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Abstract 
Three endmember extraction methods (NFINDR, NMF and 

manual extraction) are compared in two stages (pre- and post- 

intervention) of the same painting, a Maternity on copper plate, 

under study for the formulation of a hypothesis on the authorship 

and the dating. The endmembers are extracted from spectral 

images in the 400-1000 nm range. The main aim is to determine 

if simple automatic endmember extraction is enough for pigment 

and re-painted areas identification in this case study. 

Introduction 
Pigment identification from spectral imaging data has been 

extensively explored in recent years [1-5]. From simple 

approaches like identifying features of the first and second-

derivative spectra [3,6] to using optimal spectral bands selected 

for a particular set of pigments [7] or applying Deep Learning 

algorithms [8-11], many perspectives and solutions have been 

proposed. In most cases, a reference collection of prepared 

patches is needed, and often they must be prepared specifically 

for the substrate used in the painting to be analyzed. Despite all 

these contributions to the problem, it remains still challenging in 

many situations, and no universal consensus has been reached 

about a systematic way to approach it for real pieces of artwork. 

Some of the reasons that explain why a satisfactory solution has 

not yet been reached are the following: 

1. The state of the piece. Pigment identification is mostly 

useful before a planned intervention, to identify the materials 

employed by the artist or else previous conservation activities. 

But the piece often is covered by a patina of unclean varnish 

which strongly darkens and alters the reflectance of the 

pigments, especially for mediaeval or renaissance paintings. 

Some studies have been done to predict the reflectance spectra 

of paintings after the removal of aged and discolored varnishes 

(i.e. virtual cleaning) [12,13]. The main problem with the 

proposed methods is the need for unvarnished areas in the 

paintings, or the removal of the varnish if these are not present, 

which is not always possible. 

2. The presence of pigment mixtures. Pure pigments are 

seldom present in real artworks. In many situations, it is not 

practical to go on extending the number of reference pigments in 

the auxiliary patch collection until one covers all the possible 

mixtures that a given artist (often unknown) might have used. 

Then, spectral unmixing and endmember extraction techniques 

borrowed from the field of satellite imaging can be potentially 

helpful. They have been used in some previous studies [14,15] 

with variable degrees of success. 

In this work, we aim to present a case study that is affected 

by these two problems, and demonstrate how unmixing 

techniques can be at least partially successful both for pigment 

identification and gathering information about re-paintings 

present in the piece. The painting is on a somewhat unusual 

substrate (a copper plate) and shows a typical Maternity scene 

with the Virgin, an infant Jesus on her lap and St. Joseph on the 

right upper corner. This painting is under study for the 

formulation of a hypothesis on the authorship and dating by a 

multidisciplinary group (heritage restoration, art historians, 

mineralogy, optics, computer science and chemistry). This piece 

has further interest because it has recently been submitted to a 

restoration intervention that has removed the previous darkened 

patina of badly applied varnish, covered some missing areas 

(faults) by repainting, and applied a new varnish layer (see 

Figure 1 right). The visual appearance of the piece has noticeably 

changed after the intervention. 

Figure 1. False RGB images of the Maternity painting object of this study. 

Left: before intervention. Right: after intervention. The size of the painting 

is 13,5x17,5 cm.  

 

The piece presents a simple palette with five main 

pigments: Bones Black (BB), Lead White (LW), Cinnabar (CN), 

Naples Yellow (NY) and Lapislazuli (LL). They have been 

identified with X-Ray Fluorescence and X-Ray Diffraction 

analysis carried out by the Department of Analytical Chemistry 

of the University of Granada (the results are in the process of 

publication). The relatively short number of pigments used 

makes this piece a good case study for demonstrating the 

possibilities of unmixing techniques to tackle pigment 

identification pre-intervention. Also, the opportunity to study it 

after restoration will highlight the possibilities of these 

techniques and determine if spectral imaging in general is a good 

tool to identify areas that have been intervened. 

We aim to produce some evidence about the best 

approaches for automatic endmember extraction and pigment 

identification from the list of endmembers using an auxiliary 

sample collection on the same substrate. In addition to this, we 

will compare the results between the original and restored 
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painting. Some novel features in the unmixing optimization 

procedure are also introduced. 

Methods  
The provenance of the painting is a private collection in 

Spain. Two spectral images of the painting (pre- and post-

intervention) were acquired in the visible and near infrared 

(VNIR range, from 400 to 1000 nm approx.) by a Resonon Pika 

L device, with a spatial resolution of 900 pixels per line and a 

spectral resolution of 2.1 nm. A sampling interval of 5 nm was 

used. The small size of the painting allowed the capture to be 

taken using a linear stage under halogen illumination. After 

spectral binning is used, the final size of the images [MxNxλ] is: 

[1111x881x121]. 

