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Abstract 
This paper examines two new methodological approaches 

exploring Reflectance Transformation Imaging (RTI) data 

processing for detecting, documenting, and tracking surface 

changes. The first approach is unsupervised and applies per-

pixel calculations on the raw image stack to extract information 

related to specific surface attributes (angular reflectance, micro-

geometry). The second method proposes a supervised 

segmentation approach that, based on machine learning 

algorithms, uses coefficients of a fitting model to separate the 

surface’s characteristics and assign them to a class. Both 

methodologies were applied to monitor coating failure, in the 

form of filiform corrosion, on low carbon steel test samples, 

mimicking treated historical metal objects’ surfaces. The results 

demonstrate the feasibility of creating accurate cartographies 

that depict the surface characteristics and their location. 

Additionally, they provide a qualitative evaluation of corrosion 

progression that allows tracking and monitoring changes on 

challenging surfaces. 

Introduction  
Tangible cultural heritage (CH) preservation aims to 

stabilize the object's condition and ensure its safeguarding for 

future generations. For metal cultural heritage artifacts, the main 

cause of deterioration is corrosion. Corrosion is the continuous 

process of the metal's interaction with its environment and the 

subsequent effect on its chemical structure. In visual 

observations, corrosion manifests through changes in the color 

and texture of the surface. In conservation-restoration 

treatments, the most common preventive measure for its 

limitation is the application of a protective coating. However, 

coatings do not indeterminately prevent corrosion progression 

and can exhibit coating failure. To detect and control this 

ongoing process, monitoring is performed. In museum 

collections, this usually corresponds to measuring the 

environmental conditions and not the objects' surface changes. 

In this paper, monitoring is examined regarding surface 

change detection on low-carbon steel by implementing 

Reflectance Transformation Imaging (RTI). Two 

complementary methodologies for processing RTI image data 

are examined. The particular interest is to detect, characterize 

and track the failure of protective coating systems on these 

surfaces. The paper structure is as follows (i) background 

information on the coating failure and the selected technique (ii) 

Description of the methodology and selection of the cases to be 

applied; (iii) application of the methodology for monitoring 

coating failure; (iv) data interpretation; and (v) conclusions. 

. 

Background  
Filiform corrosion is a particular form of localized 

corrosion encountered on painted or varnished metals. It usually 

appears on ferrous or aluminum alloys coated with organic paints 

or varnishes and is related to coating failure. The characteristic 

of this form is the creation of filaments that develop under the 

coating that occasionally develops over the coating layer. 

Numerous references in the literature exist on the corrosion 

mechanism and its effect, with particular interest in industrial 

metals [1–4]. In cultural heritage, the relevant references are 

limited and mainly related to the failure of transparent coatings 

to protect iron artifacts during the conservation process [5–7]. In 

these occurrences, corrosion initiates at areas of preexisting 

localized corrosion on objects that retain the metal core. This 

https://doi.org/10.2352/issn.2168-3204.2023.20.1.8
This work is licensed under the Creative Commons

Attribution 4.0 International License.

42 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY



 

 

corrosion phenomenon creates changes in the surface appearance 

that manifest as localized changes in color and micro-

topography. 

Figure 1 demonstrates these surface changes and their 

relevant size. The fine-scale of this corrosion phenomenon 

complicates evaluating and documenting these surface 

anomalies by visual analysis. Microscopic observation can make 

it possible to evaluate the surface condition; however, 

monitoring and tracking changes is very time-consuming, and 

the evaluation through visual observations is a subjective 

methodology based on expertise.  

Figure 1. Examples of coating failure leading to filiform corrosion. Left: 

General appearance of an iron surface with random spots of filiform 

corrosion (stereoscopic view). Middle: Corrosion filament below the coating 

(Dark field optical microscopy). Right: Extensive coating failure and 

corrosion over the coating (Dark field optical microscopy) 

 

RTI for assessing CH metal surfaces 
RTI (Reflectance Transformation Imaging) is a Multi-light 

Image Collection (MLIC) technique that creates an image stack 

of stationary viewpoints under different lighting angles. In RTI 

acquisitions, the object is positioned orthogonal to the camera, 

and a series of images are acquired from different illumination 

positions at a fixed distance. This results in an exploitable RTI 

image stack that can be used for further data processing and 

analysis (Fig.2).  

 

Figure 2. RTI principle for capture and data analysis. 

 

RTI has been introduced in cultural heritage applications as 

a portable, easy-to-use, non-invasive, image-based technique for 

studying surface textures [8]. It is, to date, mainly used to study 

the artistic and technological characteristics of objects or 

artworks [9-12]. RTI has also been explored as a scientific tool 

in the past decade. Different perspectives have been examined 

for documenting not only object surfaces but also conservation 

treatments [13–18] or for revealing underlying information with 

the integrated use of spectral imaging [15,19] and to map defects 

with clear topographic changes [20, 21].  However, little research 

exists for documenting metal surfaces [22] or monitoring metal 

conservation treatments [13,17, 18].  

