
How to generate and import functional test cases into project
management software systems using natural language processing.
Ricardo Reyna
Department of Systems Engineering
Colorado State University
Fort Collins, CO USA
rickyrey@colostate.edu

Steven J. Simske
Department of Systems Engineering
Colorado State University
Fort Collins, CO USA
steve.simske@colostate.edu

Abstract

The main purpose of software testing is to identify what the
software does and whether it matches its functional expectations.
Applying a test plan allows one to prevent problems in early stages,
identifying and addressing solutions before a project goes into
production. Test cases play an important role during the software
testing phase. A test case is a document with comprehensive details
and sequences of actions to guide the software tester through the
steps that need to be taken and the outputs that are expected.

The proposed system generates test cases based on scraped
data that are used to interact with Natural Language Processing
(NLP) approaches to generate functional test cases. A project
management software (e.g., JIRA) is integrated with the JIRA
python library to manage the test cases by the software tester.

KEYWORDS

Software Testing, Natural Language Processing (NLP), Automatic
Testing, Test Case, Functional Testing.

1 Introduction

Software development is changing rapidly, and finding new
software testing techniques is crucial to keep up. Companies are
willing to invest as much as 50% of their software development
resources towards testing [1]. The purpose of software testing is to
examine all of the components and behaviors of the software system
under consideration by applying validation and verification (V/V).

Testing can be performed either manually or automatically [2]. The
process of writing the test cases without the assistance of any
dedicated software tool is termed manual testing. Unfortunately,
manual testing is time consuming and tedious work. However,
software developers use test automation approaches to detect
problems or defects in early stages of the development of the system.
Humans still needed to design, build, and maintain automation
scripts, but after built they can be deployed automatically. To fulfill
the software quality, manual and automation approaches are
required [3]. The motivation for this research is to save time and

improve the quality of testing by providing an additional approach
to generate test cases for software testing.

The remainder of the paper is organized as follows: In Section II, an
overview of NLP and the problem that is addressed in this paper are
presented. In Section III, relevant literature is reviewed. In Section
IV, the implementation of the NLP algorithm and the python script
that is used to generate and upload the test cases to JIRA is provided.
In Section V, the results of the NLP approach and the limitations for
generating test cases are provided. The concluding remarks are in
Section VI.

2 Problem

Test cases are often not given the attention they deserve, which can
lead to deleterious economic impacts [4]. Test cases are tools that a
software tester needs to map the steps to follow, and a clear
definition is essential to ensure that software is competitive, secure,
and performs its expected purposes. However, performing software
testing is a difficult task because it requires substantial investment
of human hours. Therefore, researchers are focused on developing
new software testing strategies to save human time investment
(except on the front end) while still improving the quality of testing.

One of these areas of research, artificial intelligence (AI), has
recently demonstrated that machines have the capability to meet or
exceed human performance in specifically-crafted types of testing
scenarios. Advances in natural language processing (NLP), a sub
domain of AI [5], can be used to bridge the communication gap
between computers and humans. Considering these advantages of
NLP and automation, the proposed system will use NLP to generate
test cases and automate the uploading of the test cases to project
management software (e.g., JIRA). Enhancing and automating the
creation of test cases and ensuring that the process goes smoothly is
a goal of this paper.

NLP can be implemented to assign text to the following categories:
speech understanding, automatic translation, question answering,
information extraction, and text generation. These types of NLP
implementations are implemented in systems used on a daily basis
for applications spanning the range from translation software to
voice assistants. Researchers are seeing some potential opportunities

https://doi.org/10.2352/issn.2168-3204.2022.19.1.09
©2022 Society for Imaging Science and Technology

40 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

for using NLP to aid the software quality of a system. Information
extraction can be used as a backbone of generating test cases.

3 Literature Review

NLP can be implemented to generated test cases from functional
requirements [6]. The author of [6] proposed a system that would
automatically analyze functional requirement and extract important
information to generate test cases. They highlight that this approach
can minimize non-coverage of pertinent test cases. Their main goal
was to reduce the effort and time consumed by testing [6]. One of
the concerns with the requirements specifications being written in
natural language is that natural language specifications can be
ambiguous, incomplete ,and inconsistent [7]. In [7], the authors
proposed a system to generate test cases from software requirements
in natural language using NLP. They noted that their study can be
used to analyze whether the requirements are satisfactory and
properly understood. It is crucial to start testing in the early stages
of the software development life cycle. This approach helps to
reduce the number of defects and eventually the rework cost. In [8],
the authors highlighted the importance of using test case
prioritization (TCP) techniques to detect defects in early stages with
the aid of NLP assistance. Based in their experiments, the risk
strategy achieved the best performance across the other approaches
[8].

