

An Evaluation of Motion JPEG 2000 for
Video Archiving

Glenn Pearson and Michael Gill
Lister Hill National Center for Biomedical Communications

National Library of Medicine, NIH/HHS, Bethesda, Maryland, USA

Abstract

Motion JPEG 2000 (MJ2) is one potential format for long-
term video preservation. The format is attractive as an open
standard with a truly lossless compression mode.

Currently, three software-only MJ2 implementations are
readily available, from the Open JPEG 2000 project, from
the Kakadu project, and (incorporating Kakadu) from vendor
Morgan Multimedia. These are given a snapshot evaluation
here. Among the findings: on a modern desktop machine, the
Kakadu-based implementations can decode and deliver
quarter-screen or smaller lossless-MJ2-encoded videos
without frame drops. The newer Open JPEG 2000, while
improving, is not yet competitive. All the implementations
have practical limitations on acceptable input formats, and
inadequate or missing audio support.

At higher image resolutions, playback without frame
drops or reversion to lossy mode currently suggests
hardware-based implementations. A practical impediment is
limited availability of off-the-shelf board-level products.

Competing candidate file formats for video-editing,
archiving, and delivery currently offer better-defined storage
of metadata. Some formats, such as MPEG4/AVC, achieve
better compression at the expense of some lossiness.

Introduction

Archiving Losslessly
Video archivists are keenly interested in techniques for

long-term digital preservation on disk. In particular, consider
the common case where the source material is not in digital
form, but instead on film (to be scanned) or high-quality
analog videotape (e.g., BetaCam SP). There is then a choice
of destination digital format. A standardized format that
reduces the storage costs of uncompressed video, but
remains lossless, is attractive for preservation.

Motion JPEG 2000 for Video Archiving
Motion JPEG 2000 (MJ2), a video stream and file

format, was standardized in 2002 as part of ISO/IEC’s JPEG
2000 (JP2) standard,1-4 with subsequent refinements. This
standard has been promoted by digital still camera
manufacturers for its unified treatment of still and video
compression. For stills, it is clearly of superior quality to its

predecessor, JPEG, at any given compression.5 MJ2 applies
JP2 compression to each frame independently.

MJ2 is potentially attractive to video archivists not only
because it is an open, international standard, but because it
has a reversible, mathematically-lossless mode, not just the
“virtually lossless” mode of certain other codecs.

These are early days for MJ2 implementations. Effort
has concentrated on the MJ2 “Simple Profile”, which has:
• a single video track, up to 30 frames/second (fps);
• an optional uncompressed mono/stereo audio track,

interleaved with video;
• an optional still image;
• no references to media outside the file (i.e., self-

contained);
• media data in temporal order.

Choosing MJ2 Encoder Settings for Archiving
When encoding, a number of parameters must be

specified. The size, frame rate, and color encoding simply
reflect the source material or encoder limitations. Other
parameters are more open:

Number of Levels
The number of transform levels is one less than the

number of resolutions in the hierarchy of wavelet
decomposition. Table 1 shows suggested levels for various
decoder “compliance points”. Table 2 presents a proposed
refinement by the Digital Cinema Initiative (DCI) to the JP2
codestream, which could be considered an extension and
specialization of lossy MJ2. As we shall see, more levels
give asymptotically better compression (and presumably
scalability), but take longer to process.

Number and Type of Layers
A “layer” is a quality level, typically expressed at encode

time by a quality value or a compression rate. The highest
level specified for a file (lossless in our case) impacts the
filesize: it determines the bits per pixel stored and thus the
maximum quality decodable. Providing a lossless layer
implies use of the reversible integer 5/3 transform.1

Additional layers of lesser quality, necessarily lossy, can
be requested at encode time. Each such layer can be thought
of as gathering up resources from several appropriate
adjacent levels to express the bits per pixel needed for the

Archiving 2005 Final Program and Proceedings 237

stated quality. In practice, these layers act as hints to a
decoder during real-time playback of where to stop as
decoding time runs out for each frame, as an alternative to
frame drops. For our evaluation here, we start from the
posture that, for archiving, frame drops can be tolerated and
the single lossless layer is enough, but revisit the issue later.

