

Benchmarking Lossless Still Image Codecs: Perspectives on
Selected Compression Standards From 1992 Through 2022
Michael J. Bennett; University of Connecticut Library; Storrs, CT/US

Abstract
As complementary technologies evolve, data compression

continues to be a foundational aspect of growing digital collections.
In this study, selected lossless still image codecs from 1992 through
2022 were benchmarked across a variety of efficiency and
performance measures using reference images from cultural
heritage. Additionally, entropy estimates were calculated by source
image to assist in characterizing image information and evaluating
encoder efficiency against assessed feasible compression limits.
Encoder designs and compression techniques were also examined
in the context of the study’s measured results.

Background
Still image compression has witnessed continued advances in

new codecs and standards during the past three decades. This
progress has come in response to marked improvements in sensor
technologies and pixel densities along with new computational
requirements of 3D, multispectral, and high-dynamic-range imaging
[1]. In addition, state-of-the-industry display devices and software
are today both able to more fully render and exploit such rich source
data for a growing assortment of end user tasks.

Modern image data acquisition and post-processing
workflows, as a result, all add to the needed capacities of storage
and transmission. Notably lossless compression techniques serve an
important role within imaging applications such as medical, aerial,
satellite, deep space exploration and cultural heritage archiving
where it is often critical that original rendered pixel data can be
comprehensively recovered upon decompression [2]–[4].

The final years of the 2010’s witnessed several new standards
that each promised improvements in comparison to past alternatives
[5]–[7]. This study aims to benchmark a selection of both the latest
lossless still image codecs and older examples that have been
released through time to better assess overall trends in compression
development.

Methods Overview

The following selected still image codecs (Figure 1), each
configured for mathematically lossless encoding, were evaluated
across a range of reference test images.

Figure 1. Selected lossless still image standards released from 1992-2022

Compression efficiency and benchmark testing were

conducted on a Dell Precision Tower 3620 workstation, running 64-
bit Windows 10 Enterprise 10.0.14393-18362, with 32 GB RAM,
8GB AMD Radeon Pro WX 7100 GPU and Intel(R) Xeon(R) CPU
E3-1285 v6 @ 4.10GHz, 4104 Mhz, 4 Cores, 8 Logical Processors.
Attached to the workstation was a 27-inch Dell PQ2715Q, 3,840 x
2,160 pixels color-calibrated display.

Selected codecs were individually run from the command line
in tandem with the 64-bit Command Line Process Profiling Tool
v1.5.1 [8], [9]. This benchmarking application was configured to
record CPU time, real (clock) time, and both RAM and video
memory use during the encoding of each compressed file. For every
codec tested, sets of three consecutive encodings were done per
reference image. The resulting individual benchmark metrics were
then averaged for each compressed test image and recorded as final
values to get a more accurate sense of a given encoder’s execution
across possible fluctuations in overall workstation load and speed
[10].

The lone exception to this test configuration were evaluations
conducted on JPEG-1 original lossless compression. JPEG-1
(ISO/IEC 10918) reference software contains one of the few extant
lossless encoders for the original 1992 specification [11].
Precompiled binaries of the C++ source code are difficult to locate
and build for Windows OS. In turn, the software was instead
compiled and installed from source on an Apple MacBook Pro (OS
X 10.14.6, 16GB RAM, 3.1 GHz Intel Core i7 processor, 1TB SSD)
with 13-inch 2,560 x 1,600 pixels color-calibrated display. Beyond
compression savings calculations, benchmark testing was not
conducted on the JPEG-1 encoder.

Reference images (Figure 2) were all 8 bit, sRGB color TIFF,
PNG or PPM files based upon the input file format requirements of
the encoder being tested. These images all have cultural heritage
collections origins and were chosen to suitably represent the
common variety of spatial and color information found in such
collections [12].

https://doi.org/10.2352/issn.2168-3204.2023.20.1.34
This work is licensed under the Creative Commons

Attribution 4.0 International License.

