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Abstract
This paper presents a new quantitative approach to the study 

of Asian lacquers using surface metrology, and two data science 
approaches: feature engineering and convolutional deep neural 
networks, as used in machine vision or image recognition 
applications. The types of Asian lacquers and additives have a 
quantifiable impact on the topography of the resulting surface. To 
understand the unaged and aged characteristics, 15 different 
formulas of Asian lacquer were prepared using laccol, thitsiol and 
urushiol with the most common additives: oils, pigments and resins. 
These were studied with the surface metrology instrumental 
technique of confocal microscopy. 

Introduction
This paper presents our foray into both surface metrology and 

data science/analytics to study and better understand Asian lacquer 
surfaces. 

Research at the Getty Conservation Institute on the chemical 
characterization of Asian lacquers has demonstrated that the type 
of lacquer mixtures and the additives have an impact on the resulting 
surface. As part of the GCI’s ongoing project to understand the aging 
characteristics and develop cleaning methods for Asian lacquers, in 
2017, 15 different formulas of Asian lacquers for surface texture 
analyses were prepared. Three types of Asian lacquer, laccol, thitsiol 
and urushiol, were obtained or purchased from commercially 
reliable sources. Traditional recipes and preparation protocols were 
followed to minimize differences and ensure standardization of the 
final products. The five laccol, four thitsiol and five urushiol panel 
formulas differ from the next in the series by having had one 
additional common ingredient added such as oils, pigments and 
resins. Having different individual panels representing each lacquer 
formulation allows for the investigation of how each additional 
ingredient affects the surface texture [1]. 

The surface metrology instrumental technique of confocal 
microscopy was used to study 14 Asian lacquer panels before 
(unaged) and after accelerated aging. For the 14 unaged panels, 12 
distinct areas of interest were examined using a 10x (area 1,600 
x1,600 μm) objective [1]. For aging, each panel was divided into 
four sections and each section was artificially aged first with light at 
100, 200, 300 and 400 hours (Xenon arc lamp; 0.5W/m2 at 340nm 
with sodium borosilicate inner filter and soda lime outer filter), and 
then submitted to relative humidity cycling of 80% per week 
followed by 20% per week for eight weeks [2]. 

Three regions of interest have been measured in each of the 
four aged sections of each of the 14 aged panels. This paper presents 
data on the unaged and aged laccol, thitsiol and urushiol specimens. 

Processing a Surface Scan for Analysis
The measured data is a map of a surface topography from a 

confocal microscope scan that is 984 pixels by 984 pixels in size 
with each pixel representing 1.62 microns, with a vertical height 
measurement in each pixel. Each surface is then represented by 
968,256 (984 squared) floating point values, which is similar to a 

black and white digital image, except that the values are heights 
rather than greyscale values. To use these images in subsequent 
statistical analyses, there are two general classes of approaches 
available, feature engineering, and the use of convolutional deep 
neural networks which work with raw images. 

Feature engineering is the process of extracting useful derived 
variables from a data set that act as summary variables (features) for 
further analysis. In ordinary life, people use a range of features to 
describe objects in the world around them, the process of feature 
engineering is mathematical in nature but akin to this ordinary 
human process.  The feature engineering approach employed here is 
an extension of the common division of the surface topography into 
two components, waviness or contour and roughness. 

In the typical approach to estimating waviness and roughness, 
a spatial filter (often a robust Gaussian filter) is applied to the data 
to smooth it and yield an estimated waviness (the smoothed surface) 
[3]. The difference between the original surface and the smoothed 
surface is termed the roughness component, or the residuals of the 
filter, thus splitting the topography of the surface into the two 
distinct components. The filter size used in this process is typically 
taken as ten percent of the size of the surface. The root- mean-square 
(RMS) of the height value is taken as an overall measure of 
roughness of the surface. A number of more complex approaches to 
surface characterizations have been developed, including those 
based on discrete Fourier transforms [4] or other advanced feature 
engineering methods [5].  Within this study, the gaussian filter 
process has simply been extended to more than two components. 
Rather than apply a single filter of fixed size to produce a single 
roughness and smoothed surface, a series of many filters of 
increasing size are used to successful compute a roughness and a 
contour for each size of the filter. The smallest filter size is taken as 
the  resolution limit of the measurement, meaning a single pixel. The 
filter size is then steadily increased at some desired rate (often 1 
pixel at time), so that the residuals of the filter produce a roughness 
estimate at the scale of each filter used. The RMS value of the 
residuals at each filter size thus form a roughness spectrum which 
describes the magnitude of the roughness at a variety of scales. The 
entire roughness spectrum of a sample thus forms a set of engineered 
features called a feature vector [5] that describes the texture of the 
surface as a series of scale-dependent measurements rather than a 
single RMS roughness. This iterative filtering process was carried 
out in R [6] using a robust gaussian filter from the spatstat package. 
The resulting roughness spectra may then be analyzed with a wide 
range of multivariate statistical methods. 