 Another proposed using NLP is highlighted in [9]. In this
research, the approach was designed to enable the prediction of a
test case failure for manual testing that can be implemented as a non-
code/specification-based heuristic for testing selection,
prioritization, and reduction. The results revealed considerable
improvements, demonstrating that a simple linear regression model
combined with a history-based feature can accurately predict test
case failures. The implementation of NLP improves the accuracy of
the traditional history-based predictions [9]. In [10], authors
proposed a an overall system that consisting of three layers. The
BeautifulSoup library is implemented for web scrapping, machine
learning (ML) is used for predicting test cases, and Selenium is used
to run the test cases. The results showed that the best classification
model to generate test cases for each web element is SVM using tf-
idf on top of count vectorizer. This approach [10] has elements that
are similar to the system presented in our study. An important
distinction is that our system is using a spaCy library for our NLP
approach to extract data to generate the test cases.

4 Proposed System
4.1 Generation Approach

In this section, we explain the process of how NLP is used to
generate test cases, as per Fig. 1, The steps are as follows: (1)
navigating to the desired website. (2) Using Selenium for automatic
login. (3) Employing a web scraping library to grab the desired data.
(4) The data is exported to a CSV file. (5) With the aid of spaCy,
NLP is then used to analyze and process the CSV file to extract and
add the required data to generate the test cases. (6) The test cases are
processed and reviewed. (7) The JIRA python script is then used to
upload the test cases. (8) Finally, the software tester is ready to start
testing, as per Fig. 1

Figure 1. Test Case Generation Approach

Currently, the Python programming language is used due to its
simplicity, power, and ability to process linguistic data [11]. Its large
collection of useful libraries helps reduce the need for writing code
from scratch. Jupyter was used since is a well-supported
programming environment, and provides ease of communicating
results. For this experiment, the BeautifulSoup v4, Pandas,
Selenium, JIRA, and Requests libraries are employed.

The Requests library is used to navigate to the desired site (e.g.,
https://www.engr.colostate.edu/se/). BeautifulSoup is implemented
to extract the data from the Systems Engineering news section and,
with the aid of the Pandas library, to move the data to a csv file, as
per Fig. 2

Figure 2. Python Script To Extract Data

The spaCy library was chosen for advanced NLP in Python. Its aim
is to process and understand a large volume of text. Currently it
supports tokenization and training for 60+ languages. The use of the
spaCy’s Ruled-Based Matching engine and components to find the
words and phrases is one of interest. The same logic can be
employed to generate test cases. This method allows navigation to
the tokens within the document (e.g., data) and find relationships, as
per Fig. 3

Figure 3. The Word “Ph.D.” is Present Nine Times.

ARCHIVING 2021 FINAL PROGRAM AND PROCEEDINGS 41

4.2 Rules – Based spaCy
It would be great to ask a computer to process, read, and understand
specific text to generate test cases, such as clicking a button and
having it return the correct URL page display or verify image 1
correspond to user 1. Manually repeating or constructing these test
cases is costly and time consuming. In fact, with all of the
technological advances in this area, it is crucial to focus on
optimizing the costs, performance, and quality simultaneously. NLP
can help reduce the testing time from hours to minutes. But before
we implement the NLP, we need to instruct the computer on the
basic concepts of text analysis. Our aim is to build a pipeline that
can facilitate the process of making alterations to the data or
extracting information that we can employ to generate the test cases.
A pipeline is a collection of pipes that manipulates the data for your
own purpose. Pipelines in spaCy are powerful and we can take
advantage of them.

The first step that spaCy performs when the nlp object is employed
is to tokenize the text to create the Doc object. Next, the Doc object
is responsible for processing a couple of steps, which is known as
the processing pipeline. Most of the trained pipelines in spaCy
contain a tagger, a lemmatizer, a parser and an entity recognizer.
Each pipeline element returns the processed to the Doc object, then
continues with the next element [12], as a per Fig. 4

Figure 4. Pipeline process.
Source: Adapted from [12]

spaCy offers a large collection of different types of attribute rulers
and matchers pipes that can be implemented for the desired pipeline.

• Tokenizer
• Tagger
• DependencyParser
• EntityRecognizer
• Lemmatizer
• TextCategorizer
• EntityRuler
• DependencyMatcher
• Matcher
• PhraseMatcher

See the spaCy documentation for a full list [12]. The EntityRuler
and Matcher are of our interest.

spaCy EntityRuler

spaCy provides different types of ruled-based name-entity
recognition (NER), such as EntityRuler. This class allows setting
patterns with corresponding labels. To start, it is given instructions
to find and label entities. Additionally, a new pipeline to integrate
the EntityRuler into our model is needed.