ARCHIVING 2023 FINAL PROGRAM AND PROCEEDINGS 165

Figure 2. Reference 8-bit, sRGB images (left-right, top-bottom)
“painting_00353901,” “painting_00103401,” “born_digital,”
“medium_format_color_01,” “medium_format_color_02,” “map,” “card”

To verify that the resulting compressed files were
mathematically lossless and reversible, pixel data of both input and
output files were compared through RGB PSNR analysis using the
following FFmpeg v3.4.1 filter and null muxer command [13]:

ffmpeg -i reference.tif -i output.tif -filter_complex psnr -f null –

PSNR values of infinity indicate that there is no difference
between two given input signals:

PSNR r:inf g:inf b:inf average:inf min:inf max:inf

Lossless Encoding Software Commands

JPEG-1 (ISO/IEC 10918) files were encoded through the
standard’s reference software release 1.56 where -p and -c switches
control predictive lossless integer encoding, and default Huffman
coding were employed [11]. The encoder, however, was only able
to work with PPM input files and not the study’s main reference
TIFF files. Therefore, a parallel set of PPM files were losslessly
created in Adobe Photoshop from the reference TIFF files for use
by the JPEG-1 encoder:

jpeg -p -c reference.ppm output.jpg

JPEG-LS (ISO/IEC 14495-1) files were created using
IrfanView’s [14] CharLS plugin through the /convert= instruction.
CharLS supports baseline JPEG-LS Part 1 exclusively and in turn
uses Huffman coding [15]:

i_view64.exe reference.tif /convert=output.jls

JPEG 2000 (ISO/IEC 15444-1) files were encoded through
the following OpenJPEG v2.3.0 [16] command though which the
software defaults to lossless compression:

opj_compress.exe -i input.tif -o output.jp2

JPEG XR (ISO/IEC 29199-2) files were encoded using the
64-bit NConvert v7.25 utility [17] with the following parameters...
-npcd 2 = default, -c 0 = no compression, -q 100 =quality value, -
ctype rgb = Channel Type, -keep_icc = Keep ICC Profile from
original file and -corder inter = Interleaved Channel Order:

nconvert.exe -npcd 2 -c 0 -q 100 -ctype rgb -keep_icc -corder inter
-out jxr -o %.jxr input.tif

FLIF files were created using the FLIF v0.2.0 encoder with
“effort” tuned to -E20 [18]. This version of the encoder was not able
to use TIFF input files. Therefore, a parallel set of compatible
lossless PNG files was created with Photoshop from the original
TIFF reference images for use with the FLIF software. The effort
setting, which essentially is an encoding speed regulator, was
determined through a combination of Pareto optimal estimates and
tested encode times that centered on possible feasible use in a
production environment:

Flif.exe input.png -E20 output.flif

PIK files were encoded using the software’s b4866ff Github
commit compiled for Windows and the command line instruction
below [5], [19]. This version of the encoder was also not able to use
TIFF input files. Therefore, the same parallel set of lossless PNG
files previously created from the original TIFF reference images and
used in FLIF testing was also used with the PIK encoder:

Pik_c.exe --lossless input.png output.pik

JPEG XL (ISO/IEC 18181-1&2) files were created with the
standard’s reference software’s v0.7.0 36ece478 GitLab commit
compiled for Windows [20], [21]. The following specifiers were
used in encoding --quality=100 = Mathematically Lossless, --
effort=3 = Encoder effort setting. Like FLIF testing, the effort
setting [22] was determined through a combination of Pareto
optimal estimates and tested encode times that centered on possible
feasible use in a production environment:

cjpegxl.exe --quality=100 --effort=3 input.png output.jxl

Note, all tested encoders, excluding JPEG-1, were
benchmarked using the Process Profiling Tool’s benchmarking
template “-tb” switch which outputs results to the console [8].
Example of use with OpenJPEG lossless encoder:

