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Abstract 
As complementary technologies evolve, data compression 

continues to be a foundational aspect of growing digital collections.  
In this study, selected lossless still image codecs from 1992 through 
2022 were benchmarked across a variety of efficiency and 
performance measures using reference images from cultural 
heritage.  Additionally, entropy estimates were calculated by source 
image to assist in characterizing image information and evaluating 
encoder efficiency against assessed feasible compression limits.  
Encoder designs and compression techniques were also examined 
in the context of the study’s measured results. 

Background 
Still image compression has witnessed continued advances in 

new codecs and standards during the past three decades.  This 
progress has come in response to marked improvements in sensor 
technologies and pixel densities along with new computational 
requirements of 3D, multispectral, and high-dynamic-range imaging 
[1].  In addition, state-of-the-industry display devices and software 
are today both able to more fully render and exploit such rich source 
data for a growing assortment of end user tasks. 

Modern image data acquisition and post-processing 
workflows, as a result, all add to the needed capacities of storage 
and transmission.  Notably lossless compression techniques serve an 
important role within imaging applications such as medical, aerial, 
satellite, deep space exploration and cultural heritage archiving 
where it is often critical that original rendered pixel data can be 
comprehensively recovered upon decompression [2]–[4]. 

The final years of the 2010’s witnessed several new standards 
that each promised improvements in comparison to past alternatives 
[5]–[7].  This study aims to benchmark a selection of both the latest 
lossless still image codecs and older examples that have been 
released through time to better assess overall trends in compression 
development. 

 
Methods Overview 

The following selected still image codecs (Figure 1), each 
configured for mathematically lossless encoding, were evaluated 
across a range of reference test images. 

 

 
Figure 1. Selected lossless still image standards released from 1992-2022 

 
Compression efficiency and benchmark testing were 

conducted on a Dell Precision Tower 3620 workstation, running 64-
bit Windows 10 Enterprise 10.0.14393-18362, with 32 GB RAM, 
8GB AMD Radeon Pro WX 7100 GPU and Intel(R) Xeon(R) CPU 
E3-1285 v6 @ 4.10GHz, 4104 Mhz, 4 Cores, 8 Logical Processors.  
Attached to the workstation was a 27-inch Dell PQ2715Q, 3,840 x 
2,160 pixels color-calibrated display. 

Selected codecs were individually run from the command line 
in tandem with the 64-bit Command Line Process Profiling Tool 
v1.5.1 [8], [9].  This benchmarking application was configured to 
record CPU time, real (clock) time, and both RAM and video 
memory use during the encoding of each compressed file.  For every 
codec tested, sets of three consecutive encodings were done per 
reference image.  The resulting individual benchmark metrics were 
then averaged for each compressed test image and recorded as final 
values to get a more accurate sense of a given encoder’s execution 
across possible fluctuations in overall workstation load and speed 
[10]. 

The lone exception to this test configuration were evaluations 
conducted on JPEG-1 original lossless compression.  JPEG-1 
(ISO/IEC 10918) reference software contains one of the few extant 
lossless encoders for the original 1992 specification [11].  
Precompiled binaries of the C++ source code are difficult to locate 
and build for Windows OS.  In turn, the software was instead 
compiled and installed from source on an Apple MacBook Pro (OS 
X 10.14.6, 16GB RAM, 3.1 GHz Intel Core i7 processor, 1TB SSD) 
with 13-inch 2,560 x 1,600 pixels color-calibrated display.  Beyond 
compression savings calculations, benchmark testing was not 
conducted on the JPEG-1 encoder. 

