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Abstract

The 1QIsa® Scroll, one of the most significant manuscripts
among the Dead Sea Scrolls, has long been the focus of debate over
whether it was produced by a single hand or multiple scribes. In this
study, we introduce a column-based writer-identification framework
that combines unsupervised clustering, character-level verification,
and cross-dataset evaluation, without assuming any fixed number of
scribes. Benchmarking our hinge—feature—based approach against
the widely recognized FIREMAKER dataset reveals its strengths
and weaknesses. This exploratory analysis not only offers fresh
insights into 1QIsa’s scribal attribution but also underscores the
need for richer or complementary features in future digital
paleographic research.

Introduction

As one of the greatest archaeological discoveries of the 20th
century, the 1QIsa® Scroll, discovered in Qumran Cave 1 in 1947,
has attracted extensive scholarly interest across multiple disciplines.
As the most complete and best-preserved biblical manuscript among
the Dead Sea Scrolls, researchers have examined various aspects of
the scroll, including its dating, textual composition, linguistic
features, scribal practices, and historical significance. [1-4] Yet, one
longstanding debate surrounding 1QIsa® concerns scribal
attribution: did a single or multiple scribes copy the scroll?

Tov [5] shows a discussion of two distinct scribal hands, while
long scrolls (54 columns), with a noticeable shift at column XXVII,
where Scribe A (SA) left three blank lines before Scribe B (SB)
continued in column XXVIII. Some scholars accept this division
based on paleographical differences, while others maintain that a
single scribe may have simply changed his spelling habits midway,
emphasizing that handwriting variability can stem from fatigue or
stylistic adaptation rather than multiple scribal possibilities.

The main challenge in the scribal attribution of 1QIsa” is the
lack of an empirically validated method for determining the number
of scribes involved in its production. Traditional paleographic
analysis, which relies on expert evaluation of letterforms and scribal
habits, has been invaluable in manuscript studies. However,
distinguishing scribes in a long manuscript like 1QIsa® is
challenging due to handwriting variability from writing conditions,
stylistic shifts, and scribe adaptation.

To address these complexities, Popovi¢ et al. [6] apply
computational analysis to detect potential scribal divisions. By
utilizing a hinge-based clustering technique, their analysis identified
a division between two sets of columns, which they interpreted as
evidence of two scribes. However, despite their contribution, a
methodological concern remains. While their clustering method was
unsupervised, the analysis framework inherently focused on
validating a two-scribe hypothesis, potentially overlooking more
nuanced divisions. To address these concerns, the present study
retraces the column-based writer identification method in the 1QlIsa?
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Scroll, particularly in the absence of ground-truth scribal labels, and
aims to:

*  Explore the reliability of hinge features for writer
identification in the 1QIsa® Scroll.

e Apply unsupervised hierarchical clustering to detect
potential scribal transitions across columns without
presupposing how many scribes contributed.

*  Assess the outcome of clustering using character-level
verification, comparing classification performance
against the traditional two-scribe assumption.

*  Use t-SNE and PCA visualizations to better understand
how hinge features behave in simpler (FIREMAKER 2-
writer versus column-based 1QIsa?®) scenarios.

By combining unsupervised clustering, character-level
verification, and cross-dataset feature evaluation, this study aims to
provide a more critical and interpretable framework for singe-based
writer identification in the 1QIsa® Scroll, one that does not
presuppose the number of scribes.

Materials and Methods

Dataset

For this study, we assembled a unified dataset from three sub-
collections of images (see Fig. 1): FIREMAKER [7], the BiNet-
based 1QIsa® collection [8], and the character-level 1QIsa?
collection. For each experiment, where clustering, verification, or
dimensionality-reduction visualization is required, we select one or
more of these sub-collections as needed, using them individually or
in combination.

FIREMAKER

FIREMAKER was originally developed as a benchmark
dataset for forensic writer identification. It comprises pages of
handwritten text from 250 writers, in both Dutch and English, across
four task-specific pages. In this study, we utilize only Page 1, where
each writer copies the provided paragraphs in their natural
handwriting style. The image collection can be accessed at the
following link: https://zenodo.org/records/1194612.