ProcProfile64.exe -tb opj_compress.exe -i input.tif -o output.jp2

In addition, delentropy values [23] were also recorded for each
reference file using the Simple Image Processing Pipeline tool
calculator installed and run on Mac OS X 10.14.6 [24]:

sipp -in=input.tif -csv=true input.tiff,”delentropy value”

166 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

Finally, entropy percentages were also estimated for individual
reference files by deploying the experimental paq8px v.207 lossless
data encoder [25], [26] using the encoder’s maximum processing
memory switch “12”:

paq8px_v207.exe -12 input.tif output directory

Results and Discussion

Entropy and Compression Efficiency Measures

The aim of compression is to reduce redundancy in stored data.
This reduction increases effective data density through encoding
information using fewer bits than the original representation [27],
[28]. Most lossless compression methods do this by first generating
a statistical model for the input data. The model is then used to map
the input to bit sequences in such a way that "probable" (i.e.
frequently encountered) data will produce shorter output than
"improbable" data. In this way, lossless encoders ignore random
data which has no predictive value and is itself not compressible
[29], [30].

In information sources, redundancy is related to information
content which Shannon and Weaver [31] describe in measures of
entropy. The greater the entropy, the less predictable the data, and
the more information content. Entropy, in turn, has been thought to
provide a numeric correlation to the amount of statistical
redundancy within a given source and ultimately the expected limit
to which it can be losslessly compressed [1], [30]. The higher the
entropy, the less redundancy, therefore the lower the expected
compression limit.

Since redundancies in images are directly related to image
content, it follows that compression is inherently scene dependent.
Entropy calculations can, in turn, effectively characterize image
scenes and be good predictors of compression potential for given
images. However, image file entropy is inherently difficult to
interpret and is contingent on how a given calculator models the
input. This modeling can involve predictions on several different
file elements such as bits, bytes, words, groups of pixels, etc. [32],
[33].

Conventional mathematical analysis tools like MathWorks’
MATLAB and Wolfram Mathematica normally calculate entropy
through one dimensional intensity-based histograms that do not take
into consideration the spatial distribution of pixel intensities
throughout an image. This additional variable can also have a direct
influence on resulting compression density. In turn, Larkin’s novel
delentropy measure [23] which attempts to also capture underlying
spatial image structure and pixel co-occurrence was calculated for
all reference images to potentially better understand correlation
between an input’s information content (and redundancy) and the
resulting compression efficiencies of each encoder. For 8-bit
grayscale source images, delentropy can range between a minimum
of 0 to a maximum of 8. Since it was assumed that higher delentropy
values would associate with lower compression potential, inverse
delentropy percentages were calculated and plotted against lossless
compression savings percentages for each codec for each test image
(Figure 3).

Figure 3. Lossless compression savings and inverse delentropy for each test
image

Another technique that can be used to estimate the level of

entropy in a given image file is to losslessly compress the data to its
smallest feasible size using the experimental paq8px codec [26]. It
works by compressing the input file bit by bit using context mixing
i.e. mixing predictions from many models (at the expense of speed
and memory usage). Though no application can describe all
possible files and their data optimally, paq8px tops rankings on
several benchmarks measuring compression ratio. As a result, it is
an apt tool for estimating the lower bound of entropy for a given file.
Such estimates can be accomplished by comparing the losslessly
compressed size relative to the original input source.

Entropy estimates were thus made by calculating the percent
decrease in file size of the paq8px compressed files compared to the
study’s reference TIFF files. Since it was assumed that higher
entropy values would associate with lower compression potential,
inverse entropy percentages were plotted against the lossless
compression savings percentages of each codec for each test image
(Figure 4).

Figure 4. Lossless compression savings and inverse estimated entropy as
measured by paq8px for each test image

ARCHIVING 2023 FINAL PROGRAM AND PROCEEDINGS 167

Figure 5. Lossless compression savings average among all test images

Data compression strategies involve compromises among

resulting data density, speed, and memory use. Computer science
describes these associations as space-time or time-memory tradeoffs
[30], [34]. As a result, benchmarking across these individual
metrics can give additional insights into the art and design of a
compression software’s context modeling, coding, and overall
feasibility towards potential real use.

