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Abstract 
The aim of this work is to provide the cultural heritage 

community with a comprehensive hyperspectral image database of 

handwritten laboratory samples, including various writing inks 

commonly found in historical documents. The database contains 

195 samples registered in the VNIR (400-1000 nm) and SWIR 

(900-1700 nm) spectral ranges, along with complete information 

about the ink recipes (components and concentrations used for 

each ink and mixture), and their corresponding Ground Truth 

images. The database is now publicly available as part of a bigger 

database related to the Hyperdoc project and can be used to 

perform different tasks. We present here one example: the 

classification of iron gall vs non-iron gall inks. 

Introduction 
Non-destructive analysis of material cultural heritage is 

essential to preserve its integrity and value. Within the available 

tools, hyperspectral imaging is being increasingly used in this field 

to obtain high spectral and spatial resolution images in different 

spectral ranges, covering the visible, near infrared and short 

wavelength infrared [1]. These spectral images can then be used, 

among other applications, to monitor restoration interventions and 

cleaning processes [2], to study chromatic changes over time 

caused by degradation phenomena [3], to improve the legibility of 

deteriorated text [4], and to identify the materials used in 

polychrome surfaces such as drawings or paintings [5, 6], and 

historical documents, such as manuscripts [7, 8]. 

The analysis and identification of the inks present in 

manuscripts are an essential part of any codicological study and 

contribute to enhance their understanding, achieving a 

comprehensive historical and artistic contextualization. This is a 

fundamental step in planning any conservation intervention and 

developing long-term preservation and restoration strategies [1, 9]. 

To help with this task, a large database of samples that can be used 

to train models for classification of materials is highly encouraged. 

The use of different supports is necessary since the spectra of the 

support influence the spectra of inks. 

In this context, different databases of real handwritten 

historical documents have been proposed in the past [10-24], most 

of them containing only RGB images to perform a binarization 

task. Only one multispectral database containing 10 handwritten 

documents with 8 bands in the VNIR range has been used for 

segmentation [25]. 

In this work, we aim to contribute to the cultural heritage 

community through the creation of a comprehensive hyperspectral 

image database with 39 handwritten laboratory samples in 5 

different supports (papers and parchment), for a total of 195 

samples, in two spectral ranges: visible and near infrared (VNIR), 

and short wavelength infrared (SWIR) [26]. The writing inks used 

to create the samples are commonly found in historical documents, 

including 8 recipes of metallo-gallate inks, 4 of sepia, 6 carbon-

based inks, and 17 mixtures. In addition, 4 samples of constituent 

materials used in some of the inks were made. This database opens 

a wide range of possibilities for the study of historical inks, 

allowing the development and application of algorithms for 

material identification in manuscripts, or for segmentation of 

support and ink, and contributing to the automation of analysis 

processes. 

Materials and Methods 

Materials 
The laboratory samples included a 1 x 1 cm square drawn 

with pencil and filled with ink, and two lines of text (as seen in 

Figure 1) written with brush (top) and fountain pen (bottom). This 

enables the study of how the spectrum changes depending on the 

amount of ink deposited, and different writing instruments can also 

be assessed. The inks were bound with Arabic gum. 

Figure 1. False RGB images ([605, 535, 430] nm) of laboratory samples in 

cotton paper. (A) Full pages; (B) Extracted minicubes. 

All the inks were applied on 5 different supports: 3 

handcrafted papers from Paperlan® made of 100% linen fiber, 

100% cotton fiber, and mixture of linen/cotton (50:50), 

handcrafted paper from Wanderings® made of 100% hemp fiber, 

and parchment. The supports were selected based on those found 

in historical documents [27]. 

Historically, the most prevalent inks include metallo-gallate 

inks, sepia, and carbon-based inks [28]. 

Metallo-gallate inks 
Historic metallo-gallate inks consist primarily of two key 

components: a metal (predominantly ferrous sulfate), and a 

vegetable tanning agent, typically derived from oak apples in the 

form of gallotannin extracts. The nomenclature "iron gall inks" is 

assigned to this category of inks due to the significant presence of 

iron sulfate in their composition [29]. 

In this work, ancient recipes of iron gall ink were followed 

[30, 31]. In the preparation of this kind of ink, first, 23.53 g of oak 

apples (from Kremer Pigmente GmbH) were crushed (but not 
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pulverized), wrapped in a cotton cloth, and macerated in 400 ml of 

water under direct sunlight for 3 days. After that, the solution was 

filtered, obtaining the gallic acid. 