Table 1. Aspects of Suggested Compliance Points
(“Cpoints”) for MJ2 Decoders.6 A Cpoint-3 decoder is the
most capable and ideally best performing. “Levels” is the
minimum number of transform levels a compliant decoder
will guarantee to process, so one might consider this a
maximum when encoding. “Depth” is per color-space
component, of which 3 is typical. Not shown: the limit for
“Layers” at all compliance points is 15.

 Quarter
Screen

Std.
Video

HD
Video

Digital
Cinema

“Cpoint-…” 0 1 2 3
Height up to 288 pix. 576 1080 3112
Width up to 360 pix. 720 1920 4096
Depth up to 8 bits 12 12 16
Levels 3 4 5 5

Table 2. DCI Digital Cinema Distribution Master
(DCDM) Requirements.7 This differentiates digital cinema
into “2K” and “4K” profiles and their projector decoders.
There’s a single tile and single layer. The 4K code stream is
specially structured, so that a 2K decoder easily gets a 2K
image. A gamma-corrected CIE XYZ color space is used.

 DCDM 2K DCDM 4K
Frame rate 24 fps (or 48) 24 fps
Height up to 1080 pixels 2160
Width up to 2048 pixels 4096
Depth, Color 12 bits, X’Y’Z’ 12, X’Y’Z’
Max. Levels 5 6

Number of Tiles
Images can be subdivided into tiles to ease transient

memory loading. Tiling accommodates extremely large
images, or handheld devices with minimal memory. A single
tile seems fine for our application here.

Evaluation of Available Software-Only Motion
JPEG 2000 Implementations

To date, we have looked at the three most-available software-
only MJ2 implementations, and associated tools:

Kakadu8
David Taubman’s JP2 implementation provides free

executables (that we restrict ourselves to here) and licensable
source code; a non-commercial license costs a few hundred

dollars. MJ2 offerings are command-line functions
kdu_v_compress and kdu_v_expand. Conversion is from or
to a “vix” file: a Kakadu-specific text header with raw file
appended; additional parameters are passed on the command
line. YCbCr (colloquially known as YUV) and RGB planar
raw formats are supported, with or without chroma
subsampling. The still image viewer kdu_show does not
support video, but a desire in that direction has been
expressed.

Morgan Multimedia’s Codec (MM)9
This French company sells an inexpensive, proprietary

codec for MJ2 encode/decode on the Windows platform.
Built around Kakadu, but sped up and enhanced, it takes the
usual form of DirectShow and Video for Windows “filters”.
As a DirectX-compliant codec, it permits playback with, e.g.,
Windows Media Player, of native or AVI-wrapped MJ2 files.
A property-page GUI, invocable from the taskbar or from
within compliant video editors, allows user adjustments of
parameters. The typical result of an editor invoking MM
compression is an AVI-wrapped MJ2 file - a file with .avi
extension and internal “fourcc” code (i.e., subtype) of
“MJ2C”; in which a MJ2 bytestream follows an AVI header.
The encoder accepts 4:4:4 formats RGB32, RGB24,
RGB555, RGB565, and chroma subsampled YUY2, UYVY,
YV12, and IYUV (aka I420).10 The last two are planar.

Open JPEG 2000 (OJ2)11
From the Communications and Remote Sensing Lab,

Université Catholique de Louvain, Belgium, OJ2 provides
open-source C-language implementations of JP2 and MJ2 for
Linux and Windows. The MJ2 offering consists of two
command-line conversion programs, “frames_to_mj2” and
“mj2_to_frames”, that convert respectively from and to raw
YUV files, the only supported video format. (Additional
utilities work with sequences of JP2 image files.) As with
Kakadu, the compressor boasts a large set of command line
options, most related to per-frame JP2 settings. We worked
with the distributed binaries, plus a build with VC7/XP.