Figure 6. Comparison of real time encoding

Figure 7. Comparison of real time encoding, average among all test images

Figure 8. Comparison of RAM use during encoding, average among all test
images

Figure 9. Comparison of video memory use during encoding, average among
all test images

168 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

JPEG-1 and JPEG-LS
Basic lossless compression schemes primarily do two things in

sequence with source images. First, they statistically predict and
decorrelate the input data to identify and reduce spatial redundancy.
In addition, color transformations from an RGB to a luminance-
chrominance color space may also be performed during this initial
preprocessing stage. Second, the results of preprocessing are then
entropy coded into bit sequences through algorithms such as
Huffman coding which reduces preprocessing statistical
redundancies, or arithmetic coding that deals with both spatial and
statistical redundancies [1].

Though differing in overall compression efficiency, JPEG-1
and baseline JPEG-LS followed similar trends in file-by-file results
(Figure 3). Figure 3 also suggests that inverse delentropy
calculations can be a good predictor of the compression potential of
these two codecs based upon the nature of a given input file’s data.
Where this tool may lose accuracy, however, is when analyzing
images with text and/or thin, high contrast edges like the “card” and
“map” test images (and when attempting to predict the compression
efficiencies of more modern, post-millennial codecs that were soon
to arrive).

The gap in compression savings percentages by file between
JPEG-1 and JPEG-LS is most likely due to JPEG-LS’s ability to
achieve more advanced and complete decorrelation through its use
of the LOCO-I algorithm for prediction which also allows for
residual modeling and context-based coding. JPEG-1 on the other
hand employs the simpler and less effective differential pulse-code
modulation (DPCM) predictive coding that is unable to attain total
decorrelation of input data and involves no subsequent context
modeling [29], [35], [36]. Both codecs employed Huffman entropy
coding during testing. Finally, unlike specifications that would
arrive in the ensuing decade, early lossless JPEG variants do not
define a specific color transform during encoding [37].

JPEG 2000 and JPEG XR

Lossless JPEG 2000 and JPEG XR also share commonalities.
Both employ either true wavelet (JPEG 2000) or wavelet-like (JPEG
XR) biorthagonal transforms which use reversible integer
arithmetic. Additionally, each uses unique internal color transforms
aimed at better decorrelating the original RGB channels and
improving compression efficiency and lifting schemes that
significantly reduce computational complexity and increase
performance. Both codecs also offer optional image tiling which
can increase speed and enhance error resiliency [38]–[40].

Lossless JPEG 2000 utilizes a Discrete Wavelet Transform
(DWT) in the form of an integer-to-integer, reversible 5/3 filter bank
[41]. Components of the filter bank are separate high-pass and low-
pass spatial filters collectively known as the analysis filter bank.
The low-pass filter preserves an input signal’s low frequencies and
removes or attenuates high frequencies, while the high-pass filter
preserves high frequencies such as edges and detail while removing
or attenuating low frequencies. These filters inform the codec’s
iterative prediction steps during implementation. From there JPEG
2000 employs computationally expensive EBCOT context
modeling followed by an MQ coder which is a modified version of
one of the earliest practical applications of adaptive binary
arithmetic coding [39]. Taken together, JPEG 2000 remains an

efficient if complex and somewhat slow lossless compression codec
to this day (Figures 4-7).

Though JPEG XR employs a unique two-stage lapped
biorthogonal transform (LBT), it too selectively uses high and low
frequency filters in a predictive way [40]. In turn, the codec
followed a similar file-by-file pattern to JPEG 2000 of file size
percent savings (Figure 4) but was 4% less efficient overall on
average as JPEG 2000 (Figure 5) during testing. However, JPEG
XR was the fastest encoder of all the codecs that were evaluated by
9 seconds on average and used 487MB less RAM and 822MB less
video memory on average than JPEG 2000 (Figures 6-9). These
findings may be partially attributed to JPEG XR’s use of a form of
adaptive Huffman entropy coding [42], [43]. Though often
suboptimal in terms of compression, Huffman coders are less
complex and faster than arithmetic coders [39], [44].