Once the spectral images were captured, three methods for 

endmember extraction were used: NFINDR [16], Non-negative 

Matrix Factorization (NMF) [17] and manual extraction of 

spectra in selected areas from the painting that appeared to 

contain each of the five pigments in its most pure form, although 

this was not possible for the Naples Yellow pigment, which 

appeared exclusively in mixed form. 

An auxiliary copper plate was cleaned, sanded, and 

prepared using garlic and a mixture of linseed oil and Gesso, a 

procedure used during the XVI century. Another preparation 

layer was deposited with a mixture of Lead White, Black Bones 

and Red Earth. On this preparation, samples of each of the 

pigments (from Kremer Pigmente GmbH) were deposited, as 

well as several mixtures. The copper plate contained all the 

pigments present in the painting (LW, BB, LL, NY and CN) plus 

Azurite (AZ). Three mixtures were also prepared: REP+LW+BB 

(P1), LW+CN, and LW+LL. Spectral reflectances of deposited 

pigments and mixtures are shown in Figure 2. The information 

obtained by X-Ray Fluorescence and X-Ray Diffraction will 

serve as ground truth for the spectral analysis of the paintings. 
 

Figure 2. Spectral reflectance of the auxiliary copper plate. 
 

Three sets of endmembers are extracted from the spectral 

images of the painting, and unmixing is carried out using non-

linear optimization with a cost function based on a combined 

metric formed by two components: the complement of the 

Goodness-of-Fit coefficient (cGFC) and the Root Mean Square 

Error (RMSE). cGFC is sensitive to shape changes, while RMSE 

is sensitive both to scale and shape changes. The final form of 

the metric is: 

𝑀 = 𝑐𝐺𝐹𝐶 +  𝛼𝑅𝑀𝑆𝐸 (1) 

 

Where 𝛼 =  1.0936 (obtained using a preliminary round of 

optimization), which ensures that in average both metrics will 

contribute approximately equally to the final result. 

The optimization algorithm is the interior point [18] with 

the sum-to-one constraint and a lower bound for the weights wi 

of zero. The mixing model is a subtractive model [19]: 

 Υ = ∏ 𝜌𝑖
𝛼𝑖𝑞

𝑖=1  (2) 

 

Where Υ is the spectral reflectance of the mixture, q is the 

number of candidate endmembers, 𝜌𝑖 is the spectral reflectance 

of the ith endmember, and 𝛼𝑖 is its concentration. Both NMF and 

NFINDR have the limitations of a linear mixing model 

assumption, while subtractive mixing has been proven to be 

performing best for pigments on canvas [2]. On the other hand, 

the manual endmember extraction from the painting has the 

limitation of not corresponding to pure pigments and being 

affected by ageing. The unmixing process will estimate the 

weights in the mixture, and from them, we obtain the 

concentration maps and the error maps of the five endmembers 

(see Figure 4). This will allow us to identify which is the 

endmember set that works best for the spectral reconstruction of 

the painting using endmembers and estimated weights. This will 

be evaluated using both spectral and colorimetric differences on 

a pixel-by-pixel basis (cGFC, RMSE and CIEDE00) [20,21]. 

Finally, we will use the auxiliary set of reference spectra for 

trying to find the pigment that presents the closest spectral 

distance to each endmember for the three endmember extraction 

procedures. This spectral distance is calculated using a combined 

distance metric between the pigments in the plate and the 

endmembers obtained: 

 

𝑀𝐼𝑑 = 𝑐𝐺𝐹𝐶 + 0.5𝑀𝑆𝐸 + 0.02∆𝐸00       (3) 

 

The coefficients are obtained using the following tolerances 

for the three components of the metric: 0.01 for cGFC, 0.02 for 

MSE and 0.5 for  ∆𝐸00. Those coefficients ensure all the factors 

would contribute equally to the metric value in an acceptable 

reflectance match. After computing this metric, the label 

corresponding to the reference pigment with the minimum 𝑀𝐼𝑑 

metric value is assigned to each endmember. Finally, the hit rate 

is calculated as the percentage of correctly identified pigments 

with respect to the total number of pigments present. 

The process will be repeated for the restored painting, 

allowing us to see if there are any differences in the performance 

of the unmixing algorithm, and if the renovated areas can be 

identified from the concentration maps. 

All the calculations have been performed using MATLAB® 

(2022a version). The NFINDR and NMF algorithms used are 

those provided by MATLAB®, and the fmincon function is used 

for the unmixing optimization. 