The Analysis
A brief quantitative analysis is made of each

implementation’s encode and decode performance, as well as
degree of compression, and the effect of the number of levels
on each of these. In addition, a qualitative look is taken at
implementation shortfalls (e.g., audio, metadata), and
interoperability.

Each analysis starts with a short headerless YUV video
file. For convenience we began with a CIF12-sized file (288h
x 352w), “Foreman”,13 a deinterlaced, 300 frame long, 30
fps, 4:2:0 subsampled clip often used in video evaluations.
We also report early results with a 480h x 720w but
otherwise technically similar clip, “Claps”, a sequence of
head and shoulder shots of individuals clapping. This was
recorded at NLM on a 3 CCD miniDV camera, edited in
Adobe Premier Pro 1.5, output as uncompressed AVI, then
passed though the “avitoyuv” conversion utility. YUV file

238 Society for Imaging Science and Technology

viewing (and repackaging of Foreman as an AVI file for MM
testing) was done with the “Emily”14 viewer.

Findings

All performance times were measured (n=1) on a single-CPU
3.19 GHz Pentium 4 Dell OptiPlex GX 270, with 512MB
RAM and 1 GB pagesize, running Windows 2000 Pro.
Default software parameters were used except as mentioned.

Performance
 “Overall” times for OJ2 0.96 and Kakadu 4.3.2 derive

from externally-measured process times, divided by total
frames. Other times are based on reports by internal timers.

As its crisp performance indicates (Chart 1), Kakadu has
been speed-optimized. Reported transform tuning for
specific processors and instruction sets include Pentium/
MMX, PowerPC/Altivec, and UltraSparc/VIS. The quarter-
screen decode times are well below 33.3 ms/frame needed
for 30 fps video without loss.

0

5

10

15

20

25

30

35

1 2 3 4 5 6
Number of Levels

A
vg

.
T

im
e,

 m
il

li
se

c.
 p

er
 f

ra
m

e

Encode - overall

Encode - processing

Decode - overall

Decode - processing

Chart 1. Kakadu Speed for Foreman Clip. “Processing” times for
encode exclude input file reads, and for decode exclude output file
writes. The latter were measured separately (not shown) and
essentially account for the difference from Overall shown.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

Number of Levels

A
vg

.
T

im
e,

 m
il

li
se

co
n

d
s

p
er

 f
ra

m
e

Encode - overall
Decode -overall
Encode - processing
Decode - processing

Chart 2. OJ2 Speed for Foreman. “Processing” times exclude file
I/O. Shown here are tests with v 0.96 Windows binaries as
distributed. (Source code was also compiled under VC7 and run.)

OJ2’s code is recently produced, and clearly has not yet

been tuned much for performance (Chart 2), although it is
roughly 75% faster than the previous 0.95 release.

Next, we applied Kakadu to Claps, with 3.41 times the
pixels of Foreman. A decode performance of around 73-79
ms/frame is what would be expected from proportionality.
It’s slightly better than that (Chart 3), perhaps because Claps
compresses better. The performance is independent of level,
except for a hint of a very shallow “U” relationship. The
larger file size causes file I/O to consume a larger fraction of
overall time, particularly for encoding.

0

20

40

60

80

100

120

1 2 3 4 5 6
Number of Levels

A
vg

.
T

im
e,

 m
il

li
se

c.
 p

er
 f

ra
m

e
Encode - overall
Encode - processing
Decode - overall
Decode - processing

Chart 3. Kakadu Speed for Claps Clip. .

The performance of MM was assessed informally.

