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Abstract 

The purpose of this work is to present a new dataset of hyperspectral 

images of historical documents consisting of 66 historical family 

tree samples from the 16th and 17th centuries in two spectral 

ranges: VNIR (400-1000 nm) and SWIR (900-1700 nm). In addition, 

we performed an evaluation of different binarization algorithms, 

both using a single spectral band and generating false RGB images 

from the hyperspectral cube. 

Introduction 
 

Historical documents are profound testimonies of the history of 

human civilization and contain the knowledge and cultural heritage 

of past times [1]. Their preservation and understanding are essential 

to understand the traditions and evolution of societies over the 

centuries. The study of historical documents goes beyond archival 

preservation, as it involves a multidisciplinary study between 

history, archaeology, art, and technology. 

 

These documents often suffer the damage caused over time, like ink 

fading, paper degradation, environmental exposure, and physical 

damage, which affects their legibility and preservation [2]. To 

overcome these problems, new approaches have emerged with 

cutting-edge non-invasive technologies that are transforming the 

field of heritage science. 

 

One of these tools is hyperspectral imaging, that unlike conventional 

imaging, which captures data in three broad spectral bands (such as 

red, green and blue), divides the electromagnetic spectrum into 

numerous narrow bands [3]. This technique facilitates the non-

invasive acquisition of spectral reflectance from every fragment of 

a historical document, which depends on the component materials 

such as inks [4], pigments [5], binders and substrate, and the 

physical interaction between them. 

 

In most documents, the majority of the pixels belong to the 

substrate. Then, it is interesting to consider, as data preprocessing, 

the separation between the background (substrate, such as 

parchment or paper) and the foreground (text or illustrations) [6], 

referred to as binarization [7]. In this sense, spatial image 

segmentation techniques play a key role in this step [7], allowing us 

to differentiate between background and foreground, which can be 

the first step towards identifying the materials present and digitizing 

historical documents for preservation.  

 

 

 

 

Classic binarization techniques employ thresholding methods, such 

as global thresholding and local thresholding [8]. Global 

thresholding applies a single threshold value to the entire image, 

while local thresholding adapts threshold values to different regions 

within the image. These methods have their advantages and 

limitations, particularly when dealing with documents that exhibit 

varying ink shades, background complexities, or degradation due to 

aging [9]. 

 

In this regard, several competitions have been held in the field of 

document image binarization [10-18] to test different proposed 

algorithms, most of them with RGB image datasets and one with 

multispectral images [19], using 8 bands from 340 to 1100 nm. 

 

Our objective is to generate a dataset of hyperspectral images and 

use it to evaluate different methods of binarization of historical 

documents. For this purpose, we captured different documents from 

the family tree collection that is preserved in the Archive of the 

Royal Chancery of Granada. All the information about the samples 

was obtained from an unpublished internal report that documented 

a previous restoration work [20]. 

Materials and Methods 
 

Dataset capture and processing 
 

The documents from which our dataset has been generated consist 

of a series of family trees from the 16th and 17th centuries. A large 

percentage of these documents are handwritten, although there are 

several stamped fragments [20]. 

 

All the samples have the same support: rag paper, and in previous 

analyses it has been possible to determine the presence of two 

different inks, one of them carbon black and the other consisting of 

a mixture of sepia and iron gall [20]. 

 

For each document, two hyperspectral images have been obtained. 

The first one was captured by a Resonon Pika L device [21] in the 

visible and near infrared range (VNIR, 121 bands from 400 to 1000 

nm), with a resolution of 900 pixels per line. The second image was 

obtained using a Resonon Pika IR+ [22] in the short wavelength 

infrared (SWIR, 161 bands from 900 to 1700 nm), with a spatial 

resolution of 640 pixels per line. The lighting setup consisted of four 

halogen lamps positioned to prevent specular reflection from the 

samples. The spectral data was flat-field corrected, and dark signal 

noise was subtracted from them to obtain the spectral reflectance of 

the samples. 
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Once the hyperspectral cubes were obtained, 33 regions of interest 

