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Abstract 

Reflectance Transformation Imaging (RTI) is a non-invasive 
technique that enables the analysis of materials. Recent 
advancements in this technology, along with the availability of 
software for surface analysis through relighting, have improved the 
restoration and conservation of cultural heritage objects. However, 
there is a lack of appropriate benchmark data and reference light 
configurations, which makes it difficult to quantitatively compare 
and evaluate RTI data acquisitions. To address this, we have 
developed a dataset that can be used to assess the effectiveness of 
different surface light configurations for RTI acquisition. 
Additionally, we introduce methods to derive an ideal reference 
light configuration for a surface from its dense RTI acquisition. This 
dataset provides a standardized set of dense RTI acquisitions, 
accompanied by their corresponding reference light configurations 
that were obtained using our methods. This dataset can help 
researchers and developers to compare the performance of their 
approaches in solving the "Next Best Light Position" problem in RTI 
acquisition, which can ultimately improve the accuracy and 
efficiency of RTI acquisition and broaden its applicability in various 
fields. 

Motivation 
RTI [1] [2] has emerged as a simple yet powerful tool for visual 
analysis and surface characterization particularly in the field of 
cultural heritage. It has been extensively researched in post-
acquisition steps such as modeling and visualization, leading to 
numerous advancements in these areas. However, the acquisition 
process itself has not been studied extensively, and there are no 
sophisticated methods available to ensure quality RTI acquisition 
that is adaptive to the object being captured. The best light positions 
for RTI will depend on the specific object or scene being imaged 
and the desired outcome. The light sources should be positioned to 
create a range of highlights and shadows on the object, allowing for 
the capture of a wide range of surface details. The accuracy of RTI 
heavily depends on the quality and number of images captured. The 
positioning and direction of the light sources play a significant role 
in the quality of the resulting images. However, finding the optimal 
light positions for RTI requires a considerable amount of expertise 
and trial-and-error experimentation. This reduces the efficiency of 
acquisition greatly.  To address this problem, we have created a 
benchmark dataset and evaluation for the best light positions in RTI 
[3]. 

Problem 

To investigate the impact of light position selections on the 
performance and quality of Reflectance Transformation Imaging 
(RTI), we conducted an evaluation of RTI data quality surfaces 
using different light configurations. We used brushed metal with a 
dent as a case study and performed very dense RTI acquisition (1000 
homogeneously distributed light positions) which were considered 
as ground truth. We then performed sparse acquisitions ith 
homogeneously distributed light positions incrementing from 40 
number of positions to 55, 80 and so on. We then created DMD 
model for each acquisition. We analyzed the degradation of RTI 
quality in these sparse acquisitions through comparison of the 
normal maps and reconstructed image from the dense DMD and 
each of the subsampled ones.  Figure. 1 shows the degradation in the 
quality of RTI with different light configurations. The top row 
displays the positions of lights projected on a 2D plane. The middle 
row displays the reconstructed images from the respective sparse 
acquisitions (relighted from an elevation of 45° and an azimuth of 
40°). The bottom row shows maps of the difference between the 
dihedral angles of ground truth normal and the normal obtained from 
corresponding sparse RTI acquisitions. It can be observed the light 
configuration does affect the quality of  RTI data. Hence finding the  

best light configuration for performing RTI acquisition is a open 

problem that requires to be solved.  

Our objectives in this work are twofold: 
1. Acquire RTI data of various objects and create a dataset.  
2. Introduce an approach to deduce reference ideal set of 

light directions for each surface from dense acquisition of 
them.  

The deduced reference acquisitions containing the ideal set of light 
directions should have the following characteristics: 

Figure 1 Degradation in the quality of RTI with different light 
configurations 
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1. The estimated best reference light directions must be a unique set 
of light positions and must have no or least number of redundant 
measurements in it. The acquisition must capture the luminance 
behavior of all points on the surface as close as possible to a dense 
acquisition, but with the fewest number of light directions. 