Primarily, pulverized ferrous sulfate (FeSO4-7H2O) was used 

and added to gallic acid. We varied the ratio of gallic acid and 

ferrous sulfate obtaining 3 different inks. In addition, pulverized 

copper sulfate (CuSO4) and zinc sulfate (ZnSO4) were mixed 

separately with ferrous sulfate to create different inks. Powdered 

Arabic gum was added to all the recipes to obtain the inks. 

Following Andalusian ink recipes [31] we made two variants 

of iron gall ink, including in both pomegranate juice, but with the 

addition of myrtle leaves in the gallic acid only in one of them.  

In addition, a black pigment called “Atramentum” (from 

Kremer Pigmente GmbH) was used. It is produced from the 

reaction of tannic acid extracted from oak bark and iron salts, and 

has historically been referred to as “ink stone”. 

In total, 8 variants of pure metallo-gallate inks were produced. 

Sepia 
Sepia ink has a very dark brown color, almost black in full 

strength. It is obtained from the ink sac of the cuttlefish Sepia 

officinalis [32]. 

Two kinds of sepia ink were used in this database: the first 

one, extracted directly from the animal, and the second one, 

obtained from Kremer Pigmente GmbH in powder form. Both 

inks, the natural and the powdered one, were mixed with an Arabic 

gum solution in water. For the former one, three samples were 

made: pure ink extracted from the sac with some drops of water, 

and another two varying the concentration of the Arabic gum 

solution. 

Carbon-based inks 
The earliest writing ink is thought to have been a carbon-

based ink derived from lamp-black or other form of charcoal. 

These inks are obtained by burning oil or other materials (such as 

fruit stones, bones, or wood) in controlled conditions with a limited 

supply of air and mixing them with a binder dissolved in a water-

soluble medium [32]. They are very resistant compared with sepia 

and iron gall inks, being almost insensitive to acids, light, alkalis, 

and chemicals. 

All the carbon-based inks (from Kremer Pigmente GmbH) 

were bound with an Arabic gum solution, and are listed below: 

▪ Ivory black: it was originally obtained from charred 

ivory or horns, although nowadays it is based on bone 

black, being the best qualities of that ink. This is the 

most intense, deep black pigment. 

▪ Bone black: this pigment is obtained by carbonization of 

bones, usually with temperatures over 400°C but not 

above 800°C. 

▪ Lamp black: this pigment is obtained by collecting the 

condensed smoke produced from a flame fueled by 

mineral oil, tar, pitch, or resin within brick chambers. 

▪ Grape seed black: for an extended period, different types 

of fruit stones have been charred and used as pigments. 

This pigment is obtained by carbonizing grape seeds, and 

it has a bluish tone. 

▪ Cherry black: it is similar to grape seed black, but in this 

case cherry pits are charred, obtaining a warmer, 

brownish black. 

▪ Bistre: it is a warm, deep transparent brown pigment, 

traditionally obtained from the soot of beech wood or 

other trees. 

Mixed inks 
The study of mixed inks has received little attention in both 

scholarly and material investigations, as their identification and 

acknowledgment of their significance are recent developments. 

Medieval Arabic ink recipes suggest that mixed inks held a 

significant role in the Islamic world [33, 34]. Mixtures of carbon 

ink and iron gall ink have been found since ancient times [9, 32] 

but detect and classify this kind of inks is still a challenge, 

especially when the identification is limited to non-invasive 

methods [33]. That is why we have included 85 samples (17 mixed 

inks in 5 supports) of different mixed inks in the database. 

Sepia ink (the one obtained from the animal) was mixed with 

pure iron gall ink, lamp black, and bones black, in three different 

proportions: 25:75, 50:50, and 75:25. 

In addition to sepia, iron gall ink was mixed with lamp black 

and bones black separately in the same three proportions: 25:75, 

50:50, and 75:25. 

Andalusian red earth (from Kremer Pigmente GmbH) was 

also mixed with iron gall ink and lamp black in a 50:50 ratio. 

Constituents 
Finally, 4 reference samples were made with constituent 

materials of different inks: 

▪ Arabic gum (from Kremer) diluted at 20%. 

▪ Pomegranate juice. 

▪ Myrtle leaves infusion. 

▪ Andalusian red earth (from Kremer), bound with an 

Arabic gum solution. 