BiNet-Based 1QIsa” Images

This collection is a set of black-and-white images of the 1QIsa®
(Great Isaiah) Scroll, created using a deep learning tool called
BiNet. The images preserve only the handwritten ink, removing the
parchment background, which allows for clearer visual and
computational analysis. Out of the scroll’s original 54 columns, this
collection includes 52 columns; columns 16 and 46 are excluded due
to the unavailability of digital images. The whole image collection
is available at https://zenodo.org/records/4469996.

77



N s \,M,l :an gyt azres
RSV (e A uKe

Ty q}v 1) AN WA DKy YA SRR X
PARS VI vy \vv;,Smw‘ vw;\s TOYVR YV,
‘ynnmwn Y YN I M DO w\z-
Ypbew s A b T S e
ARV AR LR YR AN D3 Y “ydvin
TIARS DA LRI MY 45343 THPST GV " ATV

)
] ﬂlw}g'v‘n 3 i 00 N R

990152

Figure 1. Overview of the datasets used in this study. Left: A sample page from
the FIREMAKER. Top right: A BiNet-based 1Qlsa? Scroll. Bottom right: An
example of character-level segmentation from Otsu-binarized 1Qlsa® image.

Character-Level-Based 1QIsa* Images

This sub-collection contains isolated character images
manually extracted from the Otsu-binarized 1QIsa® Scroll. The
characters were segmented from the 52 BiNet-binarized column
images using Otsu’s thresholding method to preserve the ink shape
as faithfully as possible without introducing stroke distortions. Each
character image is a binary (grayscale) patch containing a single
Hebrew letter, drawn from 22 distinct letter classes. We have 566
images per letter class (283 labeled SA and 283 labeled SB), except
for tet and samekh, which are represented by fewer samples.

The dataset was originally compiled for a prior study on
character-based writer verification in ancient Hebrew square-script
manuscripts [9], where edge-directional features were applied at the
single-character level. This collection enables supervised learning
experiments that test whether writer-specific stroke patterns can be
detected even at the scale of individual characters, offering a
complementary validation layer for the column-level clustering
results. Full details of the character extraction and dataset design are
available in the original publication. [10]

Feature: Hinge

To capture the subtle curves and junctions in ancient Hebrew
script, we use the singe [11] feature, which is essentially a compact
fingerprint of local stroke directions. Imagine sliding a small
window—here, a 9x9-pixel square (5-pixel length)—over a 28 x 28
patch (see Fig. 2). Within each window, we look at every pixel
where ink meets background and record the angle of the stroke as it
“bends.” By tallying how often each pair of angles occurs, we build
a histogram, the hinge features, for that patch. Repeating this over
460 randomly chosen, non-overlapping patches per column (and
later for each character) gives us a robust, 463-dimensional feature
vector that encodes the scribe’s characteristic stroke patterns. For a
non-technical reader, these histograms can be thought of as a
“texture map” of handwriting, showing how the pen changes
direction. For technical readers, they represent a concise distribution
of stroke orientations, filtering out pixel-level noise to produce a
stable signature.

Writer Identification
Our goal is to determine how many distinct scribes, or writing
“hands”, were involved in copying 1QIsaa. To do this, our system
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Figure 2. lllustration of hinge feature extraction. A 9%9-pixel window slides
over the 28x28-pixel binarized image to capture local stroke orientation. At
each foreground (ink) pixel, the angles between pairs of contour points (a)
are measured and accumulated into a histogram.

performs two complementary tasks. First, it discovers groups of
columns with similar Ainge signatures via unsupervised clustering,
without ever assuming a fixed number of scribes in advance.
Second, it verifies those column-based groupings by testing whether
individual letters can be reliably assigned back to their column
clusters. In practice, that means we extract every character of 22
letter types, represent each with the same 464-bin hinge feature, and
use a simple classification pipeline to ask: if these letters truly come
from separate scribes? We then visualize the Ainge distributions,
comparing the column-based 1QIsaa results against our
FIREMAKER ground-truth data, using PCA and t-SNE embeddings
to highlight clustering trends.

Hierarchical Clustering

This task is conducted on the BiNet-based 1QIsa® collection.
The manuscript originally consists of 54 columns; however, due to
the absence of columns 16 and 46 in the BiNet-based images, this
study analyzes a total of 52 columns.