This digital approach to a roughness spectra approach has 
several physical analogs. Geologist or civil engineers will pass a 
collection of sediment through a series of sieves of decreasing size, 
so that the proportion by weight of each size of sedimentary 
component may be determined [7]. Different environments will 
yield different patterns (spectra) of grain sizes. Woodworkers 
purchase sandpaper by grit size, with low grit sizes indicating coarse 
or large grained sandpaper and higher grit sizes indicating 
progressively finer grit sizes. In a roughness spectrum, small filter 
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sizes correspond to fine “grits” and larger filter sizes correspond to 
coarser “grits”. 

The second approach presented here makes use of a deep 
learning method called a convolutional neural network (CNN) [8], 
which has proven effective in image analysis in detecting and 
identifying objects in an image. The surface scans may be thought 
of as  monochrome images, in which the height at each location is 
false color coded in shades of grey. The CNN used in the current 
study utilized N x N pixel patches of the entire image, so that than 
many different training examples were available from each of the 
984 x 984 data scans available. Three different patch sizes, 50 x 50, 
75 x 75 and 100 x 100 pixels were examined. The CNN was 
implemented in Python using the Keras API to the TensorFlow 
library [9]. A simple CNN structure of 3 paired convolution and 
pooling layers, followed by flattening layer, one hidden layer for the 
classification and an output layer was used, based on examples from 
Chollet [8]. This system was then trained to classify input images as 
coming from one of three different types of lacquer. 

Results
The roughness spectra were calculated for all surface scans 

from all samples, both the aged and non-aged of laccol, thitsiol and 
urushiol lacquers with no additives, using a total of 19 different filter 
sizes ranging from 1.62 microns up to 89.1 microns in size. The 
mean and standard deviation were then calculated for each lacquer 
type, based on the non-aged surfaces, as shown in Figure 1. There 
are clear differences in the mean values of the roughness spectra for 
the three lacquers. 

As each individual specimen is represented by the 19 values in 
the roughness spectra, an ordination method (an unsupervised 
learning method) called Principal Components Analysis (PCA) 
[5,10] was used to produce a reduced dimensionality plot. PCA 
produces a depiction of the largest patterns of variation in 

 
 
 
 
 

Figure 1:  The mean and standard deviation of each roughness spectra 
component for the three unaged lacquer specimens. 

the data (the roughness spectra of each sample), by producing a set 
of engineered features called the Principal Axes. Specimens can be 
located or placed along these axes based on the roughness spectrum 
scores of the given specimens. Each PCA axes explains some 
proportion of the total variance in the data, much as a regression 
model explains variance.  Unlike a regression model, the PCA has 
no independent predictor variables, it operates by simply 
summarizing the variance in the data. PCA plots require practice to 
interpret but provide a simplified image of the large patterns of 
variation in the data. If different groups of specimens (such as 
lacquer types) group or cluster on the diagram, it indicates that 
specimens with similar group variables (lacquer type or age) also 
have similar patterns in the roughness spectra. Note that the PCA 
does not use information about the lacquer type in estimating the 
axes. 

The first two PCA axes based on the analysis of the roughness 
spectra of 111 specimens in our study show a clear cluster or 
segregation of specimens by lacquer type. The aged (age categories 
1-4)  urushiol specimens do separate substantially from the unaged
specimens (category 0). Aged specimens of the other two lacquers
remain close to the unaged specimens. The first PC axis (PC1)
explains 75.8% of the variation in the roughness spectra, while the
second (PC2) explains 22.4% of the variation,  the two combined
represent 98.2% of the total variation. The PC axes are linear
combinations of the roughness spectra, and by examining a PCA 
“axis loading”, it is possible to determine which elements of the
roughness spectra have high loadings and thus contribute strongly to
the PC axis. Figure 3 shows that the 16.2 micron roughness is the
major influence on PC1, while PC2 is strongly influenced by
roughness at 1.62 microns, and also at 3.2 microns and 16.2 microns
again. Figure 1 does indicate that the roughness values at 16.2
microns have high variance within each lacquer type, consistent with
the broad bands of each lacquer time visible along the PC1 axis in
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Figure 2. PC2 is more effective in separating the 3 lacquer types in 
Figure 2, consistent with the difference in the mean values of the 
roughness spectra at the smallest scales seen in Figure 1. 