Methods 

Spectral capture 
Two hyperspectral cameras from Resonon Ltd. were used: the 

Pika L, which covers the VNIR spectral range from 400 to 1000 

nm, with a spatial resolution of 900 pixels per line and a spectral 

resolution of 2.1 nm; and the Pika NIR, which covers the SWIR 

range from 900 to 1700 nm, with a spatial resolution of 640 pixels 

per line and a spectral resolution of 2.4 nm. Spectral binning and 

interpolation were carried out, obtaining a final sampling interval 

of 5 nm: 121 bands in VNIR and 161 bands in SWIR. Both 

cameras were used along with a linear stage and halogen 

illumination. 

Database formation 
All samples in the database are MAT-files that include: the 

cube (hypercube object), Metadata (struct) and wl (vector of 

wavelengths). 

Once the samples in the 5 kinds of support were captured, the 

registration of the VNIR and SWIR ranges was done. To do that, 

the Registration Estimator app [35] included in MATLAB® 

software (R2023a version) was used. Automatic registration was 

performed by detecting, extracting, and matching features, using 

similarity or affine transformations, as appropriate. 

The next step was the extraction of minicubes from the 

registered captures, reducing the processing time by decreasing the 

size of the files. That way, each minicube contained only support, 
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pencil (used to draw the square), and one specific ink. The sizes of 

the minicubes range from [508 x 181] to [273 x 120] pixels. 

 After that, the Ground Truth (GT) images were created using 

a semi-automatic procedure distinguishing between the three 

components of each minicube: the ink (white), the support (black), 

and the pencil (gray). First, the spectral band with the highest 

contrast in each VNIR minicube was selected using a metric based 

on the Signal-to-Noise Ratio [36]. Then, the ink skeleton was 

obtained using the MATLAB® function bwskel and grown until the 

pixel intensity was similar to the mean intensity at the edges of the 

strokes, detected with a Canny edge detector. Some manual 

corrections were made using GIMP software. These GTs can be 

used for both VNIR and SWIR minicubes. 

Finally, a struct called ‘Metadata’ was included in all 

minicubes, containing information about the sample: number, 

name, ink components or recipe, kind of support, if it is varnished 

or not, if it is restored or not, if it is aged or not, date, height, 

width, number of bands; information about the capture: device, 

illumination, stage, reference white, and exposure time used; and, 

finally, some other important information as the GT, GT labels (if 

known), parent cube, coordinates within the parent cube, and a 

false RGB image of the minicube. 

Classification task 
A classification task is introduced as a possible application of 

the presented database, differentiating between iron gall inks and 

non-iron gall inks. In the former group we have included all the 

pure and mixed inks containing some amount of iron gall ink. 

We have used the VNIR information of the samples applied 

on parchment and cotton-linen paper, supports commonly used in 

historical documents. The classification model used was a 

Bilayered Neural Network (NN), with two fully connected layers 

excluding the input and the final layer for classification. The 

selection of the model was based on a previous study [37] where a 

Fully Connected NN outperformed a One-dimensional 

Convolutional NN and a Support Vector Machine (SVM), as well 

as different spectral metrics, in a pigment classification task. The 

sizes of the layers were: 32 and 16 respectively, with the 

hyperbolic tangent as activation function, and softmax activation in 

the final layer [37]. 

The model was trained with 85000 spectra of iron gall ink, 

85728 spectra of non-iron gall ink, 84000 spectra of support 

(including parchment and cotton-linen paper), and 21844 spectra 

of pencil. The ink spectra were extracted from the squared areas of 

the samples. To test the model, 72 full minicubes of ink in the 

VNIR range were used. A cross-validation with 5 folds was 

performed to evaluate the performance. 

The Classification Learner app [38] included in MATLAB® 

software (R2023a version) was used to obtain the results with the 

pre-trained NN. 

Results 

Hyperspectral database 
The hyperspectral database can be found here: [26]. It can be 

divided into 4 main groups, according to the composition of the 

inks: metallo-gallate, sepia, carbon-based, and mixed inks. In 

Table 1 the number of samples belonging to each group is 

specified, including the 5 supports. 

 

Table 1. Hyperspectral Database: number of samples in the four 
main groups. 

Group # of samples 

Metallo-gallate 40 

Sepia 20 

Carbon-based 30 

Mixed 85 

 

Figure 2. (A) False RGB images ([605, 535, 430] nm) of 3 minicubes: iron gall 

ink, sepia and ivory black, applied on parchment; (B) GTs of the minicubes; 

(C) Mean VNIR and SWIR spectra of pixels with support (black lines) and inks 

(green, red, and blue lines) with standard deviation. 

