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Abstract 

The main purpose of software testing is to identify what the 
software does and whether it matches its functional expectations. 
Applying a test plan allows one to prevent problems in early stages, 
identifying and addressing solutions before a project goes into 
production. Test cases play an important role during the software 
testing phase. A test case is a document with comprehensive details 
and sequences of actions to guide the software tester through the 
steps that need to be taken and the outputs that are expected. 

The proposed system generates test cases based on scraped 
data that are used to interact with Natural Language Processing 
(NLP) approaches to generate functional test cases. A project 
management software (e.g., JIRA) is integrated with the JIRA 
python library to manage the test cases by the software tester. 
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1 Introduction 

Software development is changing rapidly, and finding new 
software testing techniques is crucial to keep up. Companies are 
willing to invest as much as 50% of their software development 
resources towards testing [1]. The purpose of software testing is to 
examine all of the components and behaviors of the software system 
under consideration by applying validation and verification (V/V).  

Testing can be performed either manually or automatically [2]. The 
process of writing the test cases without the assistance of any 
dedicated software tool is termed manual testing. Unfortunately, 
manual testing is time consuming and tedious work. However, 
software developers use test automation approaches to detect 
problems or defects in early stages of the development of the system. 
Humans still needed to design, build, and maintain automation 
scripts, but after built they can be deployed automatically. To fulfill 
the software quality, manual and automation approaches are 
required [3]. The motivation for this research is to save time and 

improve the quality of testing by providing an additional approach 
to generate test cases for software testing.   

The remainder of the paper is organized as follows: In Section II, an 
overview of NLP and the problem that is addressed in this paper are 
presented. In Section III, relevant literature is reviewed. In Section 
IV, the implementation of the NLP algorithm and the python script 
that is used to generate and upload the test cases to JIRA is provided. 
In Section V, the results of the NLP approach and the limitations for 
generating test cases are provided. The concluding remarks are in 
Section VI. 

2 Problem 

Test cases are often not given the attention they deserve, which can 
lead to deleterious economic impacts [4]. Test cases are tools that a 
software tester needs to map the steps to follow, and a clear 
definition is essential to ensure that software is competitive, secure, 
and performs its expected purposes. However, performing software 
testing is a difficult task because it requires substantial investment 
of human hours. Therefore, researchers are focused on developing 
new software testing strategies to save human time investment 
(except on the front end) while still improving the quality of testing. 

One of these areas of research, artificial intelligence (AI), has 
recently demonstrated that machines have the capability to meet or 
exceed human performance in specifically-crafted types of testing 
scenarios. Advances in natural language processing (NLP), a sub 
domain of AI [5], can be used to bridge the communication gap 
between computers and humans. Considering these advantages of 
NLP and automation, the proposed system will use NLP to generate 
test cases and automate the uploading of the test cases to project 
management software (e.g., JIRA). Enhancing and automating the 
creation of test cases and ensuring that the process goes smoothly is 
a goal of this paper. 

NLP can be implemented to assign text to the following categories: 
speech understanding, automatic translation, question answering, 
information extraction, and text generation. These types of NLP 
implementations are implemented in systems used on a daily basis 
for applications spanning the range from translation software to 
voice assistants. Researchers are seeing some potential opportunities 
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for using NLP to aid the software quality of a system. Information 
extraction can be used as a backbone of generating test cases. 

3 Literature Review 

NLP can be implemented to generated test cases from functional 
requirements [6]. The author of [6] proposed a system that would 
automatically analyze functional requirement and extract important 
information to generate test cases. They highlight that this approach 
can minimize non-coverage of pertinent test cases. Their main goal 
was to reduce the effort and time consumed by testing [6]. One of 
the concerns with the requirements specifications being written in 
natural language is that natural language specifications can be 
ambiguous, incomplete ,and inconsistent [7]. In [7], the authors 
proposed a system to generate test cases from software requirements 
in natural language using NLP. They noted that their study can be 
used to analyze whether the requirements are satisfactory and 
properly understood. It is crucial to start testing in the early stages 
of the software development life cycle. This approach helps to 
reduce the number of defects and eventually the rework cost. In [8], 
the authors highlighted the importance of using test case 
prioritization (TCP) techniques to detect defects in early stages with 
the aid of NLP assistance. Based in their experiments, the risk 
strategy achieved the best performance across the other approaches 
[8].  