These papers focus on the ability to enhance details by 

examining relighting and enhanced surface visualization. RTI as 

a visual inspection tool for failure analysis was also explored by 

Coules et al. (2019) [22] for examining industrial metal surfaces. 

In terms of the application of RTI as a tool for change detection, 

the literature was limited to case study-oriented methodologies, 

most of which compare relightable images [14–18]. The first to 

introduce a different methodology for measuring changes using 

RTI was Manfredi et al. (2014) [20], which created damage 

maps comparing the directional changes of the surface normal 

before and after damage. Later, in 2020, Corregidor et al. [21] 

introduced an image-processing methodology combining RTI 

specular enhancement and edge detection algorithms to isolate 

and document topographic defects (i.e., scratches) on similar 

coins. 
Herein two novel approaches in RTI data processing for 

cultural heritage surfaces are examined [23, 24], providing 

complementary information with a particular interest in 

detecting, characterizing, and tracking the failure of protective 

coating systems on metal surfaces. The proposed methodologies 

can lead the way to automated condition documentation of 

challenging surfaces objectively. Nevertheless, the validity of 

the results is based on expert evaluation since establishing a 

ground truth for such a surface is complicated. 

 

Materials and methods 

Materials 
Filiform corrosion is a long process, and to study it 

promptly, artificially corroded test plates (coupons), made of 

low-carbon steel, and presenting different degrees of filiform 

corrosion were produced (Fig. 3). Coupon preparation was based 

on past protocols [5, 7] on the following steps: 

• Step 0: Low carbon steel coupons (DC 04 EC 

10130:2006). Metal test plates with dimensions 

4x5x0.2cm were used. The composition per manufacturer 

was Fe >99%, with carbon percentage C 0.033% and traces 

of Si, P, S, and Al.  

• Step 1: Initial corrosion. Coupons were corroded under 

varying relative humidity (RH) and temperature (T) until 

the surface was covered with localized corrosion spots. 

These spots are randomly dispersed over the surface while 

the metal stays intact in other areas. 

• Step 2: Surface cleaning. Coupons were mechanically 

cleaned to remove only friable corrosion products based on 

conservation-restoration methodologies. After cleaning, 

the surface exhibits corrosion spots at the same level as the 

metal surface. 

• Step 3: Coating. After cleaning, they were degreased and 

coated with Paraloid B72 (an ethyl methacrylate and 

methyl acrylate copolymer) 15% w/v in acetone. The 

coating was applied by brush, following standard 

conservation practices. Two layers with perpendicular 

directions were applied. 

• Step 4: Accelerated corrosion. The coated test plates were 

again corroded under varying RH & T until coating failure 

and signs of filiform corrosion were visible. Coupons were 

removed at different time intervals to obtain a series of 

specimens with varying levels of corrosion (Fig. 4). 

Figure 3. Photographic documentation of the coupons preparations steps 
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Figure 4. Artificially corroded low carbon steel test plates presenting 

different degrees of filiform corrosion. From left to right the corrosion spots 

become more visible. 

Methodologies 
Two different RTI data processing approaches are presented 

for tracking changes on artificially corroded surfaces. The first 

method is based on feature analysis of the per-pixel angular 

surface reflectance. This methodology allows extracting accurate 

cartographies of the surface's properties and evaluating the local 

surface's saliency from these cartographies [23, 25]. The second 

method proposes a supervised segmentation, based on machine 

learning algorithms, that creates user-defined classifications 

through the HSH (Hemi-Spherical Harmonics) coefficients of 

RTI fitting models [24]. 

Capturing system  
Monitoring with RTI requires a system with reproducibility 

and repeatability in terms of acquisition. Therefore, an 

automated RTI system is preferable. A custom-made dome was 

used, equipped with a single light source (cold white LED, 5000 

K) and an industrial, monochromatic camera with a CMOS 

sensor (Sony IMX304, resolution 4112(H) × 3008 (V)). Coupon 

positioning and distribution of the lighting angles were the same 

for each acquisition. This system is equipped with a user 

interface that allows controlling the acquisition parameters and 

creates accurate and repeatable acquisitions. A complete system 

description is provided in [25]. 

Due to the high specularity of the surface, instead of using 

a single exposure time, the full dynamic range of the response of 

the surface was measured using Hight Dynamic Reflectance 

Transformation Imaging (HD-RTI) [27]. 

Feature analysis  
The first approach is unsupervised and applies per-pixel 

calculations on the raw image stack to extract information on 

specific surface features. They correspond to the per-pixel 

analysis of the image stack, and they result in a single 

visualization cartography (feature map). These maps can provide 

information on the response of each pixel of the surfaces in 

relation to the selected feature in a global way. The 

corresponding workflow is shown in Figure 5. 