Results 

Concentration maps and endmember sets 
The endmembers (EM) sets differ for the three endmember 

extraction methods, and are not directly similar to the reference 

pigments (obtained with the auxiliary copper plate) in all cases, 

similarly to the findings in [7]. In Figure 3, the endmembers 

extracted from the painting pre- and post-intervention are shown. 

NMF algorithm implemented in MATLAB® provided EM 

reflectances with maximum values over 1, so they were 

normalized by the maximal value. The spectral reflectances are 

flatter for the manually extracted library than for those extracted 

with NFINDR or NMF algorithms. In general, post-intervention 

EM reflectances show lower values than pre-intervention 
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reflectances. This could be due to the removal of the whitish 

patina present in the original painting during the restoration 

process. NMF seems to provide reflectance curves that differ 

more from real pigments, so the preliminary hypothesis is that 

NFINDR and manual library will work best for the concentration 

vector and spectral estimation part of the unmixing process. 

 

Figure 3. Endmember libraries extracted using NFINDR (left), NMF 

(center) and manual extraction (right) methods pre- (lower row) and post-

intervention (upper row). 

Pre-intervention 
Based on FRX and DRX results, CN can be detected in the 

Virgin’s dress as well as the carnations, LL is present in both the 

background and the Virgin’s mantle, LW is present in the 

carnations and the sleeves of the Virgin’s chemise, NY can be 

detected in certain parts of the carnations and the Child’s cloth, 

and BB is found in the background and shadowed areas. In 

Figure 4, concentration maps for the endmember (EM) most 

similar to Cinnabar (CN) in the three sets are shown for the 

unrestored painting (EM1 in NFINDR, EM2 in NMF, and EM3 

in the manual extraction set). It can be seen that manual 

extraction method identifies the copper substrate as Cinnabar. 

NMF detects Cinnabar in the background, not only the dress and 

the carnations. 

Figure 4. Concentration maps for the endmember most similar to 

Cinnabar in the pre-intervention painting. Left: NFINDR. Center: NMF. 

Right: manual extraction.  

 
According to the concentration maps, EM3 obtained with 

NMF seems to represent the LL pigment, as well as EM4 in 

NFINDR (although this is less clear) and EM2 in the manual 

extraction. EM4 and EM5 in the manual extraction could 

represent the LW pigment, as well as EM2 in NFINDR, and EM1 

in NMF (although it appears all over the painting). 

Post-intervention 
In Figure 5, concentration maps for the endmember most 

similar to Cinnabar (CN) in the three sets are shown for the 

restored painting (EM4 in NFINDR, EM2 in NMF, and EM3 in 

the manual extraction set). Similar to the results obtained in the 

pre-intervention painting, the NMF method detects Cinnabar in 

the background. The manual and NFINDR concentration maps 

seem plausible to the Cinnabar pigment, finding a higher 

concentration in the dress with the manual extraction method. In 

this state of the painting and according to the concentration maps, 

EM4 obtained with NMF seems to represent the LL pigment, as 

well as EM1 in NFINDR and EM2 in the manual method.  

Figure 5. Concentration maps for the endmember most similar to 

Cinnabar in the post-intervention painting. Left: NFINDR. Center: NMF. 

Right: manual extraction.  

Spectral estimation quality 
The RMSE error maps calculated from the differences 

between the reconstructed spectra using eq. (2) and the spectra 

from the spectral image of the unrestored painting are shown in 

Figure 6. Note that the range of values for RMSE is restricted to 

[0,1] for reflectance data. The mean RMSE value shows that 

NFINDR fails to provide an accurate spectral reconstruction, 

while the manual extraction produces the best results. 

Figure 6. RMSE error maps for the pre-intervention painting. Mean (and 

standard deviation) values are shown on top of each map. Left: NFINDR. 

Center: NMF. Right: manual extraction.  
 

The cGFC error maps for the restored painting are shown in 

Figure 7. We can see that NMF method fails to reconstruct the 

shape of the spectra compared to manual extraction and 

NFINDR. 
 

Figure 7. cGFC error maps for the post-intervention painting. Mean (and 

standard deviation) values are shown on top of each map. Left: NFINDR. 

Center: NMF. Right: manual extraction.  