To improve feature extraction, experiments were first
conducted on the FIREMAKER image collection, where different
hinge-based feature extraction configurations were systematically
tested. These improvements guided not only the feature extraction
settings but also the distance metric used to quantify handwriting
differences. The finalized feature extraction settings include:

*  Hinge-based feature extraction with a 5-pixel stroke

length.

* Internal gradient shape representation for improved stroke

characterization.

e 28x28-pixel, random, non-overlapping patches with

controlled black pixel (foreground ink) density.

* 460 samples of patches per columns in 1QIsa® ensuring a

robust representation of handwriting styles.

Following feature extraction, a distance score is computed
between each pair of columns to quantify handwriting differences.
The distance metric is formulated as follows:

D(i,j) = (D
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where D(i, j) represents the distance score between column i and
column j , referring to the manuscript columns, excluding missing
columns 16 and 46. The variable d is the total number of extracted
features. The terms p; ;, and g, denote the mean of the k -th feature
in columns i and j, respectively, while g and g, representing the
standard deviation of the k-th feature in columns i and j. This
method accounts for feature mean differences and variability,
providing a normalized distance metric for clustering. This
normalized metric balances average differences against variability.

We then built an average-linkage dendrogram (with optimal
leaf ordering) and explored cutting it into k = 2 through 7 clusters or
groups. Each clustering was scored by its silhouette coefficient
(using the full 52x52 distance matrix).

Character-Level Verification

To validate, rather than assume, our column clusters, we used
the isolated characters of 22 letters from Otsu-binarized column
images. Each character received the same 464-bin hinge histogram.
We then performed a dynamic, stratified cross-validation, where the
number of folds was set to the smaller of five or the count of the
least-represented cluster, but never fewer than two. Within each
fold:

* Linear Discriminant Analysis (LDA) was fit on the
training characters, choosing up to four components (but
never more than n_classes—1), thus focusing on the
directions that best separate the cluster labels.

* A 1-Nearest-Neighbor classifier (using cosine distance)
was trained on the LDA features.

Performance was measured by one-vs-one multi-class AUC
(Area Under the Curve), where for k=2 clusters we simply used the
positive-class probability, and for k>2 we subset the predicted
probability matrix to present classes, renormalized each row to sum
to one, and averaged the pairwise AUCs. We compared two labeling
schemes: the cluster-derived column labels from hierarchical
clustering, and the traditional Scribe A and Scribe B split at column
XXVIIL.
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Figure 3. Clustered heatmap of normalized pairwise distance scores between
1QIsa? columns, based on hinge feature histograms.
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PCA and T-SNE Visualization

To provide an intuitive view of column groupings, we applied
two distribution-visualization methods to the BiNet-derived dataset
and compared these embeddings with those from the FIREMAKER
dataset:

*  Principal Component Analysis (PCA) finds the straight-
line directions of greatest overall variance in the high-
dimensional hinge space. Plotting the first two or three
principal components often reveals broad separations or
gradients in writing style.

»  t-Distributed Stochastic Neighbor Embedding (t-SNE) is
a nonlinear method that preserves local neighborhoods:
points (columns or characters) that are very similar in
hinge space stay close, while dissimilar points move far
apart.

By marking each point on the PCA and t-SNE plots with its
cluster label (e.g., SA vs SB), readers can immediately judge
whether the algorithmic groups align with the intuitive handwriting
styles they expect, making the results accessible to both manuscript
scholars and computational experts alike.

Results

Hierarchical Clustering

We began our exploration of writer attribution in the 1QIsa?
Scroll by constructing a pairwise column-to-column distance matrix
based on hinge features. These features were extracted using an
optimized configuration derived from prior testing on the
FIREMAKER dataset. Specifically, each column was represented
by the mean of 460 hinge histograms extracted from 28x28 pixel
patches, with internal gradient encoding and a fixed 5-pixel stroke
length. The final distance metric (Equation 1) accounts for both
mean and variability of each feature dimension, providing a
normalized distance score that is sensitive to both subtle and
pronounced stylistic variations.

Fig. 3 displays the clustered heatmap derived from the pairwise
column-to-column distance matrix. It reveals that most columns
exhibit relatively low dissimilarity (blue regions), while certain
columns, including Column 41, stand out with high distance scores
(red zones) relative to most others. This visual cue suggests potential
scribal divergence but without a sharply defined boundary across the
scroll.