Unlike Kakadu and OJ2, MM has a real-time requirement,
including encoding within a video capture chain. To test
encoding generally, Foreman was exported from Emily as an
uncompressed RGB AVI file. A chain of A/V filters was
built in GraphEdit15 to read the file, split off any audio,
convert the color space, then apply MM’s encoding and file
output. With 3 MJ2 levels, this process at full-speed
(clockless) took about 9 ¼ s., as seen in a record of CPU and
disk utilization captured with Windows PerfMon. (Future
MM/GraphEdit tests might instead rely on an achieved-
frame-rate field in the filters’ property sheet.) This is roughly
31 ms per frame, consistent with Kakadu’s performance of
29 ms in Chart 1. (The vendor claims that highly-compressed
lossy operations, particularly encoding, are now tuned to be
much faster than Kakadu or prior MM.). As for real-time
decoding, if necessary MM (given no quick-lossy-layer
alternative) drops frames. MM can’t report drops, but
subjectively, Foreman didn’t show them. With Claps-size
videos, Kakadu’s 58 ms/frame in Chart 3, versus 33

Archiving 2005 Final Program and Proceedings 239

ms/frame at 30 fps playback, implies dropping at least every
other frame.

Degree of Compression
For a CIF-sized file (Chart 4), there are no compression

benefits beyond 3 levels, and 2 is also acceptable for slightly
faster decode time. Similarly, for a full-screen video, there
are no benefits beyond 4 levels, and 3 are also good.
Generalizing, one can recommend the number of levels given
in Tables 1 and 2, or one less.

Kakadu creates smaller MJ2 files than OJ2. Specu-
latively, differences in default settings, amount of metadata
stored, or spaced reserved before need is determined, might
be contributing factors.

Number of layers has minimal effect on filesize. A
separate OJ2 Foreman test where a half-dozen layers
(including lossless) were encoded increased filesize 0.09%
(with 3-level) and 0.15% (with 6-level) above 1-layer size.

Beyond these specific results, broad, uniform swatches
of color compress much better than busy detail. Furthermore,
as discussed later, spurious “detail” can be introduced by
noise, film grain, or rapid interlaced motion.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6
Number of Levels

F
ra

ct
io

n
 (

1.
0

=
 u

n
co

m
p

re
ss

ed
) OJ2 - Foreman

Kakadu - Foreman

Kakadu - Claps

Chart 4. Kakadu and OJ2 Compression.

Other Limitations
The most troubling aspect was with audio. OJ2, oriented

towards video research, has no native-within-MJ2 audio
support. There is no evidence that Kakadu has, either, in
spite of sufficient decode performance to make real-time
playback plausible. Kakadu presumably supposes that some
wrapper will be supplied if audio is desired. With MM, that
wrapper is AVI. An AVI file can enclose audio (raw or
compressed) and video streams independently, either abutted
or interleaved or both, but synchronization can be an issue.
MM is also said to support Simple Profile raw audio in
native MJ2 files. We hope to probe this further, using Claps
and digital samples captured from NLM’s biomedical
collection on BetaCam SP and older forms of analog tape.

Another problem to be alert for is a filesize limit. If a
program loads its input file entirely into virtual memory at
the outset (as OJ2 did prior to v 0.96), this typically prohibits
a file greater than 2 GB, under current desktop Windows.

Certain such filesize limits can sometimes be circumvented
with a third-party “frame server”, or by dealing with
sequences of image files (a new OJ2 option).

The archivist, when digitizing video, should be aware of
what raw input formats these three MJ2 implementations
accept. While Kakadu accepts RGB and YUV color spaces,
OJ2 is limited to YUV, and neither handles non-planar, per-
pixel “packed” formats. MM takes in certain planar and
packed formats, within an AVI container. All three products
read and write encoded MJ2 files, but only MM does AVI.

Finally, a word about support. These offerings are
academic or small-business products, backed by a small
number of individuals. Kakadu and OJ2 both provide well-
organized, substantial free documentation. Kakadu offers
additional reference material with a paid license, and has the
most active developers’ forum. MM has a complex product
line of similarly-named codecs (MJ2, JP2, Motion JPEG,
LSI-MJPEG), with little specific information about MJ2.