In order to validate the investigation, a basic pipeline in spaCy was
constructed. The EntityRuler is added to the pipe. This aids in
adding patterns for the desired purpose. The spaCy small model
“en_core_web_sm” was employed, and a Doc container to call the
nlp object and pass the desired text to it was created. The text used

represents four individuals who are in different stages of education.
A simple for loop is run to extract the entities of each individual and
the labels appear as a PERSON (e.g., people, including fictional)
and FAC (e.g., building, airports, highways, bridges, etc.).
Moreover, custom labels to assign to our four individuals are
desired.

To that end, a ruler object was added to the pipe. The add_pipe is
implemented to add the “entity_ruler” before the NER. A list of
entities and patterns are created (e.g., M.S. individuals are assign to
a GRADUATE Student label.) and add_patterns augments the ruler
object. Finally, the for loop is run again to extract the entities and
now each individual appears as desired, as per Fig. 5

Figure 5. Extracting entities with custom labels.

The same logic could be applied during the creation of functional
test cases. With the aid of BeautifulSoup v4 and Pandas libraries
input control data, such as checkboxes, radio buttons, buttons, etc.,
can be collected. Building a pipeline with the EntityRuler factory
could help constructing the test cases by assigning the correct labels
to the input controls, as per Fig. 6

Figure 6. Extracting entities and adding input control labels.

Considering this rule-based approach, the main focus for future
research is reviewing different models including a machine learning
based approach. The machine learning based approach would help
avoid rules that are complicated to implemented. The advantage of
the NLP framework in spaCy is that the pattern need not simply take
a sequence of characters and look for a match; instead, a sequence
of linguistic features that earlier pipes have identified can be
employed [13].

spaCy Matcher

The spaCy Matcher is another class that can be implemented to
generate test cases. There are some attributes taken by the Matcher.

• ORTH
• TEXT

Text Tokenizer tagger parser ner … DOC

NLP

42 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

• LOWER
• LENGTH
• IS_ALPHA
• IS_ASCII
• LIKE_EMAIL
• LIKE_URL

See the spaCy attributes for a full list [12]. For this scenario, the
LIKE_URL are of our interest. The process mentioned on the spaCy
EntityRuler applies for the spaCy Matcher, but not with the use of
the pipeline. The new Jupyter notebook is created to integrated the
Macher “from spacy.matcher import Matcher” with the spaCy
medium model “en_core_web_md”. The main differences between
the EntityRuler and the Matcher is in how the data is extracted. The
Matcher stores the information within the vocab of the NLP model
with a unique identifier or a lexeme [13] [12]. In fact, the Matcher
is not going to be stored on the Doc ends.

Going back to the implementation of the Matcher with the small
model provided, it is observed that a matcher object to pass the
vocab argument is needed. Then, the pattern list come to play. In
this scenario, finding all the URL in our text is of our desired. The
“LIKE_URL” key is employed in the dictionary to look for tokens
that look like a URL. Two arguments are added: the label name and
the pattern. The Doc container is employed to call the nlp object to
pass the desired text to it. The matcher object is employed to call the
Doc container. The first 10 matches are printed. The results display
a list of tuples with three indices. The long number is equal to a
lexeme. The next two numbers are assigned to a start token and end
token. Now, navigation to the nlp vocab to find any of the integers
and find what it corresponds to can occur, as per Fig. 7

Figure 7. Implementing the LIKE_URL attribute by Matcher

With the advantages of the word vectors, a model can be trained and
employ the similarity to match quickly and reliably. By calculating
similarity, test cases can be generated. The similarity in spacy tells
how close two words are, semantically. This is done by finding
similarity between word vectors. A test case to click a button and
having it return the correct URL page is readily created. Our results
show that the “April Student of the Month: Peter Lobato” Button
and the “https://www.engr.colostate.edu/se/2022/04/29/april-
student-of-the-month-peter-lobato/” URL have a similarity of
0.912, as per Fig.8

Figure 8. Applying the word similarity using spaCy.

These results show that similarities between buttons and URLs can
be identified, and test cases generated from the results.

4.3 Upload Process

The results from the EntityRuler and Matcher can be used to
generate test cases. With the aid of the Matcher, the similarity of a
button to a URL was identified and test case generated. A simple
python script to upload the test cases to a JIRA project can now be
created. The JIRA python library can aid in the process [14] , as per
Fig. 9

Figure 9. Connecting to JIRA to upload the test cases.
Source: Adapted from [13]

At this point, the software tester can start reviewing the test cases by
navigating to the JIRA project.