 

In Table 1, the cGFC, RMSE and ∆𝐸00 values obtained 

from the comparison between the estimated and the original 

spectra are shown for each endmember (EM) set and state of the 
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painting. The best cGFC, RMSE and ∆𝐸00values are obtained in 

both states for the manual extracted library. Comparing the 

painting pre- and post-intervention, lower values for cGFC are 

found for the pre-intervention painting with the NMF and 

NFINDR libraries. Comparing the RMSE values, post-

intervention painting provides the lowest values for all three 

quality metrics. For the ∆𝐸00, the values depend on the 

endmember extraction method used, not so much influenced by 

the painting state. For the post-intervention painting, the mean 

cGFC value and the error map (Figure 5 lower row) show that 

NMF is the worst algorithm in providing accurate spectral 

reconstruction. Comparing the results with manual and NFINDR 

extraction methods, the manual method is 5 times better than 

NFINDR in terms of cGFC. Our preliminary hypothesis, i.e., that 

NFINDR and manual libraries will work better than the NMF 

library, is true for the cGFC and the ∆𝐸00, but not for the RMSE. 

This means that the NMF algorithm introduce some additional 

changes in shape in the estimated spectra with respect to the 

original, but overall, it is better than NFINDR at capturing the 

scale of the spectral reflectances. This could be because 

NFINDR is more sensitive to the problem of using a linear 

mixture model for EM extraction than NMF. 

Table 1. Spectral estimation quality metrics for the 

three endmember sets pre- and post-intervention 

 EM set cGFC 
(STD) 

RMSE 
(STD) 

DE00 
(STD) 

Pre-
intervention 

NFINDR 0.007 
(0.005) 

0.142 
(0.043) 

19.72 
(6.28) 

NMF 0.296 
(0.030) 

0.084 
(0.037) 

23.87 
(5.34) 

Manual 0.005 
(0.008) 

0.015 
(0.011) 

3.94 
(2.52) 

Post-
intervention 

NFINDR 0.010 
(0.010) 

0.074 
(0.031) 

12.64 
(5.12) 

NMF 0.344 
(0.025) 

0.073 
(0.023) 

29.38 
(3.28) 

Manual 0.002 
(0.004) 

0.014 
(0.0015) 

4.17 
(2.29) 

Pigment identification 
Pigment identification results are shown using the 

reflectance of the pigments in the auxiliary copper plate as 

reference (Table 2). 

Table 2. Pigment identification results for the three 

endmember sets pre- and post-intervention 

 EM set Assigned 
labels 

Hit 
rate 

MId 
range 

Pre-
intervention 

NFINDR P1, REP, NY 20 0.29-
0.53 

NMF P1, REP, LL, 
AZ 

20 0.61-
0.79 

Manual BB, REP, NY 40 0.14-
0.40 

Post-
intervention 

NFINDR LL, REP, NY, 
REP, BB 

60 0.13-
0.27 

NMF LL, P1, LW, 
BB, AZ 

60 0.506-
0.875 

Manual BB 20 0.11-
0.42 

 

Depending on the state of the painting, different results have 

been obtained with the three libraries. For the pre-intervention 

painting, the best result is obtained with the manual library with 

a hit rate of 40%, compared to the 20% obtained with NFINDR 

and NMF libraries. Even being the best, it fails to identify CN, 

LW and LL. Referring to the post-intervention painting, the best 

results are obtained with NFINDR and NMF libraries, with a hit 

rate of 60%. Both identify LL and BB, NY is identified in 

NFINDR, and LW is identified in NMF. AZ is identified in 

NMF, but it is not present in the painting. In both states of the 

painting, NMF library shows the higher MId values. Compared 

to the other libraries, the manual extracted library is inherently 

disadvantaged because the reflectances of the paintings are 

consistently much lower than those of the reference library. As a 

result, more than one EM is classified as BB, which does not 

happen with the other libraries. These results are conditioned by 

the restricted and specific set of pigments used in the copper 

plate, which contains seven pigments and three mixtures. 

Identification of re-painted areas 
First, renovated areas were searched from the concentration 

maps of the restored painting. They seemed to appear in the EM1 

of the NMF library (Figure 8 left) in the form of small white 

spots, and in the EM2 of the same library and the EM3 of the 

manual extracted library as black spots. The restored areas were 

not easily visible in the other concentration maps and libraries. 

Due to the slightly different color showed by the re-painted 

areas, we decided to search the best three bands of the spectral 

cube that provided the higher F-score value (see eq. (4)) 

comparing the false RGB image to a ground-truth (GT) of re-

painted areas obtained manually from the original painting. The 

segmentation of re-painted areas was performed in the false RGB 

color space, looking for the optimum minimum and maximum 

values for the three channels. In a preliminary study, we 

performed a band-by-band intensity thresholding, but the results 

were worse than those obtained with a color-based segmentation. 