Interoperability
Ideally, a file encoded to MJ2 with one of these products

is decodable in another. Furthermore, a Windows codec like
MM should allow playback in a media player, and encoding
within a video editor (often an important component of
digitalization workflow). We mention here some problems
detected.

When we first attempted direct OJ2 file playback using
Morgan codec version 1.40, a significant “fog” effect was
seen (Figure 1). Version 2.00 of November, 2004, with
further performance tuning, no longer exhibits this flaw.
However, the first frame of the video is sometimes inverted,
possibly due to a Microsoft player refresh bug.

Figure 1. Interoperability Problems Being Overcome. Foreman as
he should appear (left) and did appear (right) until recent fix.

As for encoding AVI files with MM, while successful

using GraphEdit, it was not using Adobe Premier Pro 1.5:
MM surprisingly did not appear among other DirectShow
codecs for movie exports. The vendor posits a color
subsampling mismatch, and is actively addressing the issue.

Further Discussion

Playback Performance and the Role of Layers
Computer technology continues to advance, as

traditionally expressed by Moore’s law. Within a decade, this

240 Society for Imaging Science and Technology

advance, even without further speedups to best-of-breed MJ2
implementations, is likely to allow real-time full-screen
lossless MJ2 decoding without frame dropping on typical
desktop machines. In the meantime, where the chief goal of
encoding is not delivery, but rather long-term archiving,
performance is a secondary concern, and frame-dropping
during playback may be tolerable.

However, adding lossy quality layers can permit a
smoother, more attractive playback with current-generation
equipment. As indicated by results above, the filesize penalty
for this is trivial. We hope to look further into what are the
optimal number and spacing of such layers, given some
projected distribution of playback environments. Note that
low-quality levels, motivated by narrow bandwidth channels,
are likely not of interest (unless an extractive server like Blitz
described next is used.) This is because it makes little sense
to transmit a large lossless file of which only a small fraction
is used. Instead, one should separately encode and transmit a
highly compressed file (not necessarily MJ2).

Alternative Hardware Approaches
At higher resolutions that digital TV, problems due to a

lengthy decoding time might be solved by a hardware-based
MJ2 system. For example, theater-based digital cinema16 can
have specialized hardware. Another example is an MJ2-
server, such as the Sony “Blitz” system17 recently shown at
NLM, that streams media to remote clients, accommodating
their bandwidth and processing limitations.

Behind any hardware solution is a JP2 chip, a number of
which are available for volume incorporation into cameras.
Not all hardware systems claim the throughput needed for
real-time TV-resolution MJ2 video. Two that do are
DSPWorx’s chip pair, “Cheetah” and “Leopard”,18 and
Amphion’s circuit designs for “functional cores” within a
system-on-chip, specifically a “CS6510” JP2 core paired
with an on-chip embedded processor.19

There is a paucity of off-the-shelf JP2/MJ2 PC boards.
Analog Devices has evaluation boards (ADV202-SD, -HD)
for its JP2 chip derived from Kakadu, but these are limited to
“quantity one”.20 Consequently, ambitious creators of high-
level systems, like SAMMA,21 have had to prototype their
own boards. The OJ2 project is moving towards letting its
MJ2 software “wrapper” work with JP2 chips.

Retaining Metadata
Archivists seek to preserve a video’s metadata. This may

be video stream data such as 608/708B closed captioning.22
Or it may be user-defined metadata. Video-editing file
formats (e.g., OMF, GXF, MXF, AAF)23 provide places
within the file for user-defined metadata. The MJ2 standard
also allows emplacing metadata. It provides great flexibility
in such placement, but little guidance as to what to include
and where. Further definitional work is needed at the
standards level, for metadata interoperability among MJ2
implementations as well as metadata transfer to and from
other file formats. Meanwhile, storing metadata such as
captions outside the MJ2 file would seem prudent.

For JP2 digital still cameras, the situation is better: a
recent ANSI standard24 defines required and optional
metadata about the camera, capture time and settings, image
statistics, and GPS location. Text annotations (plausibly
added with editing software) and audio are also supported.