were chosen to retrieve their spectral reflectance in both VNIR and 

SWIR ranges, finally obtaining the 66 samples that constitute our 

dataset. Every sample consists of the full hyperspectral cube of the 

fragment and its metadata, that contains information about the 

device and illumination used for capture, reference white and a 

description of the known present materials. It also contains a false 

RGB image generated by choosing the 605, 535 and 430 nm bands 

for the VNIR range and the 1600, 1200 and 1000 nm bands for the 

SWIR range. Finally, each fragment also contains its Ground Truth 

(GT) within the metadata as a logical matrix, separating every ink 

pixel (1) from every background pixel (0). These Ground Truths 

were generated by a semi-automatic procedure based on [23]. 

 

The fragments range in size from 67x52 pixels for the smallest to 

180x195 pixels for the largest, resulting in a total of 570285 pixels 

in the entire dataset, 311563 for the VNIR spectral range and 258722 

for SWIR. The difference between the two sets is due to the fact that 

two of the fragments could not be registered to obtain exactly the 

same sample in VNIR and SWIR due to the low contrast of the latter 

range, so two similar zones were chosen. 

 

This dataset is a part of the Hyperdoc project's hyperspectral image 

database, which will be progressively released at [24] along 2024, 

and contains both real historical documents and mock-up samples. 

 

Segmentation algorithms 
 

Five different binarization methods (Otsu [25], Niblack [26], Wolf 

[27], Bradley [28] and a Deep-Learning based algorithm) have been 

evaluated with our family trees dataset. For this purpose, instead of 

binarizing a RGB image converted to grayscale, which could 

potentially be detrimental to the final results when using out-of-

focus and noisy bands, a single band representing the best image 

quality of the whole hyperspectral cube has been selected. To 

achieve this, we performed preliminary tests with different 

approaches for the selection of the best band, and they suggested 

that the best method for our particular case was to employ a Signal-

to-Noise Ratio (SNR) metric to identify the channel within the 

hyperspectral image that exhibits the lowest noise level. SNR is 

defined as [29]: 

 

𝑆𝑁𝑅(𝜆) = 10 · 𝑙𝑜𝑔10 (
𝜇2

𝜎2) 

 

where 𝜇 represents the average intensity of the whole image (signal), 

𝜎 is the standard deviation (noise) and 𝜆 represents each wavelength 

band. We choose the band that minimizes the value of this Signal-

to-Noise Ratio, since we are interested in obtaining the band with 

the best contrast for binarization and therefore we want the standard 

deviation of the whole image to be high.  

 

Several binarization methods have been presented over the last 

decades [6], each with its distinct approach to threshold 

determination and image segmentation. However, for our specific 

analysis, we will focus on utilizing four of the most prominent 

techniques: 

 

Otsu Method 

 

Otsu’s global thresholding algorithm [25] is a widely used technique 

for automatic image segmentation into foreground and background 

[6]. This method operates by analyzing the histogram of pixel 

intensities, which is divided into two clusters by a chosen threshold 

𝑇. The optimal threshold 𝑇𝑂𝑡𝑠𝑢 is calculated by minimizing the 

within-cluster variance, given by: 

 

𝑇𝑂𝑡𝑠𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑤0(𝑇) · 𝜎0
2(𝑇) + 𝑤1(𝑇) · 𝜎1

2(𝑇) 

 

where 0 and 1 refer to the first and second cluster, 𝑤𝑛(𝑇) is the 

number of pixels in the cluster 𝑛 and 𝜎𝑛
2(𝑇) is the variance of the 

cluster 𝑛. Once the threshold is calculated, binarization is performed 

by taking pixels with an intensity greater than 𝑇𝑂𝑡𝑠𝑢 as background 

and those with a lower intensity as foreground. 