The optimization was done with the functions surrogateopt and 

genetic algorithm (GA), implemented in MATLAB®. 

 

𝐹-𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

Figure 8. Concentration map for the EM 1 obtained with NMF (left). False 

RGB image of the restored painting with channels [695,980,905] nm 

(right). 

 

For the surrogateopt, the best combination of three bands 

was [410,965,705] nm. The minimum and maximum RGB 

values were: [(75,94), (17,162), (23,129)] for red, green, and 

blue respectively, and the best F1 score value was 0.112. For the 

GA, the best combination of three bands was [695,980,905] nm 

(Figure 8 right). Re-painted areas can be seen with a light green 
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color against the background. The minimum and maximum 

thresholds in RGB were: [(36,91), (133,175), (106,194)], and the 

best F1 score value was 0.170. The best results were obtained 

with GA, although they were not good for any of the 

optimizations. This makes sense because GA is a global 

optimizer while surrogateopt attempts to find the global 

minimum using few objective function evaluations, which can 

lead to a local instead of a global solution. The main advantage 

of surrogateopt is the reduced computational cost and executing 

time.  

To improve the results obtained in the detection of re-

painted areas in a restored painting with VISNIR information, it 

could be beneficial to use the SWIR (short-wavelength infrared) 

range, since this type of radiation can penetrate more deeply into 

the different layers of the painting. 

Discussion and conclusions 
In this study, three endmember extraction methods 

(NFINDR, NMF and manual extraction) are compared in two 

stages (pre- and post- intervention) of the same painting. The 

spectral images of the painting were captured from 400 to 

1000 nm. Pigment identification was also conducted using an 

auxiliary set of reference spectra on the same substrate and with 

the same preparation, but corresponding to new materials.  

The endmembers obtained from the manual extraction 

method were flatter than those obtained with NFINDR and NMF 

methods. The reflectance curves of the NMF endmembers 

differed from real pigments. The best concentration maps (i.e. 

those most similar to the real pigment distributions) were 

obtained with the manual extraction method. 

Attending to the spectral reconstruction of the three 

endmember extraction methods, manual extraction performed 

the best, with the lowest values of cGFC, RMSE and ∆𝐸00 for 

both states of the painting. Comparing the painting pre- and post-

intervention, lower values for cGFC were found for the pre-

intervention painting with the NMF and NFINDR libraries, but 

RMSE was lower in the post-intervention case. This can maybe 

be linked to the fact that the renovated painting is more 

inhomogeneous than the original painting, and the spectral 

reconstruction is harder for this sample. The RMSE values can 

be explained because the highest reflectance values correspond 

to NMF, and this is an initial advantage to get the scale right in 

the spectral reconstruction. NFINDR and manual libraries 

worked better than the NMF library considering the cGFC and 

the ∆𝐸00, but not for the RMSE. 

The results of pigment identification were influenced by the 

state of the piece. Manual extraction performed the best for the 

unrestored painting, identifying only two pigments, while 

NFINDR and NMF performed the best for the restored painting, 

identifying three over five pigments. The manually extracted 

endmembers differ more from the reference library for the pre-

intervention painting than for the restored one. This explains the 

overall worse identification results for the first case. However, 

restoring the piece enhances the efficiency of automatic 

algorithms in extracting endmembers for pigment identification 

(not for reconstruction of the spectra, which is inherently more 

difficult). This highlights the disadvantage of the manual 

extracted library compared to the automatically extracted ones. 

Even with a very reduced palette of pigments, the results were 

not as expected. This could be due to differences between the 

spectra of the reference pigments and the actual pigments present 

in the painting. These findings underscore the importance of 

having an appropriate auxiliary palette of reference pigments for 

pigment identification.  

The comparison of the information present in the 

concentration maps obtained from the unmixing process does not 

appear to be sufficient for detection of re-painted areas. Even 

after finding the triplet of spectral bands that produced a more 

salient visualization of the repainted areas with an optimization 

approach, the results obtained by thresholding were not similar 

enough to the ground truth image containing all the repainted 

areas. 

The limitations imposed by linear unmixing could be 

addressed by using a Kulbelka-Munk model to approximate the 

reflectance of mixed pigments. More sophisticated segmentation 

algorithms to detect re-painted areas could also be considered in 

future work, as well as information in different spectral ranges.  

Spectral image capture is totally non-invasive, has high 

spatial resolution and requires much less time for capture and 

analysis than alternative techniques, which underscore the 

importance of devoting more effort to refining spectral imaging 

and unmixing methods so that they can perform well in 

endmembers extraction and pigment identification. 
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