Reference images (Figure 2) were all 8 bit, sRGB color TIFF, 
PNG or PPM files based upon the input file format requirements of 
the encoder being tested.  These images all have cultural heritage 
collections origins and were chosen to suitably represent the 
common variety of spatial and color information found in such 
collections [12]. 
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Figure 2. Reference 8-bit, sRGB images (left-right, top-bottom) 
“painting_00353901,” “painting_00103401,” “born_digital,” 
“medium_format_color_01,” “medium_format_color_02,” “map,” “card” 

To verify that the resulting compressed files were 
mathematically lossless and reversible, pixel data of both input and 
output files were compared through RGB PSNR analysis using the 
following FFmpeg v3.4.1 filter and null muxer command [13]: 

ffmpeg -i reference.tif -i output.tif -filter_complex psnr -f null – 

PSNR values of infinity indicate that there is no difference 
between two given input signals: 

PSNR r:inf g:inf b:inf average:inf min:inf max:inf 

Lossless Encoding Software Commands 

JPEG-1 (ISO/IEC 10918) files were encoded through the 
standard’s reference software release 1.56 where -p and -c switches 
control predictive lossless integer encoding, and default Huffman 
coding were employed [11].  The encoder, however, was only able 
to work with PPM input files and not the study’s main reference 
TIFF files.  Therefore, a parallel set of PPM files were losslessly 
created in Adobe Photoshop from the reference TIFF files for use 
by the JPEG-1 encoder: 

 
jpeg -p -c reference.ppm output.jpg 

 

JPEG-LS (ISO/IEC 14495-1) files were created using 
IrfanView’s [14] CharLS plugin through the /convert= instruction.  
CharLS supports baseline JPEG-LS Part 1 exclusively and in turn 
uses Huffman coding [15]: 

i_view64.exe reference.tif /convert=output.jls 

JPEG 2000 (ISO/IEC 15444-1) files were encoded through 
the following OpenJPEG v2.3.0 [16] command though which the 
software defaults to lossless compression: 

opj_compress.exe -i input.tif -o output.jp2 

JPEG XR (ISO/IEC 29199-2) files were encoded using the 
64-bit NConvert v7.25 utility [17] with the following parameters... 
-npcd 2 = default, -c 0 = no compression, -q 100 =quality value, -
ctype rgb = Channel Type, -keep_icc = Keep ICC Profile from 
original file and -corder inter = Interleaved Channel Order:  

nconvert.exe -npcd 2 -c 0 -q 100 -ctype rgb -keep_icc -corder inter 
-out jxr -o %.jxr input.tif 

FLIF files were created using the FLIF v0.2.0 encoder with 
“effort” tuned to -E20 [18].  This version of the encoder was not able 
to use TIFF input files.  Therefore, a parallel set of compatible 
lossless PNG files was created with Photoshop from the original 
TIFF reference images for use with the FLIF software.  The effort 
setting, which essentially is an encoding speed regulator, was 
determined through a combination of Pareto optimal estimates and 
tested encode times that centered on possible feasible use in a 
production environment: 

Flif.exe input.png -E20 output.flif 

PIK files were encoded using the software’s b4866ff Github 
commit compiled for Windows and the command line instruction 
below [5], [19].  This version of the encoder was also not able to use 
TIFF input files.  Therefore, the same parallel set of lossless PNG 
files previously created from the original TIFF reference images and 
used in FLIF testing was also used with the PIK encoder: 

Pik_c.exe --lossless input.png output.pik 

JPEG XL (ISO/IEC 18181-1&2) files were created with the 
standard’s reference software’s v0.7.0 36ece478 GitLab commit 
compiled for Windows [20], [21].  The following specifiers were 
used in encoding --quality=100 = Mathematically Lossless, --
effort=3 = Encoder effort setting.  Like FLIF testing, the effort 
setting [22] was determined through a combination of Pareto 
optimal estimates and tested encode times that centered on possible 
feasible use in a production environment: 

cjpegxl.exe --quality=100 --effort=3 input.png output.jxl 

Note, all tested encoders, excluding JPEG-1, were 
benchmarked using the Process Profiling Tool’s benchmarking 
template “-tb” switch which outputs results to the console [8].  
Example of use with OpenJPEG lossless encoder: 