 

Niblack Method 

 

Niblack introduced a local adaptive thresholding method [26] where 

each pixel's threshold is determined based on statistics for a local 

window centered on that particular pixel, which allows for potential 

handling of cases involving overlap in foreground and background 

intensity distributions. This per-pixel Niblack threshold 𝑇 is 

calculated as: 

 

𝑇 = 𝜇 + 𝑘 · 𝜎 

 

where 𝜇 and 𝜎 are the local mean and standard deviation calculated 

for each window and 𝑘 is a parameter set by the user that for our 

case has been chosen as -0.2, as recommended in [6]. The window 

size chosen for this method is 1/3 of the image width by 1/3 of the 

image height, with borders handled by using replicative padding. 

 

Wolf Method 

 

The Wolf algorithm [27] is an adaptation of Sauvola and Niblack 

methods designed to optimize its performance in scenarios 

involving low-contrast images. The algorithm employs a sliding 

window approach to dynamically adjust the threshold for each pixel, 

enhancing its adaptability to different images. The threshold 𝑇 for a 

given pixel within the sliding window is determined by: 

 

𝑇 = 𝜇 − 𝑘 · (1 −
𝜎

𝑆
) · (𝜇 − 𝑀) 

 

where 𝜇 is the local mean intensity within the window, 𝑘 is an 

empirically chosen parameter (set to 0.5 for our study), 𝜎 is the local 

standard deviation of pixel intensities, 𝑆 is the maximum value of 𝜎 

within the window and 𝑀 represents the minimum intensity value 

within the window. For window size, we use the same dimensions 

and edge treatment as utilized with Niblack’s method. 

 

Bradley Method 

 

Bradley’s Local Image Thresholding [28] is a simple and effective 

method for segmentation based on local adaptive thresholding. This 

method addresses variations in contrast across different regions of 

the image by setting a dynamic threshold based on the local mean 

intensity. This threshold is determined by: 

 

𝑇 = 𝜇 · (1 −
𝑡

100
) 

 

where T is the threshold value for a pixel, 𝜇 is the local mean 

intensity within a specified window centered at the pixel and 𝑡 is a 
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user-defined parameter representing the percentage of intensity 

values to be considered as foreground. This method introduces 

adaptability through the parameter 𝑡, allowing users to control the 

sensitivity of the threshold to local variations in pixel intensities. For 

this study, 𝑡 is set to 10, and we use the same window size and border 

treatment than the previous methods. 

 

Deep-Learning based algorithm 

 

We will also compare the binarization results with a Deep-Learning 

algorithm based on DeepLabV3 [30], which we have chosen for its 

good performance in semantic segmentation tasks, making it a 

suitable candidate for historical documents binarization. As 

DeepLab is designed for RGB image inputs, we have adapted it to 

work with the full hyperspectral images. Detailed information about 

the algorithm and its evaluation with a different dataset than the one 

used in this work is in the process of being published. 

 

Evaluation metrics 

 

Three different evaluation metrics have been chosen to test the 

performance of each algorithm, Pseudo F-Measure, Peak Signal-to-

Noise Ratio and Distance Reciprocal Distortion, as they have been 

widely used in binarization contests like DIBCO [10-18]. 

 

Pseudo F-Measure (pFM) 

 

Pseudo F-Measure is an extension of F-Measure that was introduced 

in [31]. This metric goes from 0% to 100% in the case of two 

identical images, and it is given by: 

 

𝑝𝐹𝑀 = 2 ·
𝑅𝑝𝑠 · 𝑃𝑝𝑠

𝑅𝑝𝑠 + 𝑃𝑝𝑠
 

 

where 𝑅𝑝𝑠 is the pseudo-Recall and 𝑃𝑝𝑠 the pseudo-Precision.  

 

To define pseudo-Recall, the foreground GT image is weighted by 

assigning distance values to pixels based on their proximity to the 

contour, and pseudo-Precision introduces a weighting mechanism 

for the background of the GT, which is determined by the distance 

from the pixel to the contour of the text, mitigating the excessive 

penalization of false positive pixels located far from it. 