 Another proposed using NLP is highlighted in [9]. In this 
research, the approach was designed to enable the prediction of a 
test case failure for manual testing that can be implemented as a non-
code/specification-based heuristic for testing selection, 
prioritization, and reduction. The results revealed considerable 
improvements, demonstrating that a simple linear regression model 
combined with a history-based feature can accurately predict test 
case failures. The implementation of NLP improves the accuracy of 
the traditional history-based predictions  [9]. In [10], authors 
proposed a an overall system that consisting of three layers. The 
BeautifulSoup library is implemented for web scrapping, machine 
learning (ML) is used for predicting test cases, and Selenium is used 
to run the test cases. The results showed that the best classification 
model to generate test cases for each web element is SVM using tf-
idf on top of count vectorizer. This approach [10] has elements that 
are similar to the system presented in our study. An important 
distinction is that our system is using a spaCy library for our NLP 
approach to extract data to generate the test cases.  

4 Proposed System 
4.1 Generation Approach 

In this section, we explain the process of how NLP is used to 
generate test cases, as per Fig. 1, The steps are as follows: (1) 
navigating to the desired website. (2) Using Selenium for automatic 
login. (3) Employing a web scraping library to grab the desired data. 
(4) The data is exported to a CSV file. (5) With the aid of spaCy, 
NLP is then used to analyze and process the CSV file to extract and 
add the required data to generate the test cases. (6) The test cases are 
processed and reviewed. (7) The JIRA python script is then used to 
upload the test cases. (8) Finally, the software tester is ready to start 
testing, as per Fig. 1 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 1. Test Case Generation Approach 
 
Currently, the Python programming language is used due to its 
simplicity, power, and ability to process linguistic data [11]. Its large 
collection of useful libraries helps reduce the need for writing code 
from scratch. Jupyter was used since is a well-supported 
programming environment, and provides ease of communicating 
results. For this experiment, the BeautifulSoup v4, Pandas, 
Selenium, JIRA, and Requests libraries are employed.  
 
The Requests library is used to navigate to the desired site (e.g., 
https://www.engr.colostate.edu/se/). BeautifulSoup is implemented 
to extract the data from the Systems Engineering news section and, 
with the aid of the Pandas library, to move the data to a csv file, as 
per Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Python Script To Extract Data 
 
The spaCy library was chosen for advanced NLP in Python. Its aim 
is to process and understand a large volume of text. Currently it 
supports tokenization and training for 60+ languages. The use of the 
spaCy’s Ruled-Based Matching engine and components to find the 
words and phrases is one of interest. The same logic can be 
employed to generate test cases. This method allows navigation to 
the tokens within the document (e.g., data) and find relationships, as 
per Fig. 3 
 
 
 
 
 
 
 
 
 
Figure 3. The Word “Ph.D.” is Present Nine Times. 

ARCHIVING 2021 FINAL PROGRAM AND PROCEEDINGS 41



 

 

4.2 Rules – Based spaCy 
It would be great to ask a computer to process, read, and understand 
specific text to generate test cases, such as clicking a button and 
having it return the correct URL page display or verify image 1 
correspond to user 1. Manually repeating or constructing these test 
cases is costly and time consuming. In fact, with all of the 
technological advances in this area, it is crucial to focus on 
optimizing the costs, performance, and quality simultaneously. NLP 
can help reduce the testing time from hours to minutes. But before 
we implement the NLP, we need to instruct the computer on the 
basic concepts of text analysis. Our aim is to build a pipeline that 
can facilitate the process of making alterations to the data or 
extracting information that we can employ to generate the test cases. 
A pipeline is a collection of pipes that manipulates the data for your 
own purpose. Pipelines in spaCy are powerful and we can take 
advantage of them. 

