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Abstract 
Reflectance Transformation Imaging (RTI) is a technique 

that provides an enhanced visualization experience. The current 

acquisition methods for Reflectance Transformation Imaging 

(RTI) are time-consuming and computationally expensive. This 

work investigates the idea of getting the best light positions for 

RTI acquisition using surface topography. We propose 

automating the RTI acquisition by estimating the surface 

topography using a deep learning method followed by estimating 

light positions using unsupervised clustering method. This is a 

one-shot method which only needs one image. We also created 

RTI Synthetic dataset in order to carry out experiments. We 

found that surface topography alone is not sufficient to estimate 

best light positions for RTI without putting constraints. 

 

Introduction 
Reflectance Transformation Imaging (RTI) is an imaging 

technique used to capture and visualize surfaces in varying light 

conditions. RTI has three major components. A camera, an 

object, and a light source. The setup for the RTI as shown in 

Figure 1 has the following features: 

• The camera is fixed at the top of the surface. 

• Each image is captured with a different light 

direction. The light can be anywhere in the 

imaginary hemisphere/ dome above the object. 

• During the acquisition of the images, the camera 

and object remain fixed and only the light source 

is moving from one direction to another. 

• The distance between the light source and the 

object remains constant throughout the 

acquisitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data acquired after the acquisition is called RTI data but 

it is also known by other names like Multi-Light Image 

Collection (MLIC), Single Camera Multi-Light (SCML), and 

Multi-Light Reflectance (MLR) [1]. The next step in the RTI 

pipeline is to process the data with relightening algorithms. The 

final step is to extract the features and use these feature maps to 

investigate and study surfaces. The pipeline for RTI is shown in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first practical implementation of Reflectance 

Transformation Imaging was carried out by Bell Labs [2]. After 

collecting the multi-light image collection (MLIC) dataset, 

Malzbender developed a re-lightening algorithm called 

Polynomial Texture Mapping (PTM). It interactively displays 

photorealistic renderings created for light positions that were not 

captured in the real dataset. The other methods that were 

developed later for re-lightening are Hemispherical 

Harmonics(HSH) [3] and Discrete Modal Decomposition 

(DMD) [4]. DMD is a superior algorithm relative to PTM and 

HSH [5]. 

RTI has wide applications ranging from archaeological 

investigation of ancient objects to quality inspection in Industry. 

It is a powerful technique that has got attention from industry and 

academia. 

The documentation and digital preservation of cultural 

heritage objects have profound importance for historians as well 

as governments and international organizations. It is a great 

source of tourism as well as a tool for generations to connect and 

appreciate their culture and heritage. RTI can achieve visual 

recording of the artifacts which makes it a paramount technique 

in archeology[6]. RTI is also used to study the degradation in 

historical paintings and cultural heritage over a period of time 

[7]–[9]. It also provides important information to researchers 

studying the pigments/material used and helps in developing 

techniques used to preserve cultural heritage objects. 

Recently, RTI has found a lot of applications in the industry. 

The prime use of RTI is in quality control [10]. RTI helps quality 

control inspectors to find defects that otherwise are challenging 

to find [11]. 

Figure 1. RTI Setup 

Figure 2. RTI Pipeline 
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There are many acquisition setups used for RTI. The oldest 

one is Highlight RTI [12]. Human hands are used to hold and 

move the light source to acquire images. Since manual 

acquisition is a very tedious and painstaking task. Some domes 

have been developed to automate the acquisition process of RTI 

[12]. Recently, robotics arms have also been used to make RTI 

acquisition more efficient and fast in order to get better results 

[13]. 

The choice of light positions in RTI acquisitions can be 

classified in two categories. The first one is where the number 

and positions of the light source are pre-defined (generally 

equally spaced) The second one, generally automated, adapts the 

number and distribution of light position to the surface 

characteristics. So far, the field of automated acquisition has not 

been fully explored. We aim to investigate the problem of 

automated acquisition using surface topography information. 

One of the major challenges in RTI is the processing of an 

enormous amount of data. The computation power is limited 

which serves as a bottleneck in RTI pipeline. The pipeline for 

RTI is shown in Figure 2. It requires extensive resources 

(memory, CPU, data storage), which limits the utilization of such 

a technique. This limitation serves as a bottleneck in RTI 

pipeline. Each dataset for RTI (Multi-Light Image Collection) 

can contain several images (ranging from 50 to 1000) and 

cameras mostly used for RTI tend to be highly defined producing 

high-resolution, large-size images. It is also observed that all 

images (each image corresponding to a unique light position) in 

the RTI dataset do not contribute equally to the re-lightening 

algorithm. Some images are more important than others. It is also 

observed that some regions in the hemisphere need more dense 

acquisition than others because reflectance is changing 

drastically in these regions [14]. 