2.The gradients of the signals in a reference NBLP acquisition 
should be as uniform as possible, that is, the light position is densely 
distributed along the directions where the luminance of a surface 
point changes rapidly, and sparsely distributed along the directions 
where the luminance change is small.  

We built this benchmark dataset and evaluation framework with an 
aim to provide a standardized and objective approach for evaluating 
the performance of Next Best Light Position algorithms for RTI. 
This will facilitate the development of new algorithms and 
techniques that can automatically determine the optimal light 
positions for RTI, thereby making the process more efficient and 
accessible to a wider range of users. 

Approach 

Dataset creation: The NBLP-RTI dataset was created to evaluate 
NBLP methods for estimating the optimal light configuration for a 
surface under standard RTI imaging set-up, where the camera is 
fixed orthogonally to the surface. The dataset comprises high-
resolution images of a range of objects as shown in Figure. 3 
captured under a variety of lighting conditions. This dataset focuses 
on anisotropic, non-Lambertian, semi-glossy, non-Lambertian 
diffuse surfaces. There are some publicly available datasets for RTI 
and RTI-like techniques [4] [5] [6]. But none of them are suitable 
for evaluating methods for detecting ideal lighting directions. We 
therefore created a dataset of RTI acquisitions of virtual and real 
surfaces, accompanied by very dense RTI acquisitions and ground 
truth 3D data. For real surfaces, RTI acquisitions were made using 

a carefully calibrated mechanized RTI dome setup built in-house, 
and 3D shapes were acquired using a structured light scanner. This 
dataset contains 20 surfaces, as shown in Figure. 3. Surfaces 1 to 13 
are virtual surfaces created in Blender software using physically 
based rendering methods and surfaces 14 to 20 are real objects. The 
physical dimensions of the surfaces range from 2 cm to 4 cm wide 
and 3 mm thick. With regards to BRDF, the dataset covers 
anisotropic surfaces (brushed metals, 1 to 7), isotropic metallic 
surfaces (8,9), Lambertian surfaces with strong details and nearly 
homogenous specular lobes (11,12,13) and non-Lambertian diffuse 
surfaces with strong specular spikes (14 to 20). 

Creating a reference for an ideal acquisition by using information 
from a dense acquisition:  In our approach, we derive reference 
ideal light directions for the RTI acquisition of a surface from a very 
dense acquisition of the surface. This may seem like an indirect 
approach, but it is justified because there are no ground truths for 
RTI acquisitions. We present two approaches for deducing the 
reference light positions based on specific case scenarios: 

1. Ring acquisitions (azimuth only space): For characterizing the 
reflectance of a surface, the azimuth space is often more important 
than the elevation space. Many analysis techniques use ring 
acquisitions to create maps based on directional slopes and 
curvature. On the other hand the reflectance behavior of the surface 
in the elevation space can be interpolated using a second-order 
polynomial with just a few sample measurements.   

To efficiently capture the non-linear nature of reflectance in the 
azimuthal space, we introduce a method for finding  best azimuth 
angles for a surface from its dense RTI acquisitions.  The goal of 
the sampling strategy is to reduce a dense acquisition of surface 
reflectance signals to a sparse representation without losing much 
information. The dense acquisition comprises surface points 
illuminated from different directions in the azimuth space from 0° 
to 360° . Firstly the surface points are classified as diffuse, semi-
specular, or specular based on the maximum gradient observed in 
its reflectance signals. If the maximum gradient of any signal is 
greater than 10, the surface is considered to have some specular or 
semi-specular points. Otherwise, the surface is considered diffuse. 
To cluster the signals, we use the K-means temporal signal 
clustering technique proposed by [7]. For diffuse reflectance 
signals, we simply take 8 to 10 evenly spaced light positions as 
suitable for the RTI acquisition. For specular and semi-specular 
signals, we apply an approach as described below to identify their 
pertinent light directions. 
 