Compression Improvement
For interlaced video, the MJ2 standard defines a choice

of per-frame or per-field encoding. Per-field compresses
better during rapid movement; otherwise per-frame is
preferable. The per-field choice is beginning to appear in
products, e.g., Morgan v 2.00. This early support applies that
choice to the whole movie. Perhaps a smart encoder will
evolve to make the best choice for each frame – a feature
MPEG4/Advanced Video Codec (AVC)25 offers as “Picture-
adaptive frame/field coding” (PAFF). With ITU-R 601 video
clips, PAFF compressed 15-20% better than AVC’s per-
frame-only mode.26 (AVC has further fine-tuning for
interleaving beyond MJ2, with slightly different compression
algorithms for fields and frames. And a fourth option,
MBAFF, picks the best choice of frame or field coding
within fixed rectangles of each frame,27 to be ~15% better
than PAFF.26)

As mentioned, MJ2 can be mathematically lossless,
avoiding any generational loss, unlike the “virtually lossless”
modes of codecs like AVC. (In fairness, AVC does allow
individual macroblocks to be passed unaltered and
uncompressed, though this is not greatly desirable.
Moreover, new AVC extensions include a “H444P” profile,
only for unsubsampled 4:4:4 video. It has a lossless mode
that skips the transform, but retains prediction and entropy
coding. The result is said to be “fairly efficient” overall,
combining “not the best” intraframe compression with the
advantages of interframe prediction.28)

Lossless MJ2 gives less compression than AVC’s
virtually-lossless quality level.29 Much of this difference
(beyond the lossiness itself) is likely due to AVC’s
interframe comparisons. To date, there has been an effort
towards “product differentiation” between the work of the
two ISO/IEC JTC 1/SC29 subcommittees, WG1’s JP2/MJ2
and WG11’s MPEG4, by restraining MJ2 to intraframe-only
encoding. Perhaps this restraint should be lifted. While
interframing is certainly harder to implement in cameras,
editors, and players, it yields the long-term benefits of more
efficient compression.

It is instructive to consider lossy AVC with and without
interframing. One study30 found that interframing generally
achieved higher compression at a given quality level, except
when the source was a high-resolution film scan (e.g., 4K
horizontal, 35mm film); the film grain suppressed any
interframing benefit. The benefit would emerge if the images
were preprocessed to a much lower resolution by pixel-
averaging. It seems likely that these findings would apply to
lossless MJ2 with interframing. (The same study, comparing
lossy MJ2 and I-frame-only AVC, found them similar when
lightly compressed, with AVC-I sometimes having a slight
edge.) Other experiments31 with JP2-like wavelet codecs
with interframing saw similar results.

Archiving 2005 Final Program and Proceedings 241

More quantitatively, Imaizumi et al32 built an
experimental JP2-based software framework for lossless
interframe comparisons, using JP2 to compress the
difference frames (between actual and predicted image), and
supplemented with motion-estimation vectors. Best settings
delivered a 10-12.5% filesize reduction on 720 x 576 clips.

Conclusion

Lossless MJ2 has promise as an archival format, but more
time is needed for implementations, such as those evaluated
here, to be fully practical and convenient. Kakadu and MM
have achieved real-time performance. Will archiving of
analog video develop as a third application area for MJ2,
beyond still camera video capture and digital cinema
distribution? It may well, although there is a counter-current
of activity from modern MPEG formats, which, while lossy,
are high-quality. A lossless format in effect pays a cost in
disk space, to avoid the labor costs of a Hollywood-style
compressionist (with high-end software) to optimize a lossy
format. This can be a reasonable trade off for a library.

Acknowledgements

Within NLM, Karen Steely, Leif Neve, Nancy Dosch, Jim
Main, and Mike Detweiler helped with video material and
processing. We appreciate correspondents at vendor sites,
particularly OJ2’s François-Olivier Devaux and MM’s
Guillaume de Bailliencourt. Thanks as well to Branch Chief
George Thoma and others for their comments and support.