To further investigate the structure revealed in the heatmap, we
applied hierarchical clustering. We explored a range of cluster
configurations from k = 2 to 7 to assess the granularity of potential
scribal groupings. Each clustering was evaluated based on the
silhouette score, which quantifies how well-separated and internally
coherent the clusters are. Among all tested configurations, the 2-
cluster solution shown in Fig. 4 yielded the highest silhouette score
(0.666), indicating a strong overall separation between the two
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Figure 4. Hierarchical clustering dendrogram of the 52 1Qlsa? patch columns,
cutting the tree into two clusters (highest silhouette score among k=2 through
7) yields the most coherent and balanced split of columns.
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primary writing styles or clusters. Notably, Column 41 consistently
formed its own branch across multiple values of k, reinforcing its
status as a potential outlier or transition point. Columns 36, 43, and
54 joined this split at higher thresholds, possibly marking a
secondary transitional zone or a gradual drift in writing
characteristics.

However, cluster solutions with k > 2 rapidly led to unbalanced
partitions, with minor clusters often containing only one or two
columns. This sparsity creates significant limitations for character-
level verification, where small sample sizes from single columns
make it nearly impossible to train or test reliable classifiers. Thus,
while the dendrogram structure supports exploratory insights, it also
highlights the fragility of clustering-based attribution in the absence
of robust sample sizes or sharp stylistic boundaries.

Table 1. Character-level writer verification results (SA/SB labeling).

Letter n_characters | AUC_mean AUC_std
alef 544 0.601 0.034
ayin 546 0.632 0.039
bet 544 0.565 0.022

dalet 539 0.603 0.028
gimel 549 0.592 0.042
he 549 0.585 0.018
het 546 0.647 0.024
kaf 543 0.568 0.037
lamed 545 0.533 0.038
mem 546 0.636 0.009
nun 547 0.54 0.022
pe 545 0.549 0.041
qof 548 0.587 0.021
resh 545 0.622 0.034
samekh 451 0.569 0.062
shin 547 0.577 0.024
tav 554 0.622 0.038
tet 285 0.53 0.066
tsadi 539 0.568 0.027
vav 544 0.592 0.033
yod 544 0.565 0.016
zayin 551 0.493 0.039

Character-Level Verification

To evaluate whether the column-based clusters derived from
hinge features represent meaningful scribal distinctions, we
conducted character-level verification using the 22-letter character
set previously described.

Under the traditional two-scribe assumption (split at column
XXVII), we observed moderate but consistent discrimination across
characters. As shown in Table 1, several letters, such as set (AUC =
0.647, std = 0.024), mem (AUC = 0.636, std = 0.009), and ayin
(AUC = 0.632, std = 0.039), demonstrated relatively strong and
stable separability. In contrast, letters like zayin and fet showed near-
random classification performance. The relatively low standard
deviations across most letters indicate stable classification results
across folds.

In contrast, when using cluster-derived labels (from k=2 to k=7
hierarchical clustering), classification performance consistently
dropped below that of the SA/SB labeling. Even the best-performing
configurations reached AUC scores only around 0.516, and many
configurations yielded results close to random (AUC = 0.5). This
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suggests that clustering outputs did not map cleanly onto character-
level distinctions.

A major contributing factor was the severe imbalance in cluster
sizes. Many clusterings produced small groups containing only a
single column, which in turn drastically limited the number of
characters available for training and evaluation. For example, while
the SA/SB scheme utilized characters from 51 columns, some
clustering-based labels relied on just one or two columns per group.
This led to fragile model generalization and unreliable cross-
validation splits.

In other words, even when we zoom in to individual characters,
hinge features still can’t deliver strong discrimination: character-
level classification based on hinge yields only modest AUCs and
fails to assign letters to their true columns reliably. This reinforces
the idea that hinge, while capturing some stroke-direction statistics,
lacks the richness needed for robust writer separation. Thus,
although unsupervised hinge-based clustering does reveal some
column-level style shifts, it isn’t substantiated at the character level,
where the SA/SB two-scribe labels consistently outperform hinge
groupings, suggesting that singe alone is not an adequate feature for
this task.