To achieve this, we traverse from 0° to 360° in the dense 
acquisition and sample a point if it satisfies any of the following 
three criteria: 
- The current sampling point is spaced higher than a threshold 

distance (arc length) to the previous sampled point. This 
criterion ensures that we sample points at regular intervals, 
rather than sampling points too close together. 

- The gradient of the signal at a point is higher than a threshold. 
This criterion ensures that we sample points where there is a 
significant change in the signal, as these points are likely to be 
more informative than points with little or no change. 

Figure 3 (NBLP-RTI dataset surfaces) 

Figure 2 (The reference NBLP points on each ring are shown 
together) 
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- The difference between the current signal value and the 
previously sampled signal value is higher than the threshold. 
This criterion ensures that we sample points where there is a 
significant change in the signal, even if the gradient at that point 
is not very high. 

 
For calculating the threshold, we use two different ways depending 
on the nature of reflectance. If the reflectance is specular in nature, 
we use half the highest gradient observed in the dense reflectance 
signal. If the reflectance is diffuse, we use twice the highest gradient 
value observed in the dense reflectance signal. This is done to 
maintain uniform gradient in the decimated reflectance signal. This 
strategy is illustrated in Figure. 4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mathematically, we can represent the decimation process as 
follows: 

 
Let S be the set of all points in the dense acquisition, and 𝑠 ∈  𝑆  
be an individual point. Let be the distance between points  𝑠 and𝑠, 
g(𝑠) be the gradient of the signal at point 𝑠. Let 𝑇ௗ be the threshold 
distance for sampling, 𝑇௩ be the threshold gradient  or difference in 
signal value for sampling. The set of sampled points 𝑆ᇱ can be 
defined as: 
 
𝑆ᇱ  =  {𝑠 ∈ 𝑆|𝑑(𝑠 , 𝑠ିଵ) > 𝑇ௗ⋁𝑔(𝑠) > 𝑇௩⋁|𝑣(𝑠)  −  𝑣(𝑠ିଵ)| > 𝑇௩} 
 

where, 𝑇௩  =  
ଵ

ଶ
𝑚𝑎𝑥(𝑔(𝑠)) if the reflectance is specular and 𝑇௩  =

 2 × 𝑚𝑎𝑥(𝑔(𝑠)) if the reflectance is semi specular. It is 
computationally challenging to sample all the signals (surface 
points) simultaneously. To make the process efficient, we First 
gather all the dense acquisition of surface reflectance signals and 
put them into a single matrix called the acquisition data matrix M. 
Then to perform the proposed sampling method efficiently, we use 
matrix column operations instead of looping through each signal 
and acquisition point individually. This allows us to apply the 
sampling method to all signals simultaneously, which is much 
faster and more efficient than processing each signal separately.   

2. Azimuth-Elevation space: 

Adding the elevation dimension to the problem greatly increases its 
complexity. While gradient-based sampling is an effective 
technique for analyzing 1D signal decimation, it becomes much 
more challenging when applied to azimuth-elevation data. This is 
because the non-continuous dense signal contains data that are not 
arranged in a regular grid. For performing gradient descent, 
computing partial derivatives along the x and y directions by 
regularizing the grid using any surface fitting methods for millions 
of signals would be computationally prohibitive. 

Decimating multiple signals simultaneously is challenging to 
preserve the characteristics of each signal while reducing their 
complexity. Our approach to solving this problem is to represent 
each signal as a 3D pointcloud and decimate these pointclouds. This 
approach has the advantage of allowing for more control over the 
decimation process, and it can result in more accurate and faithful 
representations of the original signals. 

Similar to our approach in the azimuth-only space, the surface points 
are first classified as diffuse, and specular. However, in azimuth-
elevation space, computing the signal gradients by comparing each 
signal point to its neighbours is computationally very expensive. 
Instead we identify the specular and semi specular signals by simply 
comparing the minimum and maximum values observed in a signal. 
If the difference between the max and min is lower than 20, we 
classify the signal as diffuse, if it is higher than 20 we classify it 
semi specular. This is an approximate classification a for the 
preliminary step of the decimation process. To optimize the light 
positions, we focus on specular surface points. These light positions 
optimized for the specular surface points are also expected to work 
well for diffuse points, as the reflectance of diffuse points is 
uniform. 