FLIF, PIK, and JPEG XL

FLIF and PIK may be viewed as experimental precursors to
lossless JPEG XL. Through the codec’s effort setting [22], JPEG
XL uses a highly flexible modular encoding mode that employs
innovative components of both of its predecessors. These elements
include a weighted self-correcting predictor plus simpler predictors
which are adjustable per context, and effective meta-adaptive (MA)
context modeling. Finally, JPEG XL uses a “range” variant of the
recently introduced Asymmetric Numeral Systems (ANS) entropy
coding family. rANS can achieve compression ratios similar to
arithmetic coding, while being significantly faster in performance
[45]–[50].

Though FLIF, PIK, JPEG XL, and JPEG 2000 compressed
images with similar efficiency on average (Figure 5), JPEG XL was
much faster than these codecs (Figures 6, 7). However, it should be
remarked that this speed may be partially attributed to JPEG XL’s
more concerted use of available memory resources during encoding
(Figure 8, 9).

Conclusion
Lossless still image codecs have gone through a period of

intriguing developments in the thirty years since the original JPEG-
1 specification was published. The findings of this study shed
broader light on how this evolution has taken shape. Through a
comparative analysis of technical designs, benchmark metrics, and
entropy estimates, the past and current state of lossless codecs can
thus be more clearly characterized.

For instance, lossless JPEG-1 and JPEG-LS can be seen as
similar variants of early generation still image compression based
upon their documented schemes, benchmark results, and common
image-by-image efficiency trends that closely follow inverse
delentropy estimates. Of note, JPEG-LS is a fast, low complexity
Huffman-based encoder (Figure 7) that uses minimal memory
(Figures 8, 9) but is highly variable in compression efficiency based
upon source image information (Figure 3).

In contrast, among the more modern codecs examined in this
review, all were able to encode images to similar efficiency levels
on average and on an image-by-image basis. That these levels also
closely followed the pattern of paq8px’s image specific inverse
entropy estimates (Figure 4) suggest that the paq8px tool is a good
predictor of the compression potential of such post-millennial
codecs. Moreover, as these codecs all comparably approached

ARCHIVING 2023 FINAL PROGRAM AND PROCEEDINGS 169

paq8px’s approximations for optimum lossless compression, this
may be an indication that there is little practical room left for future
lossless standards to make further efficiency gains through new
designs.

Still, it should be remembered that JPEG XL’s novel
predictors, adaptive, image-specific context modelers, and its use of
rANS have yet to be fully exploited as the standard is new, and more
mature encoders await development around the specification.
Among the lossless bitstreams examined, it is uniquely expressive
and poised for future refinement through the adoption of techniques
like AI heuristics. Notably, JPEG XL’s adjustable effort feature, if
pareto optimized for given image content, holds the promise of a
highly efficient, best-in-class lossless compression scheme that can
effectively leverage available hardware resources to work fast and
at scale within production environments.

References
[1] E. Allen, “Manual of Photography and Digital Imaging Chapter 29

Image Compression,” in Manual of Photography and Digital Imaging,
10th ed., Burlington, MA: Focal Press, 2012. [Online]. Available:
https://learning.oreilly.com/library/view/the-manual-
of/9780240520377/xhtml/37_Chap29.xhtml

[2] V. Derks, “Home · team-charls/charls Wiki · GitHub,” Dec. 29, 2019.
https://github.com/team-charls/charls/wiki (accessed Dec. 24, 2022).