References

1. ISO/IEC Intl. Std. 15444, Information technology – JPEG
2000 image coding system, particularly Part 3: Motion JPEG
2000 (Sept. 2002, with subsequent amendments).

2. Michael D. Adams, The JPEG-2000 Still Image Compression
Standard, N2412, ISO/IEC JTC 1/SC 29/WG 1. (Dec. 2002).

3. Jin Li, Image Compression: The Mathematics of JPEG 2000,
Modern Signal Processing 46, pp. 185-221. (2003).

4. David Taubman, Michael Marcellin, JPEG2000: Std. for
Interac. Imaging, Proc IEEE 90 (8), pp. 1336-57. (Aug 2002).

5. Diego Santa-Cruz, Touradj Ebrahimi, A Study of JPEG 2000
Still Image Coding versus Other Standards, Proc. X Euro.
Signal Proc. Conf., Tampere, Finland, pp. 673+. (Sept. 5-8,
2000). http://jj2000.epfl.ch/jj_publications/papers/004.pdf

6. Part 3 draft Amendment 3, Definition of compliance classes
and testing for Motion JPEG 2000. (Nov 2002).
www.jpeg.org/public/15444-3fpdam3.doc .

7. ISO/IEC JTC1 SC29, Proposed draft amend. 1 to 15444-1:
Profiles for Digital Cinema Applications, WG1 N3471. (Nov.
2004).www.itscj.ipsj.or .jp/sc29/open/29view/29n6379t.doc .

8. David Taubman/Univ. of New South Wale’s Kakadu
commericial C++ implementation of JP2000 Part 1;
www.kakadusoftware.com. Copyright Unisearch Ltd.

9. Morgan Multimedia, Montpellier, France. www.morgan-
multimedia.com. Some specs, personal communication.

10. See www.fourcc.org for AVI fourcc format descriptions.

11. The Open JPEG Project, U. Catholique de Louvain, Belgium,
www.tele.ucl.ac.be/ PROJECTS/OPENJPEG.

12. “Common Intermediate Format”, a ¼-screen NTSC- and PAL-
friendly format from ITU H.261 videoconferencing std.

13. Short quarter-screen YUV video files were from http://
meru.cecs.missouri.edu/free_download/videos/

14. Nick Young, Emily 2004 YUV Viewer, http://dmsun4.bath.
ac.uk/resource/emily/emily.htm.

15. GraphEdit is distributed with Microsoft’s DirectX SDK. Also
useful: the GSpot AVI diagnostic (gspot@headbands.com).

16. Eric Edwards, Siegfried Foessel, JPEG 2000 for Dig. Cinema
Appls. (Apr, 2001). www.jpeg.org/public/ DCINEMA-v2.pdf

17. Eisaburo Itakura, Hiryasu Furuse, Akifumi Mishima, Eric
Edwards, A Single Source SNR/Resolution Scalable Video
Delivery Sys., IS&T 2004 Archiving Conf., pg. 259. (2004).

18. DSPWorx, Cheetah chip, www.dspworx.com/cheetah.htm;
www.dspworx.com/downloads/dsw2000s_pb. pdf.

19. Amphion, press release about JP2000 and other cores:
www.amphion.com/news/news-100902.htm. See also:
www.edtneurope.com/story/tech/ OEG20020717S0005-R.

20. Analog Devices, Inc., chip: www.analog.com/en/prod/0,
2877,ADV202,00.html. See also ADV202 evaluation boards.

21. System for Automated Migration of Media Archives
(SAMMA), Media Matters, Inc., www.media-matters.net.

22. Caption stds. include EIA-608 (NTSC) & -708B (DTVCC).
See Delivering Captions in DTV. (Oct. 2002). www.
broadcastpapers.com/data/NCAMDTVCaptions-print.htm

23. OMF (Avid) and GXF (Grass Valley Group) are vendor-
invented interchange formats. Vendor-neutral standards are
MXF (MPEG-Pro, SMPTE) and AAF (AAF Assoc.).