The roughness spectrum can also be used in a supervised 
learning method to classify specimens to a lacquer type. In this case, 
a random forest [11] method using 500 decision trees was trained to 
classify specimens into lacquer types. The forest was trained on a 
subset of the data and then evaluated using specimens not used in 

the training process. In this case, a method called cross validation 
was used in which the random forest was trained using 90% of the 
unaged data and then tested using the remaining 10% of the unaged 
data, this was repeated 100 times to obtain an estimate of the 
expected classification performance, which was 99% correct for the 
unaged data. Aged data was not used in the training. The roughness 
spectra from the aged specimens was then used as the input to the 
random forest classifier.

Figure 2: PCA Scores of all unaged (Age=0) and aged specimens. The age and lacquer type are not inputs to this unsupervised learning method, these 
categories are only used in plotting. The three unaged lacquers form three vertically separated “bands”  while many of the aged urushiol specimens lie 
between the band of the laccol and thitsiol specimens.

Figure 3: Plots of the axis loadings for the two PCA axes, used to determine which roughness features are represented along each axis.
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The overall rate of correct assignments of the aged specimens 
was 62.7%, with the classification rates for each lacquer shown in 
Table 1 below. Not surprisingly, the aged urushiol specimens were 
typically misclassified, as might be expected by the group of 
urushiol examples close to the laccol and thitsiol specimens in the 
PCA plot (Figure 2). The specimens of aged laccol and thitsiol had 
correct assignment rates of 75% and 84.2% respectively, while aged 
urushiol had a 33.3% correct rate, which is essentially random. 
However, the aged urushiol was always misclassified as laccol, 
never as thitsiol. 

Lacquer Type 
Predicted 
Type Laccol Thitsiol Urushiol 

Laccol 18 3 16 
Thitsiol 2 16 0 
Urushiol 4 0 8 
Percent 
Correct 75 84.2 33.3 

Table 1: Assignments of aged lacquers using a Random Forest 
based on roughness spectra. Correct assignments are along the 
diagonal, off-diagonal values are errors. 

The CNN based classifier rapidly reached over 99% accuracy 
in cross-validation testing using randomly selected 100 by 100 
pixels (162 micron x 162 micron) slices of the surface scan. The 
overall rate of correct assignments of the aged specimens was 
67.1%. Again, it proved difficult to correctly assign aged urushiol 
specimens, as seen in Table 2. Slice sizes of 50 x 50 pixels and 75 x 
75 pixels were also tested (results not shown), the correct 
assignment rate increased with the size of the slice. 

Lacquer Type 
Predicted Type Laccol Thitsiol Urushiol 
Laccol 21 2 10 
Thitsiol 0 20 8 
Urushiol 3 0 6 
Percent Correct 87.5 90.9 25.0 

Table 2: Assignments of aged lacquers using a Convolution Neural 
Network based on 100 x 100 pixel slices of the data.

Conclusions
The goal of this study was to determine if confocal microscope 

scans of the surface topography of three different lacquer coatings 
could be used to determine the type of lacquer used and to detect 
indications of aging in the surface. Our sample size consisted of a 
total of 72 scanned regions; 36 scans from three unaged lacquer 
panels (12 per panel), and 36 scans of the three aged lacquer panels 
with four aged regions. While this represents a substantial data 
collection effort, the sample size is limited relative to the typical data 
sets available in other applications of machine learning. 

The feature engineering-based approach led to the development 
of a roughness spectra that produces scale dependent 
characterizations of the roughness that can be used in subsequent 
analyses. A simple plot of the mean and standard deviations of the 
roughness spectra for the three lacquers in unaged form show clear 
differences in the roughness spectra (Figure 1), which are most 

noticeable at the 1.62 and 3.24 micron scales. A PCA analysis of the 
data shows clear segregation of the three unaged lacquers, with aged 
laccol and thitsiol specimens remaining close to the unaged 
specimens, while urushiol specimens changed in more complex 
ways. It should be noted that one person prepared the thitsiol and 
laccol panels, while another person prepared the urushiol, so the 
source of the variation cannot entirely be determined. 

Clearly, though, there were detectable changes in the roughness 
spectra associated with specimen aging. Effective classification of 
aged specimens based on the roughness spectra will require a 
detailed understanding of the specimen changes associated with 
aging, and larger sample sizes. 

A random forest classifier trained on unaged specimens 
performed well in classifying unaged specimens, but the 
performance deteriorated when aged specimens were classified with 
the same random forest classifier. The CNN classifier which made 
use of the raw data matrix without any feature engineering and 
showed marginally better performance that the random forest 
classifier operating on the roughness spectra. Given more data, it 
will be possible to train both classifiers on both aged and unaged 
data, thus incorporating information about the aging process into the 
classifier to improve performance. 

This pilot study shows that advanced analytic approaches can 
be used effectively to extract information from surface texture scans. 
Both feature engineering and convolutional network based 
approaches can successfully classify surfaces to the correct lacquer 
types, as well as identifying and quantifying the impact of surface 
aging. 
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