In our approach we create a pointcloud for each signal. To create a 
pointcloud for a signal, we create points in 3D space by combining 
the x and y coordinates of the light positions with the normalized 
signal values as z coordinates. We then decimate the pointclouds 
using the Quadric Error Metrics (QEM) decimation approach [7]  
[8]. This method works by iteratively removing points from the 
point cloud, starting with the point that has the smallest quadric error 
when removed till we reach a desired size of the pointcloud. The 
desired size of the pointcloud corresponds to the desired number of 
light positions for the acquisition and it can be set to any value 

Specular 

Semi specular 

Figure 4 Examples of reflectance signals 
measured of two different points belonging to the 
same surface. 
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depending on the requirement. For PTM, DMD, any number of 
points > 50 is generally considered reasonable size of an acquisition. 

To compute the quadric error for a given point in the point cloud, a 
quadric matrix is first constructed to represent the local geometry of 
the points in the neighborhood of that point. The quadric matrix is 
constructed using a least squares fit to the points in the 
neighborhood of the point being considered for removal. This fit is 
used to estimate the local geometry of the points, and the resulting 
quadric matrix is used to evaluate the error introduced by removing 
the point. The quadric error for a point is given by the following 
equation: 

𝐸 =  (𝑥 − 𝑥ො)்𝑄(𝑥 − 𝑥) 

where x is the original position of the point, 𝑥ො is the position of the 
point after it has been removed, and Q is the quadric matrix as shown 
in Figure 5.  

The quadric matrix is given by the equation: 

𝑄  =  (𝑥  −  �̅�)(𝑥  −  �̅�)்



ୀଵ

 

where 𝑥 are the positions of the points in the neighborhood of the 
point being considered for removal, and �̅� is the centroid of these 
points. The QEM decimation algorithm proceeds by iteratively 
removing the point with the smallest quadric error from the point 
cloud until the desired number of points is reached. This ensures 
that the points removed are the ones that introduce the least amount 
of error, and thus the shape of the point cloud is preserved as much 
as possible. 

Calculating the quadric error for each point in a signal can be 
computationally expensive, especially when dealing with a large 
number of such signals. The quadric error minimization (QEM) 
decimation algorithm has a time complexity of 𝑂(𝑛ଶ) where n is 
the number of points in the point cloud. This is because the quadric 
error for each point must be computed individually. However, we 
can use a matrix kernel to compute the quadric error for all points 
simultaneously, reducing the time complexity to 𝑂(𝑛). To do this, 
we first compute the quadric matrix for each point using the points 
in its neighborhood. Then, we subtract the centroid of each 
neighborhood from each point in that neighborhood to obtain a set 
of centered points. 

Finally, we compute the quadric error for all points simultaneously 
by taking the dot product of the centered points with the quadric 
matrix and the transpose of the centered points. This operation is 
available in standard programming libraries. Using a matrix kernel 

to compute the quadric error allows us to significantly improve the 
performance of the QEM decimation algorithm. This makes it 
possible to decimate large number of sigmals more efficiently, and 
thus can be applied to derive reference best light positions in the 
azimuth-elevation space. 

Results 

We present the results for selected surfaces representing the general 
behavior of each surface category  

Azimuth only space: 

Light positions : Figure 6 depicts the reference best light positions 
obtained using the proposed method for the brushed metal plate 
(Surface 1), the brushed metal plate with a dent defect (Surface 2), 
the canvas painting (Surface 13), and the antique coin 1 (surface 14).  
Surfaces 1, 2, 13 are virtual surfaces and surface 14 is a real surface. 
It can be observed that the proposed method is able to adaptively 
derive the reference best light positions to the surface.  