ProcProfile64.exe -tb opj_compress.exe -i input.tif -o output.jp2 

In addition, delentropy values [23] were also recorded for each 
reference file using the Simple Image Processing Pipeline tool 
calculator installed and run on Mac OS X 10.14.6 [24]: 

sipp -in=input.tif -csv=true input.tiff,”delentropy value” 
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Finally, entropy percentages were also estimated for individual 
reference files by deploying the experimental paq8px v.207 lossless 
data encoder [25], [26] using the encoder’s maximum processing 
memory switch “12”: 

paq8px_v207.exe -12 input.tif output directory 

Results and Discussion 
 
Entropy and Compression Efficiency Measures 

The aim of compression is to reduce redundancy in stored data.  
This reduction increases effective data density through encoding 
information using fewer bits than the original representation [27], 
[28].  Most lossless compression methods do this by first generating 
a statistical model for the input data.  The model is then used to map 
the input to bit sequences in such a way that "probable" (i.e. 
frequently encountered) data will produce shorter output than 
"improbable" data.  In this way, lossless encoders ignore random 
data which has no predictive value and is itself not compressible 
[29], [30]. 

In information sources, redundancy is related to information 
content which Shannon and Weaver [31] describe in measures of 
entropy.  The greater the entropy, the less predictable the data, and 
the more information content.  Entropy, in turn, has been thought to 
provide a numeric correlation to the amount of statistical 
redundancy within a given source and ultimately the expected limit 
to which it can be losslessly compressed [1], [30].  The higher the 
entropy, the less redundancy, therefore the lower the expected 
compression limit. 

Since redundancies in images are directly related to image 
content, it follows that compression is inherently scene dependent.  
Entropy calculations can, in turn, effectively characterize image 
scenes and be good predictors of compression potential for given 
images.  However, image file entropy is inherently difficult to 
interpret and is contingent on how a given calculator models the 
input.  This modeling can involve predictions on several different 
file elements such as bits, bytes, words, groups of pixels, etc. [32], 
[33]. 

Conventional mathematical analysis tools like MathWorks’ 
MATLAB and Wolfram Mathematica normally calculate entropy 
through one dimensional intensity-based histograms that do not take 
into consideration the spatial distribution of pixel intensities 
throughout an image.  This additional variable can also have a direct 
influence on resulting compression density.  In turn, Larkin’s novel 
delentropy measure [23] which attempts to also capture underlying 
spatial image structure and pixel co-occurrence was calculated for 
all reference images to potentially better understand correlation 
between an input’s information content (and redundancy) and the 
resulting compression efficiencies of each encoder.  For 8-bit 
grayscale source images, delentropy can range between a minimum 
of 0 to a maximum of 8.  Since it was assumed that higher delentropy 
values would associate with lower compression potential, inverse 
delentropy percentages were calculated and plotted against lossless 
compression savings percentages for each codec for each test image 
(Figure 3). 

 

 
Figure 3. Lossless compression savings and inverse delentropy for each test 
image 

 
Another technique that can be used to estimate the level of 

entropy in a given image file is to losslessly compress the data to its 
smallest feasible size using the experimental paq8px codec [26].  It 
works by compressing the input file bit by bit using context mixing 
i.e. mixing predictions from many models (at the expense of speed 
and memory usage).  Though no application can describe all 
possible files and their data optimally, paq8px tops rankings on 
several benchmarks measuring compression ratio.  As a result, it is 
an apt tool for estimating the lower bound of entropy for a given file.  
Such estimates can be accomplished by comparing the losslessly 
compressed size relative to the original input source. 

Entropy estimates were thus made by calculating the percent 
decrease in file size of the paq8px compressed files compared to the 
study’s reference TIFF files.  Since it was assumed that higher 
entropy values would associate with lower compression potential, 
inverse entropy percentages were plotted against the lossless 
compression savings percentages of each codec for each test image 
(Figure 4). 