 

Peak Signal-to-Noise Ratio (PSNR) 

 

Peak Signal-to-Noise Ratio measures how close an image is to 

another one [32]. A greater PSNR value indicates a stronger 

similarity between them and tends to infinity in the case of two 

identical images. We can calculate this metric by the following 

expression: 

 

𝑃𝑆𝑁𝑅 = 10 · 𝑙𝑜𝑔10 (
𝐶2

𝑀𝑆𝐸2) 

 

 

where  

 

𝑀𝑆𝐸 =
∑ ∑ (𝐼(𝑥, 𝑦) − 𝐼′(𝑥, 𝑦))

2𝑁
𝑦=1

𝑀
𝑥=1

𝑀 · 𝑁
 

 

𝐶 is the highest possible value of the signal, that in our case equals 

to 1. 𝐼(𝑥, 𝑦) and 𝐼′(𝑥, 𝑦) are the intensity values on the pixel (𝑥, 𝑦) 

of the prediction and the Ground Truth. Finally, 𝑀 and 𝑁 are the 

width and height of the image respectively. 

 

Distance Reciprocal Distortion Metric (DRD) 

 

The Distance Reciprocal Distortion Metric was introduced to 

improve PSNR, since it does not fit subjective evaluations, as it does 

not consider inter-pixel dependencies [33]. Two predictions having 

the same number of flipped (wrong) pixels but in different positions 

would have the same PSNR, so DRD is proposed as a technique to 

determine which one looks better for the human eye. The lower the 

DRD, the more similar the images are, and it can be calculated as: 

 

𝐷𝑅𝐷 =
∑ 𝐷𝑅𝐷𝑘

𝑆
𝑘=1

𝑁𝑈𝐵𝑁
 

 

where 𝑆 is the total number of flipped pixels, 𝑁𝑈𝐵𝑁 represents the 

count of non-uniform (containing pixels that are not all black or 

white) 8x8 blocks within the GT, and 𝐷𝑅𝐷𝑘 is the 𝑘-th flipped pixel 

distortion, defined in [33]. 

Results 
 

All 66 samples have been binarized using the five algorithms, 

separating the VNIR and SWIR ranges, so that for each metric we 

obtain the result by averaging those of the 33 samples from each 

subset. Apart from this quantitative evaluation, we performed a 

visual test to find out if by increasing the number of bands 

considered in the SWIR range we can also obtain as a foreground 

the bleed-through of the back page. 

 
Single band image binarization 
 
Table 1. Binarization results for each method in the VNIR range. 
The value for each metric corresponds to the average of the 
results of the entire VNIR subset and the standard deviation is 
used as a margin of error. 

 

VNIR 

Method pFM PSNR DRD 

Bradley 97.5 ± 1.4 15.2 ± 2.6 2.4 ± 2.3 

Wolf 97.2 ± 1.3 14.8 ± 2.2 2.2 ± 1.0 

Otsu 96.9 ± 2.2 14.4 ± 2.4 2.6 ± 1.3 

Niblack 96.6 ± 2.5 13.4 ± 2.6 2.9 ± 1.5 

Deep Learning 93.6 ± 2.3 11.6 ± 1.8 3.8 ± 1.4 
 
 
Table 2. Binarization results for each method in the SWIR range. 
The value for each metric corresponds to the average of the 
results of the entire SWIR subset and the standard deviation is 
used as a margin of error. 

 

SWIR 

Method pFM PSNR DRD 

Bradley 92.9 ± 3.4 10.2 ± 2.3 5.5 ± 2.2 

Wolf 91.7 ± 3.8 10.2 ± 2.3 5.7 ± 2.5 

Otsu 90.6 ± 4.3 10.1 ± 2.4 7.5 ± 9.8 

Niblack 91.1 ± 4.2 9.2 ± 2.6 7.2 ± 3.0 

Deep Learning 91.0 ± 3.1 9.3 ± 1.8 6.6 ± 2.1 
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Table 1 shows the metrics obtained after binarization of our dataset 

with the different algorithms in the VNIR range, while Table 2 

shows the results for the SWIR range. In general, all algorithms 

perform better in the VNIR range, which makes sense given that 

SWIR images tend to have lower contrast. The presence of iron gall 

ink also poses a problem for binarization in the SWIR range, since 

it has a high reflectance at infrared wavelengths and therefore fades 

from the image [34], being indistinguishable from the also highly 

reflective background. 