The appearance of an acquired image depends on two 

factors. The first is the reflectance property of the object's 

material. Each material has unique reflectance properties like 

translucency, gloss, color etc. The second one is the surface 

topography of the object. The orientation of the surface, the 

roughness, bumps, and valleys highly influence the reflectance 

[15]. The function estimating the reflection of a light from 

surface is known as Bi-directional Reflectance Distribution 

(BRDF) function [16]. 

We are investigating an automated method to acquire an 

RTI dataset that can be more efficient. This area is not fully 

explored and the research question we ponder on is "Is there a 

better way to acquire an RTI dataset with relatively less 

computational cost, better results, and smaller in size?". We 

have developed a method which takes one image as an input and 

estimates the light positions for the MLIC acquisition. The 

method is based on Surface topography. We have performed 

experimentation to test our method. 

The nearest work related to our work is Next Best Light 

Position (NBLP) [14]. In this work, the author first acquires a 

small sparse dataset and then investigates how the reflectance 

changes with the light positions. It is possible to identify where 

there are abrupt reflectance changes, and he refers to those light 

positions as critical light positions. In the end, his algorithm 

identifies the interpolated light position using gradient descent 

and gives Next Best Light Position (NBLP) to acquire the image. 

This is an iterative method and adaptive method however it has 

the following disadvantages: 

• It needs multiple images to initiate the algorithm. 

• The algorithm is time taking since every time it 

has to calculate the differences in images and as 

the amount of images increases iteratively the 

complexity and computations are required to 

increase significantly. 

• The algorithm is not conscious of the surface 

topography and only considers the reflectance 

properties. 

In comparison, our algorithm only needs one image to 

initiate and estimates the light directions to acquire the RTI 

dataset. 

 In the next section, we explain our methodology, followed 

by dataset and experimentation. Finally, we present our results 

and discussion and conclude the research. 

Methodology 
We created an algorithm that gives us light positions for the 

acquisition of the dataset using surface topography information. 

The methodology of our algorithm is demonstrated in Figure 3. 

 

 

 

 

 

 

 

 

 

The first step is to acquire a single image of the object. In 

order to understand and estimate the topography of the surface 

we choose a recent deep-learning method [17]–[19]. This deep 

learning method is called Leres. The LeRes deep learning model 

is a convolutional neural network (CNN) architecture that is 

designed for estimating monocular depth from a single RGB 

image. Monocular depth estimation is a task of predicting depth 

of each pixel(image) from the camera. The LeRes deep learning 

network uses an encoder decoder with skip connections to 

preserve spatial information. The encoder is responsible for 

extracting features of the image and the decoder is responsible 

for estimating the depth map from the extracted features. It is 

state of the art monocular depth estimation method and that is 

why chose it. We feed the image to a deep learning network to 

estimate the depth map of the object. The depth map gives us 

information about surface topography. 

This depth map is converted to a normal map by taking the 

gradient of the depth map with respect to the neighboring pixels. 

Once, we have the normal map of an image. Our goal is to find 

the critical light position for each sub-image. For that matter, the 

question is what is a critical light position? We define the critical 

light position as a position that reveals the most possible 

information about the surface. If it's a surface or a painting, the 

critical light position should be able to reveal the minor textures 

and features of the image. If it's Reflectance Transformation 

Imaging for quality inspection, the critical light position should 

be able to reveal minor surface imperfections. This definition of 

critical light position agrees with the prime purpose of 

Reflectance Transformation Imaging i.e. "To enhance the 

visualization experience". The critical light positions can be 

found by clustering the normal map image.  

We choose k-means method for clustering. K-means is one 

of the most popular algorithms used by the machine learning 

community. It categorizes in unsupervised learning [20]. It 

partitions the data into clusters based on their similarities. The 

'K' in K-means refers to the number of clusters. K-means 

algorithm first selects the k initial cluster centroids randomly. It 

Figure 3. The flowchart of our algorithm to estimate light positions. 
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then assigns each data point to the nearest centroid iteratively. It 

continues to update the centroid of each cluster in every iteration 

by taking the mean of the data points in that cluster. The 

algorithm finally converges where no clusters further change and 

the centroid stops moving. 