 

Figure 5. Method 1: Workflow for feature analysis. 

 

Following the proposed workflow, information is extracted 

from the raw RTI data and is related to the geometry or the 

reflectance response of the imaged surface. Geometric features 

are related to the surface’s directional, curvature, or angular 

characteristics depicted through their normal, slopes and 

curvatures. Therefore, they can give information associated with 

manufacturing techniques, decorative characteristics (e.g., tool 

marks), surface defects (e.g., cracks), or corrosion processes 

(e.g., development of oxides) that provoke changes to the 

surface’s topography. On the other hand, statistical features 

provide information related to the angular reflectance response 

of the surface; thus, are highly affected by appearance attributes 

like color, gloss, or texture. In addition, statistical features can 

easily depict changes related to surface specularity or light 

absorption. There are numerous feature possibilities [23, 25]. 

However, here only the ones that are related to the particular 

study are presented, namely the mean (eq.1) and the Shannon 

entropy (eq.2) from the statistical features, and the directional 

maps Dx (eq.3), Dy (eq.4), and the curvedness (eq.5) from the 

geometric features. 

In detail, for an RTI acquisition of N images, each surface 

pixel is associated with an N size vector corresponding to the 

local angular luminance (Li, j, k). Then, depending on the selected 

feature, the corresponding algorithm is applied to the N images 

for each pixel position X=L(i, j, k), where i and j are the pixel’s 

coordinates and k the image number in the stack.  

The mean feature (Eq.1) calculates the average reflectance 

response of each pixel and therefore provides a general 

description of the surface’s appearance. 

𝝁 =
𝟏

𝜨
∑ 𝑿𝒌
𝑵
𝒌=𝟏   Eq. 1 

The Shannon entropy measures the “chaos” in the distribution of 

the pixels for the different reflectance responses per light 

position (Eq.2). High values indicate that pixel distribution is 

more random. The interpretation of the visualized result is case-

dependent. 

𝐇 = −∑ 𝐏 (𝐗𝐤)𝐥𝐨𝐠
𝟐𝐏 (𝐗𝐤)

𝚴
𝐤=𝟏   Eq. 2 

where P the probability of  X 

 

Geometric features are calculated from the surface normals 

(
𝑁
→) based on photometric stereo models.  Then 𝑁𝑥, 𝑁𝑦, 𝑁𝑧are the 

directional components of the X, Y, Z cartesian coordinates. 

Accordigly, the Dx (Eq.3) and Dy (Eq.4) are the directional 

slopes of the X and Y axis, where Px/y size is the pixel size (in 

mm) over the respective axis (X/Y). These features are affected 

by the surface rotation and describe characteristics related to or 

affected by surface directionality. 

Dx = 𝑃size
x Nx

→ 

Nz
→ 

  Eq. 3 

Dy = 𝑃size
x Ny

→ 

Nz
→ 

  Eq. 4 

The curvedness (Kc) (Eq.5) expresses the degree of the 

surface’s curvature and is calculated based on the Kmin, and 

KMax where Kmin and KMax are the principal curvatures of a 

set of normal curvatures [24]. This feature is invariant to surface 

rotation and better describes the texture of a surface.  

 

Kc = √
Kmin
2  +KMax

2

2
  Eq. 5 

 

Despite the complexity of the calculations, the application 

is straightforward, as described in the workflow presented in 

figure 5. 

Segmentation  

The second method proposes a supervised segmentation 

approach that uses the coefficients of the Hemispherical 
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Harmonics (HSH) fitting model to match similarities of the 

surface characteristics and assign them to a class. In RTI, fitting 

models are used for visualizing the surface-based reconstruction 

models for the acquired light positions. These light positions 

represent the per-pixel reflectance in the different lighting 

directions. The most commonly used models are Polynomial 

Texture Mapping (PTM) and Hemi-Spherical Harmonics (HSH), 

which are based on the use of coefficients with fixed numbers 6 

and 16, respectively. HSH was selected to provide more accurate 

information than PTM in the case of specular surfaces. A novel 

data processing workflow for the segmentation and classification 

of RTI data was adapted based on exploiting these coefficients 

through a linear discriminant analysis model (Fig. 6) [24]. 

 

Figure 6. Method 2: Workflow for RTI data segmentation.   

 

The method proposes a supervised approach for the 

automated condition documentation and surface monitoring of 

metal surfaces by applying classification through segmentation. 

Using the RTI image stacks, HSH coefficients are utilized to 

create discriminant models, based on each supervised class (C), 

to predict the surface appearance over time. The discriminant 

model is created based on Fisher’s [28] multiclass separation 

model (Eq.6) for creating the trained data. This model is then 

applied to evaluate the other surfaces (sample data). It is assumed 

that each of C classes has a mean μi and the same covariance Σ. 