The first step that spaCy performs when the nlp object is employed 
is to tokenize the text to create the Doc object. Next, the Doc object 
is responsible for processing a couple of steps, which is known as 
the processing pipeline. Most of the trained pipelines in spaCy 
contain a tagger, a lemmatizer, a parser and an entity recognizer. 
Each pipeline element returns the processed to the Doc object, then 
continues with the next element [12], as a per Fig. 4 

 
 
 
 
 

Figure 4. Pipeline process. 
Source: Adapted from [12] 

 
spaCy offers a large collection of different types of attribute rulers 
and matchers pipes that can be implemented for the desired pipeline.  
 

• Tokenizer 
• Tagger 
• DependencyParser 
• EntityRecognizer 
• Lemmatizer 
• TextCategorizer 
• EntityRuler 
• DependencyMatcher 
• Matcher 
• PhraseMatcher 

 
See the spaCy documentation for a full list [12]. The EntityRuler 
and Matcher are of our interest. 
 
spaCy EntityRuler 
 
spaCy provides different types of ruled-based name-entity 
recognition (NER), such as EntityRuler. This class allows setting 
patterns with corresponding labels. To start, it is given instructions 
to find and label entities. Additionally, a new pipeline to integrate 
the EntityRuler into our model is needed. 
 
In order to validate the investigation, a basic pipeline in spaCy was 
constructed. The EntityRuler is added to the pipe. This aids in 
adding patterns for the desired purpose. The spaCy small model 
“en_core_web_sm” was employed, and a Doc container to call the 
nlp object and pass the desired text to it was created. The text used 

represents four individuals who are in different stages of education. 
A simple for loop is run to extract the entities of each individual and 
the labels appear as a PERSON (e.g., people, including fictional) 
and FAC (e.g., building, airports, highways, bridges, etc.). 
Moreover, custom labels to assign to our four individuals are 
desired. 
 
To that end, a ruler object was added to the pipe. The add_pipe is 
implemented to add the “entity_ruler” before the NER. A list of 
entities and patterns are created (e.g., M.S. individuals are assign to 
a GRADUATE Student label.) and add_patterns augments the ruler 
object. Finally, the for loop is run again to extract the entities and 
now each individual appears as desired, as per Fig. 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Extracting entities with custom labels. 
 
The same logic could be applied during the creation of functional 
test cases. With the aid of BeautifulSoup v4 and Pandas libraries 
input control data, such as checkboxes, radio buttons, buttons, etc., 
can be collected. Building a pipeline with the EntityRuler factory 
could help constructing the test cases by assigning the correct labels 
to the input controls, as per Fig. 6 
 

 
 
Figure 6. Extracting entities and adding input control labels. 
 
Considering this rule-based approach, the main focus for future 
research is reviewing different models including a machine learning 
based approach. The machine learning based approach would help 
avoid rules that are complicated to implemented. The advantage of 
the NLP framework in spaCy is that the pattern need not simply take 
a sequence of characters and look for a match; instead, a sequence 
of linguistic features that earlier pipes have identified  can be 
employed [13].  
 
spaCy Matcher 
 
The spaCy Matcher is another class that can be implemented to 
generate test cases. There are some attributes taken by the Matcher. 
 