After the clustering is done, the cluster centers are retrieved, 

and they correspond to where most of the pixels in the normal 

map image are pointing towards. This vector intersects with the 

imaginary hemisphere (RTI dome) around the image. That 

intersection point is recommended light position to acquire the 

next RTI image from. 

In order to test the algorithm, we used the synthetic dataset. 

The software used for the experimentation part are Blender, 

MSA Tool and Anaconda. 

Result and Discussion 
This section explains the experimentation and discussion of 

the results of our methodology. In order to test our methodology, 

we created two synthetic datasets. The following subsection 

explains the dataset and experimentation. 

Dataset and Experimentation 
We created a synthetic dataset to run the experiments. The 

3D models were obtained from Sketchfab (a popular platform for 

3D content sharing) under Creative Common Licence [21]. The 

3D model was then used in blender software to create a ground 

truth RTI dataset.  The toolbox used in the blender is SFF-RTI. 

For each object, these acquisitions were made to create a 

ground truth Multi Light Image Collection (MLIC) dataset. 

Figure 4 shows some of the images of these ground truth dataset. 

 

 

 

 

 

a) LP: 14 

 

 

 

 

b) LP: 174 

 

 

 

 

c) LP: 354 

 

 

 

 

d) LP: 499 

 

 

 

e) LP: 59 

 

 

 

f) LP: 224 

 

 

 

g) LP: 369 

 

 

 

h) LP: 499 

Figure 4. Four random images from ground truth MLIC. The upper 

one is the Sculpture dataset and the lower one is the Buddha dataset. LP 
stands for Light Position. 

The ground truth contains 500 homogeneously equally 

spaced acquisitions. Figure 6f shows the light positions in space 

that were used to acquire the images. We chose 500 no of images 

because the reconstruction error in the normal map reduces 

significantly as the number of images (MLIC) increases. Figure 

5 shows the structural similarity index of a normal map 

constructed with the ground truth normal map. We see that the 

normal map error reduces significantly after certain no of 

images. The normal map reconstruction converges and adding a 

greater number of images to MLIC does not improve the 

reconstruction. However, to be safer, and work with different 

datasets, we chose 500 image-dense acquisitions as a ground 

truth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to test our algorithm, we designed experiments. 

The experimental protocol is explained as follows: 

1. Take an acquisition from 45 to 60 degrees of 

elevation. 

2. Estimate the light positions from a single image 

as described in the methodology. 

3. Acquire the images from those estimated light 

positions. 

4. Acquire the same no of images with 

homogeneous equally spaced light positions. 

5. Estimate the normal map of both datasets 

(homogeneous equally spaced dataset and dataset 

created by our algorithm's recommended light 

directions) 

6. Calculate PSNR and SSIM of the reconstructed 

normal maps with ground truth normal map 

(created with Relightening algorithm used for 

dense 500 acquisitions) 

7. Compare our method with homogeneous equally 

spaced acquisition method. 

Result and Discussion 
After conducting the experiments as explained in the 

previous section, on the Buddha and sculpture datasets. The 

estimated light positions for acquiring the images are obtained.  

The images are acquired using these estimated light positions for 

creating Multi Light Image Collection (MLIC) for RTI.  The 

light positions obtained by our algorithm are compared with the 

uniformly spaced light positions by observing the normal maps 

reconstructed using respective MLIC’s. One such experiment is 

demonstrated in Figure 6. The normal maps were reconstructed 

using DMD algorithm and data used for them was the respective 

MLIC’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The normal map reconstruction converges after certain no of 

images in MLIC. This is performed on sculpture dataset. 
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a) Normal Map 

 

 

 

 

 

 

 

b) 19 Light positions estimated by 

our algorithm. 

 

 

 

 

 

 

 

c) Normal Map 

 

 

 

 

 

 

 

d) 19 Equally spaced Light 

positions  

 

 

 

 

 

 

 

e) Ground Truth Normal map 

 

 

 

 

 

 

 

f) 500 equally spaced light 

positions 

Figure 6. The right side sub-figures are light positions for the acquisition 

of MLIC. The MLIC data is acquired using these light positions. The left 

side sub-figures are corresponding reconstructed normal maps using 

respective MLIC’s. The DMD algorithm is used for Normal map 

reconstruction.  

We did several experiments asking our algorithm to 

estimate light positions. The algorithm was tested for light 

positions ranging from 3 to 100. We found that for lower no of 

MLIC, our algorithm performed better than the homogenous 

equally spaced acquisition MLIC. The Figure 7 demonstrates 

this result for low no light positions. 