 

 
Figure 4. Lossless compression savings and inverse estimated entropy as 
measured by paq8px for each test image 
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Figure 5. Lossless compression savings average among all test images 

 
Data compression strategies involve compromises among 

resulting data density, speed, and memory use.  Computer science 
describes these associations as space-time or time-memory tradeoffs 
[30], [34].  As a result, benchmarking across these individual 
metrics can give additional insights into the art and design of a 
compression software’s context modeling, coding, and overall 
feasibility towards potential real use. 

 

 
Figure 6. Comparison of real time encoding 

 

 
Figure 7. Comparison of real time encoding, average among all test images 
 

 
Figure 8. Comparison of RAM use during encoding, average among all test 
images 
 

Figure 9. Comparison of video memory use during encoding, average among 
all test images 
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JPEG-1 and JPEG-LS 
Basic lossless compression schemes primarily do two things in 

sequence with source images.  First, they statistically predict and 
decorrelate the input data to identify and reduce spatial redundancy.  
In addition, color transformations from an RGB to a luminance-
chrominance color space may also be performed during this initial 
preprocessing stage.  Second, the results of preprocessing are then 
entropy coded into bit sequences through algorithms such as 
Huffman coding which reduces preprocessing statistical 
redundancies, or arithmetic coding that deals with both spatial and 
statistical redundancies [1]. 

Though differing in overall compression efficiency, JPEG-1 
and baseline JPEG-LS followed similar trends in file-by-file results 
(Figure 3).  Figure 3 also suggests that inverse delentropy 
calculations can be a good predictor of the compression potential of 
these two codecs based upon the nature of a given input file’s data.  
Where this tool may lose accuracy, however, is when analyzing 
images with text and/or thin, high contrast edges like the “card” and 
“map” test images (and when attempting to predict the compression 
efficiencies of more modern, post-millennial codecs that were soon 
to arrive). 

The gap in compression savings percentages by file between 
JPEG-1 and JPEG-LS is most likely due to JPEG-LS’s ability to 
achieve more advanced and complete decorrelation through its use 
of the LOCO-I algorithm for prediction which also allows for 
residual modeling and context-based coding.  JPEG-1 on the other 
hand employs the simpler and less effective differential pulse-code 
modulation (DPCM) predictive coding that is unable to attain total 
decorrelation of input data and involves no subsequent context 
modeling [29], [35], [36].  Both codecs employed Huffman entropy 
coding during testing.  Finally, unlike specifications that would 
arrive in the ensuing decade, early lossless JPEG variants do not 
define a specific color transform during encoding [37]. 
 
JPEG 2000 and JPEG XR 

Lossless JPEG 2000 and JPEG XR also share commonalities.  
Both employ either true wavelet (JPEG 2000) or wavelet-like (JPEG 
XR) biorthagonal transforms which use reversible integer 
arithmetic.  Additionally, each uses unique internal color transforms 
aimed at better decorrelating the original RGB channels and 
improving compression efficiency and lifting schemes that 
significantly reduce computational complexity and increase 
performance.  Both codecs also offer optional image tiling which 
can increase speed and enhance error resiliency [38]–[40]. 

Lossless JPEG 2000 utilizes a Discrete Wavelet Transform 
(DWT) in the form of an integer-to-integer, reversible 5/3 filter bank 
[41].  Components of the filter bank are separate high-pass and low-
pass spatial filters collectively known as the analysis filter bank.  
The low-pass filter preserves an input signal’s low frequencies and 
removes or attenuates high frequencies, while the high-pass filter 
preserves high frequencies such as edges and detail while removing 
or attenuating low frequencies.  These filters inform the codec’s 
iterative prediction steps during implementation.  From there JPEG 
2000 employs computationally expensive EBCOT context 
modeling followed by an MQ coder which is a modified version of 
one of the earliest practical applications of adaptive binary 
arithmetic coding [39].  Taken together, JPEG 2000 remains an 

efficient if complex and somewhat slow lossless compression codec 
to this day (Figures 4-7). 