PCA and T-SNE Visualization

In this section, we discuss the Ainge distributions revealed by
the PCA and t-SNE embeddings shown in Fig. 5. In our pairwise
writer experiments, we found that PCA and t-SNE behaved quite
differently depending on how strongly the internal-gradient hinge
features separated two writers. For the “most similar” pair (IDs
29501 and 42901, silhouette ~ 0.018), both PCA and t-SNE
collapsed the yellow and purple points into one blended cloud. In
the PCA plot, the two writers’ points overlap almost entirely with
no clear gap, and in the t-SNE embedding, they intermingle
completely, there were no distinct islands or boundaries. Yet when
we look at their handwriting side by side, we can perceive subtle
stylistic differences that hinge simply failed to capture. This
suggests that, although hinge can sometimes distinguish between
radically different writers, it is not sensitive enough to register more
nuanced, human-perceived similarities.

By contrast, the “most different” pair (IDs 52301 and 55601,
silhouette ~ 0.627) produced two tight, well-separated clusters in
both PCA and t-SNE. In PCA, their clouds lay on opposite sides of
the first principal component, with minimal overlap, and in t-SNE,
each writer’s points formed compact islands surrounded by empty
space. Here, hinge features did exactly what we hoped: they
amplified a truly large stylistic gap into a clear separation in both
embeddings.

We then treated each of the 52 columns as its own data group.
First, we plotted every 28x28 patch in PCA space and saw one long,
overlapping ribbon of points—only a few columns reached the
edges. In t-SNE, the points broke into small islands at the periphery,
but each “island” still contained patches from multiple columns.
Next, to reduce noise, we replaced each column’s hundreds of
patches with a single averaged-feature centroid. In the PCA of these
52 centroids, the points arranged themselves along a smooth, curved
arc, roughly ordered by their total gradient strength. In the t-SNE of
the same centroids, they formed a loose U-shaped pattern in which
adjacent columns lay nearest each other. Even after this
simplification, neither embedding produced sharp, separate clusters.
This makes clear that hinge features alone are too coarse to capture
the subtle, within-page variations among columns.
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Figure 5. Three-column comparison of PCA and t-SNE embeddings alongside handwriting overviews.

Column 1: Distribution of writers 52301 vs 55601 (most different pair) in PCA (top) and t-SNE (bottom), paired with sample snippets from each writer.
Column 2: Distribution of writers 29501 vs 42901 (most similar pair) in PCA (top) and t-SNE (bottom),

Column 3: Overview of the 1QlIsa? page: PCA (top) and t-SNE (bottom) embeddings of every 28x28 patch versus embeddings of one averaged-

feature centroid per column (at the very top).

Taken together, these visualizations suggest that PCA and t-
SNE are excellent at revealing cases where hinge features diverge
strongly, highlighting the most different writers with crisp
separations, but they struggle whenever the underlying feature
differences are subtler. In particular, although we can numerically
detect the most extreme separability, the hinge method misses many
of the finer stylistic cues that human readers use to distinguish
similar handwriting. Likewise, on the column-clustering front, even
aggregated centroids only uncover broad trends rather than discrete
column groupings. Going forward, combining Ainge with additional
feature types or using learned embeddings may be necessary to
capture the nuanced patterns inherent in both inter-writer and intra-
page variation.

Conclusions

Our investigation shows that hinge features, while capable of
capturing pronounced stylistic differences, fall short when it comes
to the subtler variations within 1QIsa®. Unsupervised hierarchical
clustering of columns, using pairwise distances computed on hinge-
feature summaries, yielded a coarse two-group split but produced
highly imbalanced or fragile partitions beyond that. When we
treated those cluster assignments as labels and attempted to verify
them at the character level, the resulting classification performance
was poor and often close to chance. In contrast, the traditional two-
scribe (SA/SB) division produced more consistent separability, yet
even those AUCs remained only in the moderate range,
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underscoring that neither approach provides sufficiently robust
attribution on its own. PCA and t-SNE visualizations reinforce these
conclusions: Ainge embeddings cleanly separate radically different
hands but collapse more similar ones and fail to resolve within-page
column distinctions, even when a single aggregated centroid
represents each column. Taken together, these results suggest that
hinge features alone do not offer adequate discriminatory power for
reliable scribal attribution in the 1QIsa® Scroll. Future work should
therefore integrate complementary feature descriptors or explore
alternative representations to capture the nuanced patterns of ancient
Hebrew script.
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