We believe that our algorithm performed better than 

homogenous equally spaced acquisition algorithm for low 

number of light positions (MLIC) because our algorithm was 

estimating light positions on the upper half of the dome mostly 

with elevation between 30 to 90 degrees since most of the surface 

normal point towards that direction. However, Homogenous 

equally spaced algorithm is not surface adaptive, and it estimates 

light directions with maximum possible distance between any 

two light positions. This makes homogenous equally spaced 

algorithm likely to choose light positions with very less elevation 

(near 0 degree). The images acquired corresponding to these low 

elevated light positions tend to be mostly dark thus contributing 

very little to Relightening algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Normal map 

reconstructed by 3 

light positions 

estimated by our 

algorithm. 

 

 

 

 

 

 

 

b) Normal map 

reconstructed by 3 light 

positions estimated by our 

algorithm. 

 

 

 

 

 

 

 

c) Region of 

Interest 

 

 

 

 

 

 

 

d) Normal map 

reconstructed by 3 

Equally spaced light 

positions on Buddha 

Dataset 

 

 

 

 

 

 

 

e) Normal map 

reconstructed by 3 light 

Equally spaced light 

positions on Sculpture 

Dataset. 

 

 

 

 

 

 

 

f) Region of 

interest 

 

 

 

 

 

 

 

g) Ground truth 

normal map for 

Buddha 

 

 

 

 

 

 

 

h) Ground truth normal map 

for Scupture. 

 

 

 

 

 

 

 

i) Ground truth 

Region of 

interest 

Figure 7. This figure compares the results of our algorithm with 

homogenous equal spaced algorithm at a lower no estimated light 

positions. The normal maps are reconstructed using DMD algorithm. The 

images for MLIC are acquired using our estimated light positions and 

equally spaced light positions. Our algorithm predicts better light positions 

for normal map reconstruction and is demonstrated further with region of 

Interests subfiguress. 

 The Figure 8  and Figure 9 demonstrates the results for 

all the experiments we conducted on Buddha and Sculpture data 

respectively from light positions ranging from 3 to 100 with 

intervals. It can be seen in these results that homogenous equally 

spaced light positions are able to collect more information for 

more number of images in MLIC. We learn that after certain no 

of light positions it is difficult to optimize the light positions 

since homogenous equally spaced algorithm is optimal for 

capturing the most information unless the surface of object is 

very specular or has very specific reflectance profile. According 

to our results, we learn that it is only low number of light 

positions (MLICs) where light positions can be optimized to 

capture the most information within few images. 
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a) 

 

 

 

 

 

 

 

 

 

b) 

Figure 8. The a) SSIM and b) PSNR values are obtained by comparing 

the normal map reconstructed using our algorithm (orange) and 

homogenous equally spaced algorithm (blue) with the ground truth normal 

map. Our algorithm estimates better light positions for low no of images in 

MLIC but underperforms for high no of light positions. These results are 

for Buddha dataset. 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 

 

 

 

 

 

 

b) 

Figure 9. The a) PSNR and b) SSIM values are obtained by comparing 

the normal map reconstructed by our algorithm and homogenous 

acquisition with the ground truth normal map. These results are for 

Sculpture dataset. 

Conclusion 
The appearance of an object is a complex phenomenon that 

depends on multiple factors such as surface topography, 

transparency, gloss, color and etc. In this study, we attempted to 

use surface topography to estimate light positions. Our results 

indicate that our algorithm works better with only a low number 

of Multi Light Image Collections (MLICs) which might not be 

suitable for practical applications. As the number of images for 

MLICs increases, it becomes evident that only equally spaced 

light positions can gather more information unless there is a 

highly specular region. Furthermore, we observed that our 

algorithm tends to converge to equally spaced light positions 

when estimating higher numbers of light positions. It can be 

reflected in the SSIM graph. 

We challenged ourselves to find the best light positions by 

using only one image. One can get only limited information 

about the object with one image. The estimation of translucency, 

gloss, and other appearance phenomena are complicated to 

understand with only one image except for color. With modern 

deep-learning methods, monocular depth estimation can provide 

an estimation of surface topography, but it is still not robust and 

accurate. 

Although surface topography is important for material 

appearance, it is not enough to determine the optimal light 

positions for Reflectance Transformation Imaging. Based on our 

findings, we acknowledge that our initial hypothesis was only 

partially correct, and without putting in place specific 

restrictions, it is difficult to obtain the best light positions. 
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