5 Results

AI and ML, has improve the ability to test complex software systems
With the aid of ML, one can train a machine to recognize any images
and label them to generate test cases [15]. A test case classification
methodology build on k-means clustering can improve regression
testing [16]. NLP has proven that can be an important tool that can
aid software testers during their testing [6] [7] [8] [9] [10]. The
approach that is provided here can be found in section 4. This

ARCHIVING 2021 FINAL PROGRAM AND PROCEEDINGS 43

research proves that with the aid of NLP and the benefits of using
spaCy and other powerful python libraries, one can generate
functional test cases. One goal of this work is sharing a different
road to generate test cases and realizing this approach as a basis for
future, more in-depth, work.

6 Conclusion

Software testing is a crucial part of the Software Development Life
Cycle (SDLC). A novel approach to automating the process of
generating functional test cases using NLP is provided. This
approach can significantly reduce the time during the creation of test
cases manually by a human. The technique was evaluated using two
rule-based approaches. The EntityRuler and Matcher was employed
to generate test cases. BeautifulSoup v4 and Pandas were
implemented to collect data. In the context of building a pipeline
using spaCy, collecting different types of data to have enough
entities and patterns for the EntityRuler and Matcher is
recommended. Word vectors can contribute to construct the test
cases. Python script is executed to upload the test cases to JIRA.
Future research will focus on reviewing all the results of the
EntityRuler and Matcher.

References

[1] M. J. Harrold, “Testing: A roadmap,” Proc. Conf. Futur. Softw.
Eng. ICSE 2000, no. July 2000, pp. 61–72, 2000, doi:
10.1145/336512.336532.

[2] R. M. Sharma, “Quantitative Analysis of Automation and Manual
Testing,” Int. J. Eng. Innov. Technol., vol. 4, no. 1, pp. 252–257,
2014.

[3] R. Ramler and K. Wolfmaier, “Economic perspectives in test
automation,” p. 85, 2006, doi: 10.1145/1138929.1138946.

[4] P. D. Gregory Tassey, “The Economic Impacts of Inadequate
Infrastructure for Software Testing,” Natl. Inst. Stand. Technol.,
p. 309, 2002.

[5] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” American Association for the Advancement of
Science, p. 7, 2015.

[6] A. Ansari, M. B. Shagufta, A. Sadaf Fatima, and S. Tehreem,
“Constructing Test cases using Natural Language Processing,”
Proc. 3rd IEEE Int. Conf. Adv. Electr. Electron. Information,
Commun. Bio-Informatics, AEEICB 2017, pp. 95–99, 2017, doi:
10.1109/AEEICB.2017.7972390.

[7] R. P. Verma and M. R. Beg, “Generation of test cases from

software requirements using natural language processing,” Int.
Conf. Emerg. Trends Eng. Technol. ICETET, pp. 140–147, 2013,
doi: 10.1109/ICETET.2013.45.

[8] Y. Yang, X. Huang, X. Hao, Z. Liu, and Z. Chen, “An Industrial
Study of Natural Language Processing Based Test Case
Prioritization,” Proc. - 10th IEEE Int. Conf. Softw. Testing, Verif.
Validation, ICST 2017, pp. 548–549, 2017, doi:
10.1109/ICST.2017.66.

[9] H. Hemmati and F. Sharifi, “Investigating NLP-Based
Approaches for Predicting Manual Test Case Failure,” Proc. -
2018 IEEE 11th Int. Conf. Softw. Testing, Verif. Validation, ICST
2018, pp. 309–319, 2018, doi: 10.1109/ICST.2018.00038.

[10] N. Paul and R. Tommy, “Platform Using Machine Learning and
Selenium,” 2018 Int. Conf. Inven. Res. Comput. Appl., no. Icirca,
pp. 851–856, 2018.

[11] S. Bird, E. Klein, and E. Loper, Natural Language Processing
with Python, First Edit. Sebastopol: O’Reilly Media, Inc., 2009.

[12] M. Honnibal, “spaCy,” 2015. https://spacy.io/.
[13] W. Mattingly, “Introduction To Spacy 3,” 2021.

http://spacy.pythonhumanities.com/intro.html.
[14] S. Suwarnarajah, “How can we automate Jira using python?,”

2020. https://github.com/sshajeeth/Jira-Automation (accessed
Mar. 21, 2020).

[15] J. Arbon, “AI for Software Testing,” PNSQC Proc., pp. 1–19,
2017.

[16] Y. Pang, X. Xue, and A. S. Namin, “Identifying effective test
cases through K-means clustering for enhancing regression
testing,” Proc. - 2013 12th Int. Conf. Mach. Learn. Appl. ICMLA
2013, vol. 2, pp. 78–83, 2013, doi: 10.1109/ICMLA.2013.109.

