PCA and t-SNE embeddings 
to highlight clustering trends. 

Hierarchical Clustering 
This task is conducted on the BiNet-based 1QIsaa collection. 

The manuscript originally consists of 54 columns; however, due to 
the absence of columns 16 and 46 in the BiNet-based images, this 
study analyzes a total of 52 columns. 

To improve feature extraction, experiments were first 
conducted on the FIREMAKER image collection, where different 
hinge-based feature extraction configurations were systematically 
tested. These improvements guided not only the feature extraction 
settings but also the distance metric used to quantify handwriting 
differences. The finalized feature extraction settings include: 

• Hinge-based feature extraction with a 5-pixel stroke 
length. 

• Internal gradient shape representation for improved stroke 
characterization. 

• 28×28-pixel, random, non-overlapping patches with 
controlled black pixel (foreground ink) density. 

• 460 samples of patches per columns in 1QIsaa, ensuring a 
robust representation of handwriting styles. 

Following feature extraction, a distance score is computed 
between each pair of columns to quantify handwriting differences. 
The distance metric is formulated as follows: 

𝐷(𝑖, 𝑗) = (∑ !"!,##"$,#$
%

%!,#	∙	%$,#
(
)*+  , (1) 

Figure 1. Overview of the datasets used in this study. Left: A sample page from 
the FIREMAKER. Top right: A BiNet-based 1QIsaa Scroll. Bottom right: An 
example of character-level segmentation from Otsu-binarized 1QIsaa image. 

Figure 2. Illustration of hinge feature extraction. A 9×9-pixel window slides 
over the 28x28-pixel binarized image to capture local stroke orientation. At 
each foreground (ink) pixel, the angles between pairs of contour points (α) 
are measured and accumulated into a histogram. 
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where 𝑫(𝒊, 𝒋)	represents the distance score between column 𝒊 and 
column 𝒋 , referring to the manuscript columns, excluding missing 
columns 16 and 46. The variable 𝒅 is the total number of extracted 
features. The terms 𝝁𝒊,𝒌 and 𝝁𝒋,𝒌 denote the mean of the 𝒌 -th feature 
in columns 𝒊 and 𝒋, respectively, while 𝝈𝒊,𝒌 and 𝝈𝒋,𝒌 representing the 
standard deviation of the 𝒌-th feature in columns 𝒊 and 𝒋. This 
method accounts for feature mean differences and variability, 
providing a normalized distance metric for clustering. This 
normalized metric balances average differences against variability. 

We then built an average-linkage dendrogram (with optimal 
leaf ordering) and explored cutting it into k = 2 through 7 clusters or 
groups. Each clustering was scored by its silhouette coefficient 
(using the full 52×52 distance matrix).  

Character-Level Verification 
To validate, rather than assume, our column clusters, we used 

the isolated characters of 22 letters from Otsu-binarized column 
images. Each character received the same 464-bin hinge histogram. 
We then performed a dynamic, stratified cross-validation, where the 
number of folds was set to the smaller of five or the count of the 
least-represented cluster, but never fewer than two. Within each 
fold: 

• Linear Discriminant Analysis (LDA) was fit on the 
training characters, choosing up to four components (but 
never more than n_classes−1), thus focusing on the 
directions that best separate the cluster labels. 

• A 1-Nearest-Neighbor classifier (using cosine distance) 
was trained on the LDA features. 

Performance was measured by one-vs-one multi-class AUC 
(Area Under the Curve), where for k=2 clusters we simply used the 
positive-class probability, and for k>2 we subset the predicted 
probability matrix to present classes, renormalized each row to sum 
to one, and averaged the pairwise AUCs. We compared two labeling 
schemes: the cluster-derived column labels from hierarchical 
clustering, and the traditional Scribe A and Scribe B split at column 
XXVII. 

PCA and T-SNE Visualization 
To provide an intuitive view of column groupings, we applied 

two distribution‐visualization methods to the BiNet‐derived dataset 
and compared these embeddings with those from the FIREMAKER 
dataset: 

• Principal Component Analysis (PCA) finds the straight-
line directions of greatest overall variance in the high-
dimensional hinge space. Plotting the first two or three 
principal components often reveals broad separations or 
gradients in writing style. 

• t-Distributed Stochastic Neighbor Embedding (t-SNE) is 
a nonlinear method that preserves local neighborhoods: 
points (columns or characters) that are very similar in 
hinge space stay close, while dissimilar points move far 
apart. 

By marking each point on the PCA and t-SNE plots with its 
cluster label (e.g., SA vs SB), readers can immediately judge 
whether the algorithmic groups align with the intuitive handwriting 
styles they expect, making the results accessible to both manuscript 
scholars and computational experts alike. 