 

For both spectral ranges, Bradley outperforms all other methods 

used, being the highest rated for all metrics except DRD in VNIR 

and being closely followed by Wolf. As for Otsu and Niblack, the 

former performs better in the VNIR range while the latter performs 

better in SWIR according to pFM and DRD. This can also be 

explained by the low contrast and high presence of noise in the 

SWIR range, since Otsu's method generates a threshold for the 

whole image while Niblack, Wolf and Bradley avoid this problem 

by averaging over different windows. Finally, the Deep Learning-

based algorithm does not appear to be on par with the two top-

scoring methods, falling behind Otsu and Niblack in the VNIR 

range. This issue may be due to the deep learning algorithm having 

problems with the low spatial resolution of the images. When using 

Transfer Learning, the algorithm is conditioned by the previous 

training, where there are not many figures with very fine details. 

Because of this, we are currently working on alternative methods to 

overcome this situation. 

 

 

Figure 1. Binarization results for a sample in the VNIR range. (A) Best channel 

image (440 nm). (B) Ground Truth. (C) Bradley method result. (D) Wolf method 

result. (E) Otsu method result. (F) Niblack method result. (G) Deep Learning 

algorithm result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Binarization results for a sample in the SWIR range. (A) Best channel 

image (975 nm). (B) Ground Truth. (C) Bradley method result. (D) Wolf method 

result. (E) Otsu method result. (F) Niblack method result. (G) Deep Learning 

algorithm result. 

 

Figures 1 and 2 show the same fragment of the family trees in both 

VNIR and SWIR ranges along with its Ground Truth and the results 

for each algorithm. The bands with the lowest signal-to-noise ratio 

that have been chosen for binarization clearly show the difference 

between the two spectral ranges. All algorithms offer very similar 

results, but we can see that the algorithms with the worst results for 

the metrics in Tables 1 and 2 show more irregularities and gaps in 

the letters. 

 

While in VNIR there is no difference between the ink used in the 

upper left corner and the one used in the rest of the fragment, the 

SWIR range shows that they are actually two different inks, with the 

first one disappearing almost completely, which makes the 

binarization task much more difficult, but at the same time, can be 

very informative for material identification. Thus, if we want to 

differentiate which areas contain metallo-galate inks and which 

contain carbon-based inks, we only need to compare the results for 

both ranges and look for clear differences. 

 

In the SWIR range, none of the algorithms was able to correctly 

identify the presence of the iron gall ink. The method that correctly 

identifies the most pixels in this area is the Deep Learning algorithm, 

but it is still far from identifying the full text as it appears in Ground 

Truth. All of them also worsen their results for other ink in 

comparison to VNIR range, with gaps appearing in the straight line 

in the center and missing pieces of some letters.  
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False RGB image binarization 
 

There is also a problem that we have not considered so far: if we 

want to use this binarization to make a precise identification of all 

the inks present in the image, it would be necessary to also include 

the bleed-through as foreground, since it is also an ink that could be 

the same or different from those used in the page we are studying 

and it could also be interesting to know its composition. We have 

found that our employed technique for band selection does not give 

us an adequate wavelength to meet this objective, since in several 

fragments bleed-through areas are clearly observed in the false RGB 

image of the SWIR range that are not present in the band with the 

best signal-to-noise ratio. This is because, in the SWIR range, 

different inks may exhibit more transparency at some wavelengths 

than at others, as we have seen in the case of iron gall, so using only 

one band may not give us the full information of the inks present. 

 

Therefore, the simplest way to take multiple bands into account is 

to generate false RGB images with three different wavelengths and 

combine them into a single grayscale image for binarization: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Binarization results for a sample in the SWIR range. (A) False RGB 

image ([1600, 1200, 1000] nm). (B) Bradley method result. (C) Wolf method 

result. (D) Otsu method result. (E) Niblack method result. 