Though JPEG XR employs a unique two-stage lapped 
biorthogonal transform (LBT), it too selectively uses high and low 
frequency filters in a predictive way [40].  In turn, the codec 
followed a similar file-by-file pattern to JPEG 2000 of file size 
percent savings (Figure 4) but was 4% less efficient overall on 
average as JPEG 2000 (Figure 5) during testing.  However, JPEG 
XR was the fastest encoder of all the codecs that were evaluated by 
9 seconds on average and used 487MB less RAM and 822MB less 
video memory on average than JPEG 2000 (Figures 6-9).  These 
findings may be partially attributed to JPEG XR’s use of a form of 
adaptive Huffman entropy coding [42], [43].  Though often 
suboptimal in terms of compression, Huffman coders are less 
complex and faster than arithmetic coders [39], [44]. 

 
FLIF, PIK, and JPEG XL 

FLIF and PIK may be viewed as experimental precursors to 
lossless JPEG XL.  Through the codec’s effort setting [22], JPEG 
XL uses a highly flexible modular encoding mode that employs 
innovative components of both of its predecessors.  These elements 
include a weighted self-correcting predictor plus simpler predictors 
which are adjustable per context, and effective meta-adaptive (MA) 
context modeling.  Finally, JPEG XL uses a “range” variant of the 
recently introduced Asymmetric Numeral Systems (ANS) entropy 
coding family.  rANS can achieve compression ratios similar to 
arithmetic coding, while being significantly faster in performance 
[45]–[50]. 

Though FLIF, PIK, JPEG XL, and JPEG 2000 compressed 
images with similar efficiency on average (Figure 5), JPEG XL was 
much faster than these codecs (Figures 6, 7).  However, it should be 
remarked that this speed may be partially attributed to JPEG XL’s 
more concerted use of available memory resources during encoding 
(Figure 8, 9). 

Conclusion 
Lossless still image codecs have gone through a period of 

intriguing developments in the thirty years since the original JPEG-
1 specification was published.  The findings of this study shed 
broader light on how this evolution has taken shape.  Through a 
comparative analysis of technical designs, benchmark metrics, and 
entropy estimates, the past and current state of lossless codecs can 
thus be more clearly characterized. 

For instance, lossless JPEG-1 and JPEG-LS can be seen as 
similar variants of early generation still image compression based 
upon their documented schemes, benchmark results, and common 
image-by-image efficiency trends that closely follow inverse 
delentropy estimates.  Of note, JPEG-LS is a fast, low complexity 
Huffman-based encoder (Figure 7) that uses minimal memory 
(Figures 8, 9) but is highly variable in compression efficiency based 
upon source image information (Figure 3). 

In contrast, among the more modern codecs examined in this 
review, all were able to encode images to similar efficiency levels 
on average and on an image-by-image basis.  That these levels also 
closely followed the pattern of paq8px’s image specific inverse 
entropy estimates (Figure 4) suggest that the paq8px tool is a good 
predictor of the compression potential of such post-millennial 
codecs.  Moreover, as these codecs all comparably approached 
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paq8px’s approximations for optimum lossless compression, this 
may be an indication that there is little practical room left for future 
lossless standards to make further efficiency gains through new 
designs. 

Still, it should be remembered that JPEG XL’s novel 
predictors, adaptive, image-specific context modelers, and its use of 
rANS have yet to be fully exploited as the standard is new, and more 
mature encoders await development around the specification.  
Among the lossless bitstreams examined, it is uniquely expressive 
and poised for future refinement through the adoption of techniques 
like AI heuristics.  Notably, JPEG XL’s adjustable effort feature, if 
pareto optimized for given image content, holds the promise of a 
highly efficient, best-in-class lossless compression scheme that can 
effectively leverage available hardware resources to work fast and 
at scale within production environments. 
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