[3] I. M. Pu, Fundamental Data Compression. Burlington, MA:
Butterworth-Heinemann, 2006. [Online]. Available:
https://doi.org/10.1016/B978-0-7506-6310-6.X5000-4

[4] K. Sayood, Introduction to Data Compression, 5th ed. Cambridge,
MA: Morgan Kaufmann, 2018. [Online]. Available:
https://doi.org/10.1016/C2015-0-06248-7

[5] Google, “GitHub - google/pik: A new lossy/lossless image format for
photos and the internet,” Jul. 2017. https://github.com/google/pik
(accessed Jan. 31, 2020).

[6] A. Rhatushnyak et al., “Committee Draft of JPEG XL Image Coding
System.” Aug. 13, 2019. [Online]. Available:
https://arxiv.org/abs/1908.03565

[7] J. Sneyers, “FLIF - Free Lossless Image Format,” Oct. 2015.
https://flif.info/ (accessed Feb. 24, 2019).

[8] D. Catt, “Command Line Process Profiling Tool,” Dec. 30, 2013.
https://encode.su/threads/1838-Command-Line-Process-Profiling-
Tool (accessed Mar. 04, 2019).

[9] D. Catt, “Command Line Process Profiling Tool v1.5.1.” Dec. 30,
2013. Accessed: Mar. 04, 2019. [Online]. Available:
https://encode.su/attachment.php?attachmentid=2657&d=138841631
1

[10] M. J. Bennett, “Dataset to Benchmarking Lossless Still Image
Codecs: Perspectives on Selected Compression Standards From 1992
Through 2022,” 2023. [Online]. Available:
https://opencommons.uconn.edu/libr_pubs/71/

[11] T. Richter, “libjpeg Release 1.56: A complete implementation of
10918-1 (JPEG) comming from jpeg.org (the ISO group) with
extensions for HDR currently discussed for standardization.,” Aug.
2019. https://github.com/thorfdbg/libjpeg (accessed Jan. 24, 2020).

[12] M. J. Bennett, “Dataset to Assessing the Potential Use of High
Efficiency Video Coding (HEVC) and High Efficiency Image File
Format (HEIF) in Archival Still Images.” 2018. Accessed: Apr. 30,
2018. [Online]. Available:
https://opencommons.uconn.edu/libr_pubs/62

[13] “FFmpeg v3.4.1,” Dec. 11, 2017. https://www.ffmpeg.org/ (accessed
Jan. 21, 2018).

[14] “IrfanView.” 2019. Accessed: Feb. 09, 2020. [Online]. Available:
https://www.irfanview.com/

[15] K. Kanryu and V. Derks, “GitHub - team-charls/charls: CharLS, a
C++ JPEG-LS library implementation,” Dec. 29, 2019.
https://github.com/team-charls/charls (accessed Jan. 24, 2020).

[16] “OpenJPEG 2.3.0 released,” Oct. 04, 2017.
http://www.openjpeg.org/2017/10/04/OpenJPEG-2.3.0-released
(accessed Dec. 29, 2017).

[17] “NConvert v7.25,” Jan. 16, 2019.
https://www.xnview.com/en/nconvert/ (accessed Jan. 15, 2015).

[18] J. Sneyers, “Release FLIF v0.2 (FLIF16) · FLIF-hub/FLIF · GitHub.”
Sep. 22, 2016. Accessed: Feb. 09, 2020. [Online]. Available:
https://github.com/FLIF-hub/FLIF/releases/tag/v0.2

[19] Shelwein, “PIK image format, compiled Windows binary of b4866ff
Github commit.,” May 29, 2019. https://encode.ru/threads/2793-PIK-
image-format (accessed Jul. 15, 2019).

[20] “(36ece478) · Commits · JPEG / JPEG XL Reference Software ·
GitLab,” GitLab, Jan. 20, 2022. https://gitlab.com/wg1/jpeg-xl/-
/commit/36ece4788d24f8875fb5b2d924cf6c7fd210e2b6 (accessed
Nov. 08, 2022).

[21] Scope, “JXL version 0.3 released - Page 2,” Jan. 21, 2022.
https://encode.su/threads/3564-JXL-version-0-3-
released?p=72756&viewfull=1#post72756 (accessed Nov. 08, 2022).