• ORTH  
• TEXT 

Text Tokenizer tagger parser ner … DOC

NLP
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• LOWER 
• LENGTH 
• IS_ALPHA 
• IS_ASCII 
• LIKE_EMAIL 
• LIKE_URL 

 
See the spaCy attributes for a full list [12]. For this scenario, the 
LIKE_URL are of our interest. The process mentioned on the spaCy 
EntityRuler applies for the spaCy Matcher, but not with the use of 
the pipeline. The new Jupyter notebook is created to integrated the 
Macher “from spacy.matcher import Matcher” with the spaCy 
medium model “en_core_web_md”. The main differences between 
the EntityRuler and the Matcher is in how the data is extracted. The 
Matcher stores the information within the vocab of the NLP model 
with a unique identifier or a lexeme [13] [12]. In fact, the Matcher 
is not going to be stored on the Doc ends.  
 
Going back to the implementation of the Matcher with the small 
model provided, it is observed that a matcher object to pass the 
vocab argument is needed. Then, the pattern list come to play. In 
this scenario, finding all the URL in our text is of our desired. The 
“LIKE_URL” key is employed in the dictionary to look for tokens 
that look like a URL. Two arguments are added: the label name and 
the pattern. The Doc container is employed to call the nlp object to 
pass the desired text to it. The matcher object is employed to call the 
Doc container. The first 10 matches are printed. The results display 
a list of tuples with three indices. The long number is equal to a 
lexeme. The next two numbers are assigned to a start token and end 
token. Now, navigation to the nlp vocab to find any of the integers 
and find what it corresponds to can occur, as per Fig. 7 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 7. Implementing the LIKE_URL attribute by Matcher 
 
With the advantages of the word vectors, a model can be trained and 
employ the similarity to match quickly and reliably. By calculating 
similarity, test cases can be generated. The similarity in spacy tells 
how close two words are, semantically. This is done by finding 
similarity between word vectors. A test case to click a button and 
having it return the correct URL page is readily created. Our results 
show that the “April Student of the Month: Peter Lobato” Button 
and the “https://www.engr.colostate.edu/se/2022/04/29/april-
student-of-the-month-peter-lobato/” URL have a similarity of 
0.912, as per Fig.8 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Applying the word similarity using spaCy. 
 
These results show that similarities between buttons and URLs can 
be identified, and test cases generated from the results.  

4.3 Upload Process 
 
The results from the EntityRuler and Matcher can be used to 
generate test cases. With the aid of the Matcher, the similarity of a 
button to a URL was identified and test case generated. A simple 
python script to upload the test cases to a JIRA project can now be 
created. The JIRA python library can aid in the process [14] , as per 
Fig. 9 
 

 
 
Figure 9. Connecting to JIRA to upload the test cases. 
Source: Adapted from [13] 
 
At this point, the software tester can start reviewing the test cases by 
navigating to the JIRA project.  

5 Results 

AI and ML, has improve the ability to test complex software systems 
With the aid of ML, one can train a machine to recognize any images 
and label them to generate test cases [15]. A test case classification 
methodology build on k-means clustering can improve regression 
testing [16]. NLP has proven that can be an important tool that can 
aid software testers during their testing [6] [7] [8] [9] [10]. The 
approach that is provided here can be found in section 4. This 
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research proves that with the aid of NLP and the benefits of using 
spaCy and other powerful python libraries, one can generate 
functional test cases. One goal of this work is sharing a different 
road to generate test cases and realizing this approach as a basis for 
future, more in-depth, work.  

6 Conclusion 

Software testing is a crucial part of the Software Development Life 
Cycle (SDLC). A novel approach to automating the process of 
generating functional test cases using NLP is provided. This 
approach can significantly reduce the time during the creation of test 
cases manually by a human. The technique was evaluated using two 
rule-based approaches. The EntityRuler and Matcher was employed 
to generate test cases. BeautifulSoup v4 and Pandas were 
implemented to collect data. In the context of building a pipeline 
using spaCy, collecting different types of data to have enough 
entities and patterns for the EntityRuler and Matcher is 
recommended. Word vectors can contribute to construct the test 
cases. Python script is executed to upload the test cases to JIRA. 
Future research will focus on reviewing all the results of the 
EntityRuler and Matcher.  
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