Acknowledgements

The author gratefully acknowledges Dun & Bradstreet for their
support during his PhD studies. Furthermore, I would like to thank
my colleague Vincil Bishop for his insightful input and good
discussion about this work and future collaborations.

Author Biography

Ricardo Reyna received the MSE degree in software engineering from the
Pennsylvania State University, in 2017. He attended the Johns Hopkins
Whiting School of Engineering, in 2018. He recently completed his second
year of PhD studies at the Colorado State University under the supervision
of Professor Steve Simske. He is currently working as a Senior QA Engineer
at Dun & Bradstreet. His research focuses on software testing, computer
vision, AI, and ML.

44 SOCIETY FOR IMAGING SCIENCE AND TECHNOLOGY

	Archiving 2022 Final Program and Proceedings
	Copyright 2022
	Welcome to Archiving 2022
	Conference Committee
	Review Committee
	Cooperating Societies
	IS&T Board of Directors
	Short Course Program
	Technical Papers Program
	Welcome and Opening Keynote
	Kenderline, Computational Museology: Interfaces to Cultural (big) Data

	Archiving and Books
	Heyworth, Multispectral Scheimpflug: Imaging Degraded Books that Open less than 30 Degrees, pg 1
	Humenuck, Practical Comparison of Rendering Programs for 2.5D Models of Embroidered Binding Covers, pg A-1
	Walker, Digitizing and Printing the Burgert Brothers Ledger Books: A Case Study in High-volume Facsimile Production, pg 5

	Archiving
	Plutino, Film and Digital Media: Open Issues and Novel Approaches for Digital Color Film Restoration, pg 11
	Vafaie, Handwritten and Printed Text Identification in Historical Archival Documents, pg 15
	Harper, Design and Development of Digitization Workflow for the Medium Format Capture of Oversized Artwork, pg 21
	Matongo, E-justice to Bridge Records Management Gap at the High Court in Namibia, pg 25

	Behind-the-Scenes Tours I
	Behind-the-Scenes Tours II
	Computational Analysis
	Fenton, Enhanced Computer Vision using Automated Optimized Neural Network Image Pre-processing, pg 30
	Tobing, Isolated Handwritten Character Recognition of Ancient Hebrew Manuscripts, pg 35
	Storch, Artificial Intelligence and the Creation of a Holistic Historical Record: Digitizing Collections Held by The HistoryMakers, pg A-3
	Reyna, How to Generate and Import Functional Test Cases into a Project Management Software System using Natural Language Processing, pg 40

	Art & Imaging
	Berns, Artist Acrylic Paint Spectral, Colorimetric, and Image Dataset, pg 45
	Elkhuizen, 3D Imaging Rembrandt’s ‘The Night Watch’ – A New Scanner Design, Calibration Procedures, and Optimized Capturing Strategy, pg A-5

	Wednesday Keynote
	Kong, digitalpasifik.org – Reflections on Designing and Delivering aBridge Between Worlds

	Visualization
	Schroer, New Directions in RTI Software, pg A-7
	Garcia, An Online Model Viewer for Cultural Heritage in Unity 3D, pg 50
	Castro, Extended Framework for Multispectral RTI, pg 56

	Digitization
	Stanford, Mass Digitization with Smartsheet: Leveraging a Commercial Solution for Flexible Project Management, pg 62
	Gonçalves, Digitizing with a Mobile Phone System: A Contribution, pg 67
	Jicha, Issues Concerning the Use of Duplication Positives in Digitizing Analogue Films, pg 72
	Goertz, Integrating Digitization and Advanced Imaging of HMML Icons, pg 78

	Interactive Papers Poster Session
	New Advancements in Digitization
	Davet, Tracking the Functions of AI as Paradata & Pursuing Archival Accountability, pg 83
	Rieger, Braille Digitization at the Library of Congress (presentation-only), pg A-9

	Behind-the-Scenes Tours III
	Closing Keynote
	Flocco, Reading Books through a Biomolecular Lens: Revealing theHidden Microbial Life of Written Cultural Heritage Objects

	Spectral Imaging
	Ciortan, Spectral Classification of Paper Fixatives: A Case Study on Thromas Fearnley’s Drawings, pg 89
	Kuzio, Beyond RGB: A Spectral Image Processing Software Application for Cultural Heritage Studio Photography, pg 95
	Trumpy, A Spectral Approach to Digitally Restore a Faded Agfacolor Print from 1945, pg 101
	Wyble, Spectral Imaging Method for Reflective Media, pg 106

	Author Index