[22] J. Sneyers, “libjxl/encode_effort.md at main · libjxl/libjxl · GitHub,”
Jan. 15, 2023.
https://github.com/libjxl/libjxl/blob/main/doc/encode_effort.md
(accessed Jan. 24, 2023).

[23] K. G. Larkin, “Reflections on Shannon Information: In search of a
natural information-entropy for images,” Putney, Australia, Sep.
2016. [Online]. Available: https://arxiv.org/abs/1609.01117

[24] R. Vera, “Causticity/sipp.” Causticity, 2015. Accessed: Feb. 21, 2020.
[Online]. Available: https://github.com/Causticity/sipp

[25] Z. Gotthardt, “paq8px - Page 85 paq8px_v207.zip,” Encode, Jul. 09,
2022. https://encode.su/threads/342-
paq8px?p=75128&viewfull=1#post75128 (accessed Nov. 04, 2022).

[26] M. Mahoney et al., “PAQ8PX compression archiver.” Oct. 16, 2022.
Accessed: Nov. 02, 2022. [Online]. Available:
https://github.com/hxim/paq8px

[27] “Data compression,” Wikipedia. Feb. 14, 2020. Accessed: Feb. 17,
2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Data_compression&oldid
=940727795

[28] D. A. Lelewer and D. S. Hirschberg, “Data Compression,” ACM
Comput. Surv., vol. 19, no. 3, Sep. 1987, Accessed: Aug. 23, 2019.
[Online]. Available:
https://www.ics.uci.edu/~dan/pubs/DataCompression.html

[29] “Lossless compression,” Wikipedia. Nov. 16, 2022. Accessed: Nov.
21, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Lossless_compression&ol
did=1122254601

[30] M. Mahoney, “Data Compression Explained,” Apr. 15, 2013.
http://mattmahoney.net/dc/dce.html (accessed Jul. 17, 2019).

[31] C. Shannon and W. Weaver, The Mathematical Theory of
Information. Urbana: University of Illinois Press, 1949. [Online].
Available:
https://pure.mpg.de/pubman/item/item_2383164_3/component/file_2
383163/Shannon_Weaver_1949_Mathematical.pdf

[32] Z. Gotthardt, “Entropy of a file,” Encode, May 01, 2022.
https://encode.su/threads/3860-Entropy-of-a-
file?p=74069&viewfull=1#post74069 (accessed Nov. 06, 2022).

[33] M. Rabbani and P. W. Jones, “4. Entropy Estimation and Lossless
Compression,” in Digital Image Compression Techniques, SPIE,
1991, p. 33. [Online]. Available:
https://app.knovel.com/hotlink/pdf/id:kt00850TRP/digital-image-
compression/entropy-estimation-lossless

170 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

[34] “Space–time tradeoff,” Wikipedia. Feb. 11, 2020. Accessed: Mar. 01,
2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Space%E2%80%93time_t
radeoff&oldid=940179567

[35] “JPEG Lossless Compression (ISO/IEC 14495),” Jun. 17, 2021.
https://www.loc.gov/preservation/digital/formats/fdd/fdd000151.shtm
l (accessed Mar. 24, 2019).

[36] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless
image compression algorithm: principles and standardization into
JPEG-LS,” IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324,
Aug. 2000, doi: 10.1109/83.855427.

[37] D. S. Taubman and M. W. Marcellin, “JPEG2000 Image
Compression Fundamentals, Standards and Practice, Part IV Other
Standards,” in JPEG2000 Image Compression Fundamentals,
Standards and Practice, Boston, MA: Springer US, 2002. doi:
10.1007/978-1-4615-0799-4.

[38] S. Lawson and J. Zhu, “Image compression using wavelets and
JPEG2000: a tutorial,” Electron. Commun. Eng. J., vol. 14, no. 3, pp.
112–121, Jun. 2002, doi: 10.1049/ecej:20020303.