Then the scatter between class variability may be defined by the 

sample covariance the of class means μ. 

 

∑ =𝒃
𝟏

𝑪
∑ (𝝁

𝒊
− 𝝁)𝑪

𝒊=𝟏 (𝝁
𝒊
− 𝝁)𝑻  Eq. 6 

 

After segmentation, each detected category is assigned to a 

single class, and results are presented with colormap 

visualization. It needs to be noted that since the method is 

supervised and user-dependent therefore, the information to be 

segmented must be carefully selected based on the research 

question.  

Results and Discussion 
 

Figure 4 shows the series of coupons exhibiting four 

degrees of accelerated aging. For the RTI acquisitions, a region 

of interest in the center of the coupons was selected (covering an 

area of around 1.2x2cm). This allows for global observation of 

the surface while avoiding misinterpretations due to the edge 

effect visible on the bottom of the coupons at levels 3 and 4. The 

resulting information is evaluated based on expertise and 

repeatability of the methodology in similar case studies [23, 24]. 

Feature analysis 
 

The most important appearance characteristic of filiform 

corrosion is the creation of filaments that start under the coating 

but, as the corrosion propagates, can extend over the coating. 

This creates local anomalies that visibly change the surface color 

and micro-geometry.  

Figure 5 presents the most relevant feature maps for the 

different levels of corrosion. The mean map represents the 

average reflectance response of each pixel and therefore shows 

the average appearance of the surface. Since the coating is 

transparent, it is difficult to distinguish the areas where it started 

failing or if filaments have developed over the coated surface. 

Geometric maps can characterize in detail the surface 

topography. Having been applied by brush, the coating has a 

specific directionality, and in the Dy map, the coating 

directionality becomes minimal, allowing better observation of 

what is happening on top of the coating surface. The areas where 

the corrosion products have extended over the coating and their 

location are depicted. The curvedness map indicates the 

curvature of the surface. In this specific case, the corrosion that 

has exceeded the coating, changes the curvature properties of the 

coated surface. The Dy and curvedness map shows the corrosion 

propagation between the different levels. For level 1, filiform 

corrosion is developing underneath the coating in contrast to 

levels 2-4. However, when observing levels 2-3, it is difficult to 

determine where the extent of corrosion is greater. This is 

resolved through the segment-based classification methodology. 

However, for the coating itself, the geometric alteration is less 

prominent for the geometric maps to detect changes. This is 

visible through the Entropy that indicates coating failure based 

on higher randomness values. 

 
Figure 5. Feature maps analysis on coating failure and penetration of the 

corrosion products over the coating 

ARCHIVING 2023 FINAL PROGRAM AND PROCEEDINGS 45



 

 

Segmentation  
The segmentation method explores information related to 

the reflectance response of the surface by assigning areas to 

classes having similarities in their appearance. In this case, two 

classes were defined by the cultural heritage expert: (a) the 

coated area marked in yellow and (b) the corrosion that was 

visible over the coating marked in blue. Then, the method 

analyzed the surfaces and created cartographies that depict the 

areas where the two classes appear. In parallel, a semi-

quantitative evaluation is possible by counting the percentage of 

pixels of a class in each corrosion level. Fig.6 shows the maps of 

the ROIs segmented in the two supervised classes. The different 

surfaces present various extents of corrosion, as indicated in 

levels 1 to 4. Therefore, quantifying the percentage of detected 

corrosion gives a clear indication of the extent of the corrosion 

penetration of the coating. In addition, it helps separate what is 

visibly difficult between level 2 and level 3. 
 

 

 

 

Figure 6. Segmentation of corrosion products penetrating the coating at 

different corrosion levels and qualitative analysis of the extend of 

corrosion on the metal surface. 

Conclusions 
This paper proposes a new change detection methodology 

based on processing RTI data and its application to study coating 

failure on metal substrates. The two methods examined 

demonstrate the feasibility of detecting, recording and evaluating 

the surface changes due to corrosion on high specular surfaces. 

They provide accurate, automated cartographies of the surface's 

condition. In addition, they give complementary information and 

help assess the corrosion progression while producing 

cartographies of where these changes are happening and to what 

extent. Feature analysis serves in the accurate understanding of 

the surface's textural and reflectance characteristics. The changes 

on the surface at different levels are well depicted, while an 

indication of coating failure is possible. The segmentation is 

based mainly on the surface's geometric features. Using 

coefficients to determine change provides less detail in 

characterizing the surface. However, it helps easily segment 

user-defined surface characteristics with similar reflectance 

behavior and depict their position. Furthermore, calculating the 

percentage of the segmented information produces a clear trend 

of the propagation of change possible. 
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