Since surface 13 is a perfectly diffuse surface, the number of 
reference best light positions is small and nearly evenly distributed 
along the rings. For anisotropic surface 1, the method correctly 
identifies the direction exhibiting anisotropy and samples more 
points along that direction than other directions to preserve gradient 
uniformity. Surface 3, Surface 14 contain details showing specular 
reflections of many random surface points, so the distribution of 
reference light positions is numerically larger. 

Figure 6Quadric error of a point being removed 

Figure 5 The reference ideal points on each ring are shown 
together, showing the overall distribution of surface light 
positions 
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Reflectance signal gradients: The proposed method can achieve the 
goal of maintaining the gradient uniformity of the reflected signal. 
Figure. 7 compares the gradient at a single surface point (here we 
have chosen the pixel showing the largest gradient) in the reference 
best light positions acquisition versus the dense acquisition. 

Azimuth-elevation space:  

 Light positions: Figure. 8 shows the reference best light positions 
obtained using the proposed method for azimuthal-elevation space 
for the four surfaces.   

 In this example, the minimum number of light positions is set to 50 
for all surfaces. The method adaptively generates a set of light 
positions that are most effective at capturing the reflectance of the 
surface. For the perfectly diffuse surface 13, the number of reference 
light positions is equal to the minimum number set and is evenly 
distributed along rings. For the anisotropic surface 1, the specular 
reflections are regular and symmetric, so most specular points have 

similar directions. Surface 3, which has details around a dent and a 
brush feature, has many more specular directions, and the method 
successfully identifies and samples them. Surface 14 has details with 
specular reflections at many random surface points, so the 
distribution of reference light positions is concentrated in random 
regions and evenly spread in most other regions. 

In contrast to ring acquisitions (which only have azimuth space), 
azimuth-elevation space acquisitions have both strong linear 
(elevation) and strong non-linear (azimuth) behavior. Therefore, 
using dispersion of gradients as a measure of performance is not 
appropriate for this case. Instead, we compare the reconstruction 
errors between the best light positions derived using our method, 
dense light positions, and sparsely homogeneous light positions. To 
illustrate the impact of the choice of light position on RTI modeling, 
we perform a statistical analysis of the reconstruction errors. For 
that, we consider the following four acquisitions. 

1. Uniformly distributed dense acquisition (1000 unique directions) 

2. Uniformly distributed sparse acquisition (100 unique directions) 

3. Reference best light positions acquisition (number of unique 
directions adaptive to the surfaces. 

4. Test acquisition containing 500 random light positions.  

Our approach to the statistical analysis of reconstruction errors is 
illustrated in Figure.9. We perform DMD and PTM RTI modeling 
on acquisitions with uniform distribution of dense light positions, 
uniform distribution of sparse light positions, and reference best 
light positions acquisitions. We then use the fitted model to relight 
the surface from the test acquisition light positions. The relighted 
images are compared to the corresponding actual captured images 
in the test acquisition by calculating the absolute point to point 
differences. The comparison gives the errors in the surface points 
reflection reconstruction. We estimate the probability density 
function and cumulative distribution function [9] of the measured 
errors in both DMD and PTM relighted images. 

Figure 7Comparison of reflectance signal gradients from 
dense and reference best light position acquisition of surfaces 

Figure 8  Best light positions obtained for the 
surfaces from the respective dense acquisition 

Figure 9 Acquisitions carried out to compute the 
reconstruction error statistics 
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Figure. 10  shows the PDF and CDF plots of the reconstruction 
errors of the surfaces.  

Conclusion 

In this paper, we present a benchmark dataset containing dense 
acquisitions and reference ideal acquisitions with best light positions 
derived using a proposed novel method for both azimuth-only space 
acquisitions and azimuth elevation space acquisitions. Our results 
showed that the proposed method was able to effectively generate a 

set of best light positions that improves the reconstruction of 
reflectance maps in both acquisition spaces. The contributions of our 
work include the development of novel methods for generating 
reference best light positions from dense acquisition and the creation 
of a benchmark dataset that can be used to evaluate the performance 
of different NBLP strategies. 
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