[39] M. Rabbani and R. Joshi, “An overview of the JPEG 2000 still image
compression standard,” Signal Process. Image Commun., vol. 17, no.
1, pp. 3–48, Jan. 2002, doi: 10.1016/S0923-5965(01)00024-8.

[40] C. Tu, S. Srinivasan, G. J. Sullivan, S. Regunathan, and H. S. Malvar,
“Low-complexity hierarchical lapped transform for lossy-to-lossless
image coding in JPEG XR / HD Photo,” presented at the Optical
Engineering + Applications, San Diego, California, USA, Aug. 2008,
p. 70730C. doi: 10.1117/12.797097.

[41] D. Le Gall and A. Tabatabai, “Sub-band coding of digital images
using symmetric short kernel filters and arithmetic coding
techniques,” in ICASSP-88., International Conference on Acoustics,
Speech, and Signal Processing, New York, NY, USA, 1988, pp. 761–
764. doi: 10.1109/ICASSP.1988.196696.

[42] S. S. Jadhav and S. K. Jadhav, “JPEG XR an Image Coding
Standard,” Int. J. Comput. Electr. Eng., pp. 137–140, 2012, doi:
10.7763/IJCEE.2012.V4.465.

[43] Sridhar Srinivasan, Chengjie Tu, Shankar L. Regunathan, and Gary J.
Sullivan, “HD Photo: a new image coding technology for digital
photography,” presented at the Proc.SPIE, Sep. 2007, vol. 6696, p.
66960A. doi: 10.1117/12.767840.

[44] K. Tatwawadi, “What is Asymmetric Numeral Systems?
Understanding the new entropy coder family.,” 2019.
https://kedartatwawadi.github.io/post--ANS/ (accessed Dec. 03,
2022).

[45] J. Alakuijala, J. Sneyers, L. Versari, and J. Wassenberg, “JPEG White
Paper: JPEG XL Image Coding System,” ISO/IEC JTC 1/SC 29/WG1
N90063, JPEG White Paper V. 1.4, Jan. 2021. Accessed: Nov. 23,
2022. [Online]. Available: https://ds.jpeg.org/whitepapers/jpeg-xl-
whitepaper.pdf

[46] J. Duda, “Asymmetric numeral systems: entropy coding combining
speed of Huffman coding with compression rate of arithmetic
coding.” arXiv, Jan. 06, 2014. Accessed: Dec. 03, 2022. [Online].
Available: http://arxiv.org/abs/1311.2540

[47] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of
asymmetric numeral systems as an accurate replacement for Huffman
coding,” in 2015 Picture Coding Symposium (PCS), Cairns,
Australia, May 2015, pp. 65–69. doi: 10.1109/PCS.2015.7170048.

[48] JPEG XL: The Next Generation “Alien Technology From The
Future” by Jon Sneyers [IMAGE READY], (Nov. 24, 2020).
Accessed: Dec. 31, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=t63DBrQCUWc

[49] J. Sneyers, “JPEG XL Reference Software, JPEG XL Format
Overview, format_overview.md - GitLab,” 2021.
https://gitlab.com/wg1/jpeg-xl/-

/blob/f88745497118727f861cb00887cadcb395d10f1c/doc/format_ov
erview.md (accessed Dec. 02, 2022).

[50] J. Sneyers and P. Wuille, “FLIF: Free lossless image format based on
MANIAC compression,” in 2016 IEEE International Conference on
Image Processing (ICIP), Phoenix, AZ, USA, Sep. 2016, pp. 66–70.
doi: 10.1109/ICIP.2016.7532320.

Author Biography
Michael J. Bennett is Head of Digital Imaging and Conservation at

the University of Connecticut. There he oversees the digital capture and
conservation operations for the UConn Library. His research interests
include technologies and techniques that focus on image acquisition, post-
processing, and 2D and 3D data formats. He holds a BA from Connecticut
College and an MLIS from the University of Rhode Island.

ARCHIVING 2023 FINAL PROGRAM AND PROCEEDINGS 171