In Figure 2.C, the mean spectra and standard deviation of 

three inks in the VNIR and SWIR ranges are presented. The 

spectra of iron gall ink, sepia, and ivory black have been extracted 

using the white pixels in the GTs (Figure 2.B). The mean spectrum 

of the support is also represented as a black line. In the VNIR 

range, the reflectance of the three inks exhibits a similar trend. 

However, as we approach the near infrared, the spectrum of iron 

gall ink deviates from the others, becoming increasingly similar to 

that of the support. This trend is particularly prominent in the 

SWIR range, especially from about 1300 nm onwards, where iron 

gall ink becomes nearly transparent. This transparency 

distinguishes iron gall ink from carbon-based inks like ivory black, 

which absorb a substantial portion of the infrared radiation incident 

on them. While sepia ink allows slightly more infrared radiation to 

pass through, it does not exhibit the near-total transparency 

characteristic of iron gall inks. 
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Classification 

Table 2. Evaluation metrics (accuracy, precision, recall and F-

score) for the four classes: iron gall ink (IGI), non-iron gall ink 

(NIGI), support (S) and pencil (P). 

 IGI NIGI S P 

Accuracy 0.67 0.67 0.67 0.67 

Precision 0.85 0.65 0.97 0.04 

Recall 0.46 0.71 0.70 0.74 

F-score 0.60 0.68 0.82 0.08 

 

Figure 3. Classification maps of two minicubes: (A) sepia ink, and (B) mixture 

of iron gall ink and lamp black 50:50, both applied on cotton-linen paper. 

As can be seen in Table 2, a 67% accuracy (proportion of 

correct predictions to the total number of input samples) is 

obtained using the Bilayered Neural Network. The lowest 

precision is achieved for the pencil class (4%). This is because a 

lot of support pixels have been misclassified as pencil, as can be 

seen in Figure 3.A, leading to an increased number of false 

positives for the pencil class. In contrast, the highest precision 

value (97%) is obtained for the support class, indicating that very 

few ink or pencil pixels are misidentified as support. Comparing 

both types of inks, a higher precision but a lower recall is observed 

for the iron gall ink class. A low recall value indicates a lower 

proportion of true positives to the actual total number of positive 

samples. So, an iron gall ink is more likely to be classified as non-

iron gall rather than vice versa. When an iron gall ink is mixed 

with a non-iron gall ink, especially a carbon-based ink, the 

reflectance of the spectrum diminishes considerably, even with the 

addition of a minimal quantity of carbon-based ink. This makes the 

ink spectrum, despite containing a considerable amount of iron gall 

ink, to become more similar to the spectrum of carbon-based ink. 

This explains why most of the pixels in Figure 3.B, which shows 

the classification map for the minicube with an equal mixture of 

iron gall ink and lamp black (50:50), are classified as non-iron gall 

ink. 

Conclusions 
In this study, a comprehensive hyperspectral database of 

synthetic historical inks is presented [26]. 39 inks and components 

of inks have been applied on 5 types of supports, for a total number 

of 195 handwritten laboratory samples. All the samples were 

captured and registered in the VNIR and SWIR spectral ranges. 

The inks used for these samples are commonly found in historical 

documents, and include various formulations of metallo-gallate 

inks, sepia, carbon-based inks, and their mixtures.  

A classification task has been conducted using a Bilayered 

Neural Network to distinguish between four classes: iron gall ink, 

non-iron gall ink, support, and pencil. A 67% of accuracy has been 

reached, and the pencil showed particularly low precision, being 

misclassified with the support. In addition, iron gall ink is more 

difficult to classify when it is mixed with other inks, especially 

carbon-based inks. Further efforts should be done to improve the 

overall accuracy, particularly with mixed inks and pencil. In the 

future, we will study how the type of fiber employed in paper 

preparation affects the results and interpretation of data. 

Additionally, we will explore the impact of using either paper 

(cellulosic support) or parchment (proteinic support) on the study 

outcomes. 

Due to the versatility of the database, it can be used for 

different tasks related to hyperspectral image analysis and image 

processing in general. Machine learning and deep learning 

algorithms can be used to perform ink classification and 

binarization. In addition, it can be used to perform multivariate 

exploratory analysis in order to identify spectral features related to 

some kinds of inks or their components. 

The database is now publicly available [26], making it a 

valuable resource for researchers and professionals in the cultural 

heritage field. This database is part of an extensive hyperspectral 

imaging database emerging from the Hyperdoc project, which will 

incorporate samples from real historical documents, including 

polychromatic samples. The specific composition of each ink will 

be provided along with the database, which will be made fully 

available progressively during 2024 at [26] and will include both 

real documents of historical interest and mock-up samples. 
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