Results 
Hierarchical Clustering 

We began our exploration of writer attribution in the 1QIsaa 

Scroll by constructing a pairwise column-to-column distance matrix 
based on hinge features. These features were extracted using an 
optimized configuration derived from prior testing on the 
FIREMAKER dataset. Specifically, each column was represented 
by the mean of 460 hinge histograms extracted from 28×28 pixel 
patches, with internal gradient encoding and a fixed 5-pixel stroke 
length. The final distance metric (Equation 1) accounts for both 
mean and variability of each feature dimension, providing a 
normalized distance score that is sensitive to both subtle and 
pronounced stylistic variations. 

Fig. 3 displays the clustered heatmap derived from the pairwise 
column-to-column distance matrix. It reveals that most columns 
exhibit relatively low dissimilarity (blue regions), while certain 
columns, including Column 41, stand out with high distance scores 
(red zones) relative to most others. This visual cue suggests potential 
scribal divergence but without a sharply defined boundary across the 
scroll. 

To further investigate the structure revealed in the heatmap, we 
applied hierarchical clustering. We explored a range of cluster 
configurations from k = 2 to 7 to assess the granularity of potential 
scribal groupings. Each clustering was evaluated based on the 
silhouette score, which quantifies how well-separated and internally 
coherent the clusters are. Among all tested configurations, the 2-
cluster solution shown in Fig. 4 yielded the highest silhouette score 
(0.666), indicating a strong overall separation between the two 

Figure 3. Clustered heatmap of normalized pairwise distance scores between 
1QIsaa columns, based on hinge feature histograms. 

Figure 4. Hierarchical clustering dendrogram of the 52 1QIsaa patch columns, 
cutting the tree into two clusters (highest silhouette score among k=2 through 
7) yields the most coherent and balanced split of columns. 
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primary writing styles or clusters. Notably, Column 41 consistently 
formed its own branch across multiple values of k, reinforcing its 
status as a potential outlier or transition point. Columns 36, 43, and 
54 joined this split at higher thresholds, possibly marking a 
secondary transitional zone or a gradual drift in writing 
characteristics. 

However, cluster solutions with k > 2 rapidly led to unbalanced 
partitions, with minor clusters often containing only one or two 
columns. This sparsity creates significant limitations for character-
level verification, where small sample sizes from single columns 
make it nearly impossible to train or test reliable classifiers. Thus, 
while the dendrogram structure supports exploratory insights, it also 
highlights the fragility of clustering-based attribution in the absence 
of robust sample sizes or sharp stylistic boundaries. 

 
Table 1. Character-level writer verification results (SA/SB labeling). 

Letter n_characters AUC_mean AUC_std 

alef 544 0.601 0.034 
ayin 546 0.632 0.039 
bet 544 0.565 0.022 

dalet 539 0.603 0.028 
gimel 549 0.592 0.042 

he 549 0.585 0.018 
het 546 0.647 0.024 
kaf 543 0.568 0.037 

lamed 545 0.533 0.038 
mem 546 0.636 0.009 
nun 547 0.54 0.022 
pe 545 0.549 0.041 
qof 548 0.587 0.021 
resh 545 0.622 0.034 

samekh 451 0.569 0.062 
shin 547 0.577 0.024 
tav 554 0.622 0.038 
tet 285 0.53 0.066 

tsadi 539 0.568 0.027 
vav 544 0.592 0.033 
yod 544 0.565 0.016 

zayin 551 0.493 0.039 

Character-Level Verification 
To evaluate whether the column-based clusters derived from 

hinge features represent meaningful scribal distinctions, we 
conducted character-level verification using the 22-letter character 
set previously described.  

Under the traditional two-scribe assumption (split at column 
XXVII), we observed moderate but consistent discrimination across 
characters. As shown in Table 1, several letters, such as het (AUC = 
0.647, std = 0.024), mem (AUC = 0.636, std = 0.009), and ayin 
(AUC = 0.632, std = 0.039), demonstrated relatively strong and 
stable separability. In contrast, letters like zayin and tet showed near-
random classification performance. The relatively low standard 
deviations across most letters indicate stable classification results 
across folds. 

In contrast, when using cluster-derived labels (from k=2 to k=7 
hierarchical clustering), classification performance consistently 
dropped below that of the SA/SB labeling. Even the best-performing 
configurations reached AUC scores only around 0.516, and many 
configurations yielded results close to random (AUC ≈ 0.5). This 

suggests that clustering outputs did not map cleanly onto character-
level distinctions. 

A major contributing factor was the severe imbalance in cluster 
sizes. Many clusterings produced small groups containing only a 
single column, which in turn drastically limited the number of 
characters available for training and evaluation. For example, while 
the SA/SB scheme utilized characters from 51 columns, some 
clustering-based labels relied on just one or two columns per group. 
This led to fragile model generalization and unreliable cross-
validation splits. 