 

Figure 3 shows the false RGB image for a fragment of the dataset in 

the SWIR range, where we can clearly observe stamped circles 

coming from the back side of the page. 

 

For the case shown in Figure 3, we consider that the SWIR range 

introduces too much noise by choosing three bands that are not 

optimal and are out of focus, so it would not be fair to evaluate the 

algorithms with the Ground Truth generated for the single-band 

binarizations. For the same reason, the Deep Learning based 

algorithm has not been included in this section, since it has been 

trained using the full hyperspectral cubes and the single-band 

Ground Truths, so it is biased to not identify bleed-through as ink. 

 

None of the binarization algorithms used could select the complete 

circle as foreground, only fragments of it. Among all of them, 

Bradley seems to have obtained the best results for the bleed-

through circles, but at the cost of selecting several noise pixels, 

especially in the lower part of the fragment. Wolf's algorithm loses 

certain areas of the circles but gets the fewest false positives in areas 

where there is no ink. In the case of Otsu, a large area on the left 

side is incorrectly identified as a foreground, while Niblack offers a 

very similar result to Wolf. 

Conclusions 
 

In this work we have presented a new dataset of 66 hyperspectral 

images of historical documents preserved in the Archive of the 

Royal Chancery of Granada, with 33 different samples captured in 

the SWIR and VNIR spectral ranges, all of them with metadata 

containing information on the wavelengths measured, the 

illumination and capture devices used to take the sample and the 

reference target with which the correction has been made, as well as 

the corresponding Ground Truth.  

 

These spectral captures have been used with the aim of finding the 

best bands to achieve the binarization of the areas with ink, 

evaluating four different algorithms with which good results have 

been achieved for both ranges, being those of VNIR better than 

those of SWIR. This last conclusion is logical given that in the 

second range the image has less contrast due to the increased 

reflectance of the inks in the short wavelength infrared, becoming 

as reflective as paper in the case of the iron gall ink, which 

disappears almost completely, and the algorithms find it impossible 

to identify it as a foreground. In this aspect, the only advantage 

observed for the deep learning based algorithm is that it manages to 

identify slightly better the iron gall areas in the SWIR range, which 

makes sense because it uses all the spectral information of the 

fragment instead of only one band in which the ink may not appear. 

 

We observe a similar problem in the bleed-through case, where we 

can see that if we want to correctly identify these areas as ink in the 

SWIR range, it is not enough to obtain the best band in terms of 

noise, and it is convenient to use different wavelengths in a single 

false RGB image to increase the contrast of these areas. 

 

From these results, we can conclude that, for our data set, the 

Bradley method outperforms all others in the case of binarization of 

the lowest noise band, a case in which the Niblack algorithm 

performs the worst. When working with the SWIR images in false 

RGB, Wolf's algorithm seems to perform better than the others, 

although the same quantitative evaluation has not been performed 

as for the previous case. This information can be useful if we want 

to use these binarization results as a first step for other work, such 

as optical character recognition (OCR) or material identification. 

 

It is important to address the limitations of our study, given that we 

are working with a very specific dataset in which all samples have 

the same substrate and contain only two different inks. This work is 

just a glimpse into the possibilities of hyperspectral imaging to 

digitize historical documents with all the information of their 

spectral reflectance, so that it can be used for future preservation 

tasks. The differentiation between both spectral ranges has allowed 

us to discriminate, only by using binarization, between metallo-

gallate inks and carbon-based inks, so this opens the future 

possibility of using hyperspectral imaging for a complete 

identification of the materials present in each zone of the document 

in more complex cases.  
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The creation of the Hyperdoc project's hyperspectral database [24], 

in which this dataset is included, is the first step to achieve this goal, 

containing over a thousand hyperspectral samples from both 

historical and synthetic modern documents with multiple substrates, 

inks and pigments. 
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