24. ANSI/13A IT10.2000-2004, Digital Still Cameras – JPEG
2000 DSC Profile.

25. Gary J. Sullivan, Pankaj Topiwala, Ajay Luthra, The
H.264/AVC Adv. Vid. Coding Std.: Overview & Intro. to the
Fidelity Range Extensions, SPIE Conf. on Appl. of Dig. Im
Proc XXVII.(Aug 2004). [FRExt includes High 4:4:4 Profile]

26. Gary Sullivan, Thomas Wiegand, Video Compr. - from
Concepts to H.264/AVC Std, Proc IEEE, pp.1-13.(Dec 2004).

27. MPEG4 is a multipart ISO standard, promoted by MPEG
Indus. Forum (www.m4if.org/resources.php). Of note: Pt. 10,
AVC, aka ITU H.264. See also Pt. 15, AVC File Format.

28. D. Marpe, V. George, H.L. Cycon, K.U. Barthel, Perf. Eval.
of Motion-JPEG2000 in comparison with H.264/AVC….,
SPIE's Intl. Symp. on Photonics Tech. for Robotics,
Automation, and Manuf.; Wavelet Appl. in Industrial
Processing. (Oct. 2003).

29. Til Halback, Mathias Wien, Concepts & Perf. of Next-Gen.
Video Compr. Standardization. Proc. Nordic Signal Proc.
Symp. (NORSIG), aboard Hurtigruten. Norway. (Oct. 2002).

30. Michael Smith, John Villasenor (ICSL/UCLA), Intra-frame
JPEG2000 vs. Inter-frame Compression Comparison, SMPTE
Tech. Conf., Pasedena, CA (Oct 2004). www.smpte.org/
conferences/146sescomp.cfm; www.conferencemediagroup.
com/detail.asp?product_id=SM-04-02-02 for audio.

31. Jens-Rainer Ohm, Mihaela van der Schnaar, John W. Woods,
Interframe Wavelet Coding – Motion Picture Representation
for Universal Scalability, EURASIP Signal Proc.: Image

242 Society for Imaging Science and Technology

Comm., Special issue on Digital Cinema. (2004). (www.ece.
ucdavis.edu/~mihaela/IC_DCspecial_InterframeWavelet.pdf

32. Shoko Imaizumi, Ayuko Takagi, Hitoshi Kiya, Lossless Inter-
frame Vid. Coding using Ext. JPEG2000, Proc 2002 Int. Tech
Conf Circ/Sys, Comp & Comm, Phuket,Thai. (Jul 2002).
www.kmutt.ac.th/itc2002/CD/pdf/19_07_45/ FA1_PJ/7.pdf.

Biographies

Glenn Pearson has a Ph.D. in Computer Science from the
University of Maryland, College Park. Since 1997, he has
been with MSD, Inc., Vienna, Virginia, developing imaging

workflow and presentation software for NLM, part of NIH
within the Department of Health and Human Services. His
most recent project involves video streaming and archiving.

Michael J. Gill is an electronics engineer with the
Communications Engineering Branch of LHNCBC, a
research and development division of NLM. His research
interests include image transmission, communications
systems, and performance measurement. He is a Senior
Member of the IEEE and received his BS EE from the
University of Maryland College Park.

Archiving 2005 Final Program and Proceedings 243

	32213
	32215
	32216
	32217
	32218
	32219
	32220
	32221
	32222
	32223
	32224
	32225
	32226
	32227
	32228
	32230
	32231
	32232
	32233
	32234
	32235
	32236
	32237
	32238
	32239
	32240
	32241
	32242
	32243
	32244
	32245
	32246
	32247
	32248
	32249
	32250
	32251
	32252
	32253
	32254
	32255
	32256
	32257
	32258
	32259
	32260
	32262
	32263
	32264
	32265
	32269
	32266
	32267
	32268