In other words, even when we zoom in to individual characters, 
hinge features still can’t deliver strong discrimination: character‐
level classification based on hinge yields only modest AUCs and 
fails to assign letters to their true columns reliably. This reinforces 
the idea that hinge, while capturing some stroke‐direction statistics, 
lacks the richness needed for robust writer separation. Thus, 
although unsupervised hinge‐based clustering does reveal some 
column‐level style shifts, it isn’t substantiated at the character level, 
where the SA/SB two‐scribe labels consistently outperform hinge 
groupings, suggesting that hinge alone is not an adequate feature for 
this task.  

PCA and T-SNE Visualization 
In this section, we discuss the hinge distributions revealed by 

the PCA and t-SNE embeddings shown in Fig. 5. In our pairwise 
writer experiments, we found that PCA and t-SNE behaved quite 
differently depending on how strongly the internal-gradient hinge 
features separated two writers. For the “most similar” pair (IDs 
29501 and 42901, silhouette ≈ 0.018), both PCA and t-SNE 
collapsed the yellow and purple points into one blended cloud. In 
the PCA plot, the two writers’ points overlap almost entirely with 
no clear gap, and in the t-SNE embedding, they intermingle 
completely, there were no distinct islands or boundaries. Yet when 
we look at their handwriting side by side, we can perceive subtle 
stylistic differences that hinge simply failed to capture. This 
suggests that, although hinge can sometimes distinguish between 
radically different writers, it is not sensitive enough to register more 
nuanced, human-perceived similarities. 

By contrast, the “most different” pair (IDs 52301 and 55601, 
silhouette ≈ 0.627) produced two tight, well-separated clusters in 
both PCA and t-SNE. In PCA, their clouds lay on opposite sides of 
the first principal component, with minimal overlap, and in t-SNE, 
each writer’s points formed compact islands surrounded by empty 
space. Here, hinge features did exactly what we hoped: they 
amplified a truly large stylistic gap into a clear separation in both 
embeddings. 

We then treated each of the 52 columns as its own data group. 
First, we plotted every 28×28 patch in PCA space and saw one long, 
overlapping ribbon of points—only a few columns reached the 
edges. In t-SNE, the points broke into small islands at the periphery, 
but each “island” still contained patches from multiple columns. 
Next, to reduce noise, we replaced each column’s hundreds of 
patches with a single averaged‐feature centroid. In the PCA of these 
52 centroids, the points arranged themselves along a smooth, curved 
arc, roughly ordered by their total gradient strength. In the t-SNE of 
the same centroids, they formed a loose U-shaped pattern in which 
adjacent columns lay nearest each other. Even after this 
simplification, neither embedding produced sharp, separate clusters. 
This makes clear that hinge features alone are too coarse to capture 
the subtle, within-page variations among columns. 
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Taken together, these visualizations suggest that PCA and t-
SNE are excellent at revealing cases where hinge features diverge 
strongly, highlighting the most different writers with crisp 
separations, but they struggle whenever the underlying feature 
differences are subtler. In particular, although we can numerically 
detect the most extreme separability, the hinge method misses many 
of the finer stylistic cues that human readers use to distinguish 
similar handwriting. Likewise, on the column-clustering front, even 
aggregated centroids only uncover broad trends rather than discrete 
column groupings. Going forward, combining hinge with additional 
feature types or using learned embeddings may be necessary to 
capture the nuanced patterns inherent in both inter-writer and intra-
page variation. 

Conclusions 
Our investigation shows that hinge features, while capable of 

capturing pronounced stylistic differences, fall short when it comes 
to the subtler variations within 1QIsaa. Unsupervised hierarchical 
clustering of columns, using pairwise distances computed on hinge-
feature summaries, yielded a coarse two-group split but produced 
highly imbalanced or fragile partitions beyond that. When we 
treated those cluster assignments as labels and attempted to verify 
them at the character level, the resulting classification performance 
was poor and often close to chance. In contrast, the traditional two-
scribe (SA/SB) division produced more consistent separability, yet 
even those AUCs remained only in the moderate range, 

underscoring that neither approach provides sufficiently robust 
attribution on its own. PCA and t-SNE visualizations reinforce these 
conclusions: hinge embeddings cleanly separate radically different 
hands but collapse more similar ones and fail to resolve within-page 
column distinctions, even when a single aggregated centroid 
represents each column. Taken together, these results suggest that 
hinge features alone do not offer adequate discriminatory power for 
reliable scribal attribution in the 1QIsaa Scroll. Future work should 
therefore integrate complementary feature descriptors or explore 
alternative representations to capture the nuanced patterns of ancient 
Hebrew script. 
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